Нижняя и верхняя матрицы ламп фотоумножителя подготовлены для LZ в подземном исследовательском центре Сэнфорда в Южной Дакоте.
Австралийские исследователи внесли ключевой вклад в успех эксперимента LUX-ZEPLIN (LZ) — самого чувствительного детектора темной материи в мире, расположенного на глубине километра под землей в Южной Дакоте. Недавно опубликованные результаты еще больше сузили границы поиска слабо взаимодействующих массивных частиц (WIMPs) — одного из вероятных кандидатов на роль темной материи, которая составляет около 27% массы Вселенной (или 85% ее вещества). Анализ данных, собранных за 417 дней с марта 2023 по апрель 2025 года с помощью 10-тонного детектора с жидким ксеноном, не выявил доказательств темной материи с массами от 3 до 9 гигаэлектронвольт (ГэВ), установив лучшие в мире ограничения выше 5 ГэВ.
Доктор Тереза Фрут из Школы физики Сиднейского университета и доктор Роберт Джеймс из Мельбурнского университета — двое из международной команды в 250 ученых. Доктор Фрут сыграла важную роль в запуске детектора, работая над ним десять лет, включая периоды в Оксфордском университете и Университетском колледже Лондона. Доктор Джеймс руководил статистическим анализом. Оба — сотрудники Центра передового опыта ARC в области физики частиц темной материи.
Результаты представляют собой новую веху: впервые LZ зарегистрировал солнечные нейтрино (на основе бора-8), образующиеся в термоядерных реакциях в центре Солнца. Это произошло через процесс когерентного упругого рассеяния нейтрино на ядрах (CEvNS), открытый в 2017 году. Ранее такие взаимодействия наблюдались в детекторах PandaX-4T и XENONnT.
"Удивительно, что наш детектор достаточно чувствителен, чтобы улавливать нейтрино от Солнца, — сказала доктор Фрут. — Мы открываем дверь в физику Солнца и нейтрино, продолжая поиски темной материи. Может показаться странным радоваться отсутствию открытия, но это приближает нас к цели".
Доктор Джеймс отметил: "LZ впервые статистически значимо наблюдал солнечные нейтрино бора-8 через CEvNS и установил ведущие ограничения на темную материю выше 5 ГэВ. Было интересно моделировать детектор в этом режиме".
Такая чувствительность — успех и вызов: солнечные нейтрино могут имитировать слабые сигналы темной материи, создавая "нейтринный туман". Для детекторов меньших масс нейтрино становятся фоном, но при больших массах (например, 100 раз большего протона) это меньше влияет.
Доктор Энн Ванг из SLAC объяснила: "Мы минимизировали данные и калибровали детектор, чтобы отличать солнечные нейтрино от сигналов темной материи".
Результаты, объявленные 8 декабря на конференции в Санфордском центре, опубликованы на arXiv и будут в Physical Review Letters. Ученые планируют продолжить сбор данных до 2028 года и работают над XLZD — следующим поколением детектора жидкого ксенона. Доктор Фрут была ведущим редактором книги о его дизайне в European Physical Journal C.
"Темная материя существует — мы видим ее гравитационное влияние, — сказала доктор Фрут. — Эти результаты демонстрируют исключительную чувствительность LZ. Если темная материя взаимодействует в тестируемом диапазоне, мы это обнаружим".
Австралия продолжает вносить вклад в глобальный поиск, один из ключевых вопросов современной физики. Команда LZ включает многолетние усилия многих ученых, подчеркивая важность международного сотрудничества.
8 лет назад, сгорев в атмосфере Сатурна, космический аппарат “Кассини” завершил своё почти 20-летнее путешествие от Земли до Сатурна. Дважды продлённая миссия этого космического аппарата была направлена на систему Сатурна: сам газовый гигант, его кольца и спутники.
Собственно, это был первый аппарат, что вышел на орбиту Сатурна и изучал его не на пролёте, но целенаправленно. Изучение на протяжении многих лет позволило совершить куда больше научных открытий, чем ранние миссии Пионеров и Вояджеров. Самые яркие прорывы, которые можно назвать уже сейчас - это открытие водяных гейзеров на Энцеладе - одном из крошечных ледяных спутников Сатурна, и посадка зонда на поверхность Титана - крупнейшего спутника Сатурна с плотной атмосферой и, как выяснилось примерно в то же время, вполне себе жидкими морями и реками из жидких углеводоров. В некотором роде, открытия Кассини-Гюйгенса позволили переписать учебники по астрономии, давая даже немного работы астробиологам в их нелёгком поиске внеземной жизни.
фотография Энцелада с теневой стороны, в нижней части фотографии явно видны гейзеры, оставшиеся от них облака льда, содержащие в себе следы органики
сопоставление фотографий при пролётах аппаратом Кассини Титана с радиокартографированием - видно изменение береговой линии, притом точный источник явления неизвестен до конца)
единственная фотография с поверхности Титана, переданная зондом Гюйгенс. Для облегчения восприятия была повышена контрастность фотографии
Итак, давайте внятно определимся, каковы были задачи для аппарата. Если совсем кратко, то было необходимо донести большое количество научного оборудования и спускаемый зонд до системы Сатурна, питать весь аппарат около десятка-двух лет, отправлять научные данные на Землю, уметь маневрировать для более полного осмотра системы Сатурна, и выполнить ещё сонм чуть менее заметных задач, не вошедших в этот список - и всё это обладая знаниями и технологиями из 90-ых. Задач много, и каждая требует пристальнейшего внимания - любая поломка может привести к преждевременной гибели миссии, и мы не получим ничего с тех усилий, что уже были вложены в аппарат…
С энергией в космосе вообще сложновато, т.к.половина способов получения энергии на таких масштабах времени без регулярного техобслуживания у нас, оказывается не работает: большая часть нынешних способов получения электричества заключается в использовании некоторого явления, что должно вращать турбину. Однако обычно после запуска с аппаратом невозможно что-либо сделать - разве что обновить программное обеспечение. Поэтому от движущихся частей на космических аппаратах пытаются избавляться - любой износ, поломка, смещение частей аппарата, воздействие полей могут вызвать поломку этой части и, вероятно, скорое прекращение миссии. Выработка энергии - невероятно важная задача для любой космической миссии, и здесь обходятся обычно двумя решениями: солнечные панели и РИТЭГи - Радиоизотопные Термоэлектрические Генераторы. Оба решения имеют свои особенности в работе, свои преимущества и недостатки, особо проявляемые в контексте временного периода.
Солнечные панели, очевидно, требуют солнца для работы, буквально преобразуя попадающий на них свет в напряжение между пластинами, создавая ток. Но есть в солнечных батареях парочка недостатков, сильно проявляющих себя в условиях, где мы хотим их использовать. Для начала, солнечные батареи сами по себе, на самом деле, малоэффективны - даже сейчас КПД в 20% считается большим. Этот минус усугубляется и пунктом нашего назначения, в который мы отправляем наш Кассини-Гюйгенс - в 10 раз дальше, чем уже сейчас (а значит солнечного света будет в 100 раз меньше на ту же площадь в идеальном случае) и ужасаемся площади, необходимой для покрытия наших хотелок в энергии. Даже если предположить, что мы сможем обеспечить необходимую площадь для перекрытия энергетических нужд солнечными панелями (т.е. иметь примерно в 100 раз большие солнечные панели, чем около Земли), приходят обычные космические проблемы: габариты и масса.
С учётом того, что солнечные панели не абсолютно плоские и вполне себе весомые, и единственный способ их упаковки заключается в складывании (что требует дополнительных поддерживающих ферм, огромного количества специальных шарниров, специальных соединений и прочих сложностей при больших рисках, связанных с отсутствием техобслуживания), такой аппарат банально может иметь слишком большие массу и объёмы, чтобы довести это дело до точки назначения в виде Сатурна. И опять-таки, если решим проблему доставки аппарата с такими гигантскими панелями, столкнёмся с комплексом проблем от огромной площади аппарата: ограниченная манёвренность вследствие низкой жёсткости всей конструкции, микрометеоритная бомбардировка, что особо актуально для Сатурна - микрочастицы пыли далеко не полностью собраны в кольца - и далее по списку.
РИТЭГи же - несколько иная тема. Радиоизотопные Термоэлектрические Генераторы преобразуют тепло, выделяющееся в большом количестве от распада радиоактивных элементов, в электричество. Замечательное решение для миссий, что не требуют сильно большого количества энергии и отправляются в далёкий космос. Нам парочки таких хватит, пусть они тяжёлые и жутко дорогие.
Если бы не совсем недавно произошедшие с разницей в 3 месяца сначала катастрофа шаттла Челленджер, а потом - авария на Чернобыльской АЭС, проблем с РИТЭГами бы вообще не было. Однако, на фоне развившейся радиофобии, полёты аппаратов, содержащих любые потенциально токсические вещества - в особенности, радиоактивные - встречали волны протестов. Тем более, что уже существовал аппарат, что полетел с РИТЭГом и вернул в земную атмосферу около килограмма распылённого ядерного топлива. Авария аппарата Transit 5BN-3 в 1964, что шёл с РИТЭГом SNAP-9A {5} была одним из основных аргументов в протестах.
РИТЭГ SNAP 9A, вызвавший радиационное загрязнение атмосферы при неудачной попытке вывода на орбиту очередного спутника Transit'а. Большая часть радиационного загрязнения пришлась на южное полушарие
РИТЭГ GPHS, работавший на Кассини. Аналогичные ему по строению летали на аппаратах Galileo, Ulysses, New Horizons. Эта махина весит почти полцентнера и содержит в себе около 11 килограмм диоксида плутония-238
Тем не менее, уже с 70-ых годов в NASA разрабатывался особый тип РИТЭГов - GPHS {6}. Если коротко, то ядерное топливо содержалось в особом контейнере из иридия, способном пережить взрыв ракеты на старте или в воздухе, огромные нагрузки - в общем, давно был рассчитан на худший вариант развития событий, и потому запуск был разрешён даже на волне радиофобии. Протесты не могли пересилить многолетние разработки и испытания… В общем, поставить радиоактивную батарейку разрешили - первый вопрос решён.
Однако просто поставить РИТЭГи на случайное место на аппарате нельзя. Всё-таки штука горячая, особенно ближе к старту, да ещё и фонит немного - аппарату требуется смотреть на магнитные поля вокруг, обследовать радиационный фон.. В общем, расположение РИТЭГов - ещё одна задачка со звёздочкой для разбора.
Конкретно в этот раз нас встречает такая проблема: учёные хотят поставить на аппарат магнитометр, дабы очень точно измерять магнитные поля около Сатурна и его лун. А раз это помогает им узнать внутреннее строение планет, они хотят высокую точность, чтобы точнее знать внутренности! Если вдаваться в цифры, учёные хотят точность от нескольких наноТесла (10^-9 Тл или 0,000000001 Тл) до Гаусса (10^-4 Тл или 0,0001 Тл). Для сравнения, магнитное поле Земли около поверхности имеет напряжённость около 30-50 мкТл (они же 30 000 - 50 000 нТл, они же 0,3-0,5 Гаусса). Неодимовый магнит может иметь напряжённость магнитного поля около 1 Тл - действительно мощная штука. Вернёмся к аппарату: чтобы точно не было значимого влияния на результаты изучения полей, мы должны уменьшить поле аппарата до примерно 0,2 наноТесла или же 200 пикоТесла, с такими помехами учёные готовы мириться.
Но вот незадача: магнитные поля появляются от очень многих источников, что мы ставим на аппарат: двигатели, электрические системы электрогенераторы… На самом деле, электроника является немалой проблемой: на Кассини было порядка 1,5 тысяч электрических компонентов, более 20 тысяч соединений проводами общей длиной в 14 км. Условно можно представить себе хаотичную систему из сотен, тысяч компьютеров, сложенных вместе в огромную стопку, высотой в 6 метров, диаметром в метра 4-5. Такая штука будет фонить даже на десяток метров на тысячи, десятки тысяч нанотесла при рассматривании на расстоянии в десяток метров. Здесь, на деле, ситуация схожая с вопросом от РИТЭГов, но о ней позже.
Как-то же нужно решить проблему шумов хотя бы от только что разрешённых РИТЭГов? Иначе на аппарате получится мёртвый груз на миссии, куча научных задач не будет решена - и инженерам дадут по шапке! Но ладно, можно вновь обратиться к прошлому опыту, возможно что-то добавив новое. В конце концов Кассини - не первый аппарат, летящий с магнитометрами и РИТЭГами… Ну и что, что первый столь большой, и сразу с 3 генераторами против летавших ранее на одном-двух?
Если посмотрим на относительно давние миссии - к примеру, Вояджеры 1 и 2, то увидим такое решение: вынесем магнитометр на длинную выдвижную балку (свыше десятка метров), там помехи аппарата будут минимальны. Ну а раз Вояджеры просто пролетают мимо планет, у которых нужно понять: есть магнитное поле или нет - в общем можно ограничиться пространственным разнесением. Если проще, можно представить, что магнитометр - это некий слушатель, магнитные поля - интересующий его концерт, а аппарат со своими РИТЭГами - шумная компания, приведшая этого слушателя послушать, но почти не замолкающая. Естественно, слушающий музыку захочет отсесть от шумной компании - но отзвуки всё равно могут доноситься. Однако пока аппарат просто пролетает мимо планеты, нам нужно в целом понять, есть ли магнитное поле у планеты или нет, возможно узнать его примерные порядки значений - но не точное картографирование магнитных полей. Если на концерт не удастся попасть полностью, слушатель просто хочет услышать, он вообще идёт или нет, узнать его жанр - и отдаляется чуть дальше от своей группы.
траектория полётов Вояджеров. Пролёты мимо планет длились несравнено меньше тех лет, что проводили на орбитах Галилео и Кассини
В общем, Вояджеры свою задачу на пролёте сделали - показали, что магнитные поля у гигантов есть, в целом не сильно отличные по мощности от земного, так что следующим аппаратам будет что изучать. Собственно, Кассини и будет изучать Сатурн…
Далее с похожей проблемой столкнулся Галилео. Этот аппарат был относительно мелким, и его магнитометр находился на балке, длиной всего в 4,8 метра - не чета тем десятиметровым гигантам, что мы обсуждали ранее. Тем не менее, требования к аппарату были аналогичны Кассини: Галилео выходил на орбиту Юпитера и должен был картографировать магнитное поле системы. Инженеры на Галилео извернулись достаточно эффектно: у собранного аппарата было измерено суммарное поле в точке будущих измерений, притом был известен вклад каждой системы, каждого прибора аппарата. Трудоёмкая работа, требующая особого оборудования в виде крупных камер Гельмгольца, что нивелируют магнитное поле Земли. Учитывая такой объём доступной информации, можно достаточно просто написать программу, что будет вычитать из показаний магнитометра помехи с аппарата, даже учитывая, какие системы на момент активны, и какие - нет. Продолжая аналогию с музыкой, слушатель смог игнорировать шум товарищей, абсолютно не обращая внимания на их болтовню, будто бы не слыша его. Если его пошлют на все 4 стороны 3 буквами, он услышит, но сможет заигнорить (хотя зарубку сделать сможет..).
Галилео при сборке. Можно немного прикоснуться к масштабам аппаратов, потому что на бумаге, по личным ощущениям, не воспринимается масштаб аппарата по сравнению с людьми
В целом, метод хороший, но имеет несколько минусов, что не позволят использовать в чистом виде на Кассини: в космических условиях никогда нельзя предугадать, как именно будет меняться система: возможно некий сигнал на антенне что-то поменяет в электрической схеме, где-то может произойти ошибка от наведённого на электронную схему заряда, где-то система может деградировать (привет РИТЭГам), ещё куча “может”, что за многие года миссии может создать приличную ошибку. Вероятнее всего, эта ошибка накапливается достаточно медленно, чтобы можно было о ней не беспокоиться, однако нам критически важен иной момент: Кассини невозможно запихнуть в камеру с достаточно точным нулевым магнитным полем (то есть достаточно мелким, чтобы мы могли на него забить при замерах), чтобы замерять его собственное поле. Галилео, в отличие от Кассини, был достаточно мелким, чтобы такая камера могла удовлетворить всем условиям.
Есть ещё аппарат - Улисс. Он использовал единственный РИТЭГ в своей конструкции, но имел важную задачу по исследованию магнитного поля Солнца, в частности, вне плоскости эклиптики (в которой вращаются планеты солнечной системы). Здесь инженеры пошли более хитрым путём экранирования сигнала от генераторов.
инженеры устанавливают РИТЭГ на Улисс. Вскоре они будут изучать солнышко - но сначала полетят к Юпитеру
Магнитное поле вполне себе поддаётся, при расчёте, различным математическим трюкам. Одним из таких трюков является правило суперпозиции: суммарное поле есть сумма полей от источников (обычно говорят про диполи - элементарные, простейшие источники магнитного поля). Можно создать нулевое поле, если в одно место положим 2 идентичных по всем параметрам магнита, но с разными направлениями полей - поля друг друга уничтожат по правилу суперпозиции. Попробуйте соединить два магнита с холодильника так, чтобы они притягивались друг к другу: север одного притянется к югу другого. После этого он не будет притягиваться к холодильнику так же хорошо, как и прежде - а если магниты обладали примерно одинаковой силой, то не будут притягиваться и удерживаться вообще.
Если говорить о реальной задаче, то любое магнитное поле можно попытаться разложить на конечное число полей, создаваемое своими диполями (как самыми простыми магнитными источниками поля). Если мы сможем очень хорошо понять структуру всего магнитного поля вокруг нашего источника, мы можем его описать достаточно точно в рамках модели через эти самые диполи. Если очень близко к ним расположить диполи с обратным направлением поля, но в остальном одинаковые, можно получить нивелирование, исчезновение суммарного поля от этого диполя, на требуемом расстоянии. Если говорить аналогиями, в данном случае они пошли по пути активного шумоподавления: слушатель надел умные наушники, что на шум компании накладывает “антишум”.
Примерно по такому пути и пошли инженеры при создании Улисса. При активации системы компенсационных катушек, поле аппарата становилось почти нулевым, что позволяло изучать межпланетное пространство без помех. Хорошая система, но требует полного картографирования аппарата (как у Галилео), а вдобавок к тому, забирает некоторое количество электричества, генерирует тепло, и сработала, вообще-то, для одного РИТЭГа - когда у нас их должно быть аж 3 штуки, что прилично нагрузит систему…
Краткое отвлечение на электронику: обычно её компенсируют именно таким образом. Любой проводок является источником магнитного поля. Это магнитное поле, если требуется, можно компенсировать проводом, что идёт очень близко к нашему изначальному, но с обратным направлением тока. Такая система практически нивелирует магнитное поле проводов. Электрические системы можно уже регулировать катушками.
Так, мы что-то говорили про сложение полей, и у нас 3 мощных источника тока - а давайте сложим наши три поля именно таким образом, что поля сложатся в ноль - мы же складываем вектора, стрелочки, как на геометрии. Проблема разве что в том, что с доступными технологиями невозможно знать точно поле всего аппарата - нет достаточно больших установок, что позволяли бы измерять поле достаточно точно. Ну да ладно, можно поставить очень большую стрелку магнитометра - получилось вынести на 11-метровую балку - и замерить поле, возможно, не от аппарата - с ним ещё можно разобраться потом - но от РИТЭГов в специальной камере. Поля всех приборов потом тоже замерим, будем, как на Галилео, вычитать их поле, если не получится их вообще не создавать/нивелировать сразу пассивно, как описано ранее, особыми расположениями проводов.
Было сложно, но эта самая камера для замеров магнитного поля была создана, калибровка на поле Земли была сделана - и инженеры смогли достаточно точно картографировать поле всех 4 РИТЭГов, что проходили испытания. Да, четырёх - как и всякая другая система, они делались с запасом, проходящим испытания наравне с остальным оборудованием. И да, изначально планировалось, что полетит всего 3 РИТЭГа. По результатам моделирования вышло, что нужно взять генераторы F2, F6 и F7 - тогда как F5 давал чуть худшие результаты.
И вот почему вообще возник вопрос с историей этих генераторов, почему я вообще пишу сейчас эту заметку, дорогие читатели - их расположение! Если вы присмотритесь к любым моделям, фотографиям и прочим изображениям Кассини, вы сможете обнаружить, что они расположены несимметрично! Они расположены “криво”!
вид 3D модели Кассини сзади. Видно, что РИТЭГи стоят “криво” - и эта кривость побудила меня написать эту статью
В ходе моделирования были выбраны лучшие положения РИТЭГОв, что можно рассмотреть на картинке: на 12, на 2 и на 6 часов, при расположении магнитной стрелы на 12 часов. По итогам такого расположения суммарные помехи от генераторов смогли уменьшить до приемлемых 114 пикоТесла - результат, много лучше требуемых в самом начале 200 пТл.
Если вновь вернёмся к аналогии со звуком, то можно представить, что если товарищей слушателя расположить в определённых местах, они в месте у самого слушателя будут друг друга перекрывать - с людьми такое сложно сделать из-за непостоянства их разговоров, но с приборами... При создании аудиторий обычно делают таким образом усиление для слушающих, и оно прекрасно работает. Однако таким же образом возможно создать и ослабление звука…
Подводя итоги, хочу сказать, что эта история с РИТЭГами крайне интересна не только тем, что инженеры были такими умными, что смогли решить всё максимально красиво (хотя, конечно, и об этом). Мы прошли маленький путь от незаданного вопроса “Почему РИТЭГи криво стоят” до ответа на него, даже не задавая напрямую этот вопрос, просто изучая историю - мы сами пришли к такому ответу, решая постепенно встающие проблемы. Есть свой шарм в исследовании чего-либо в развитии при наблюдении среза, будь то история, инженерная работа, эволюция - что угодно…
Чтож, на этом история с энергией на Кассини подходит к концу - если только я не упустил чего-то невероятно важного, прошу тогда кинуть в меня тапком в комментах. Если же я их не словлю, в следующий раз обсудим, каким образом вообще была организована сложная связь между Землёй, Кассини и зондом Гюйгенс, какие проблемы вставали на пути, и как их решали.
Обычно про Солнце говорят просто: «У него есть 11-летний цикл активности». Звучит красиво и аккуратно. Но если взять реальные данные наблюдений и честно их изобразить, картина оказывается намного сложнее — и куда интереснее.
Ниже разберём четыре графика, построенных на основе официального ряда Международного числа солнечных пятен (SILSO, версия 2.0). Посмотрим, как на самом деле распределяются длительности циклов, как они менялись с течением времени, есть ли связь между длиной и интенсивностью цикла и как именно измеряется «длительность цикла» на уровне исходного сигнала.
Все графики построены на одном и том же наборе данных: годовое среднее число солнечных пятен с середины XVIII века до наших дней.
По горизонтальной оси отложена длительность циклов солнечной активности в годах. По вертикальной оси показано, сколько циклов попало в каждый интервал длительности. Каждый столбик обозначает количество циклов, длительность которых лежит в определённом диапазоне: 8–9 лет, 9–10 лет, 10–11 лет, 11–12 лет, 12–13 лет, 13–14 лет и так далее.
Длительность цикла определяется как промежуток между соседними минимумами ежегодного (и слегка сглаженного) числа солнечных пятен. Иными словами, мы берём год одного минимума, затем год следующего минимума, вычитаем первый год из второго и получаем длительность цикла в годах.
Как это интерпретировать
Циклы Солнца не привязаны к одной единственной цифре. На гистограмме ясно видно, что реальная длительность колеблется в широком диапазоне — примерно от 9 до 15 лет. Встречаются циклы длиной 9–10 лет, есть циклы 12–13 лет и даже длиннее. Никакого жёсткого 11-летнего метронома в природе не существует.
Максимум распределения смещён в сторону больших значений. Чаще всего циклы длятся примерно 11–12 лет, а не ровно 11. Пик гистограммы слегка сдвинут в сторону 11,5–12 лет.
Этот график подтверждает важный вывод: цифра 12 лет — это не произвольное округление, а тот диапазон, в котором концентрируется значительная доля реальных циклов на всём протяжении инструментальной эпохи наблюдений.
График 2. Эволюция длительностей циклов во времени
По горизонтальной оси отложен календарный год, соответствующий середине каждого цикла. По вертикальной оси показана длительность этого цикла в годах. Каждая точка обозначает отдельный цикл, точки соединены линией в хронологическом порядке. На графике проведены две вспомогательные горизонтальные линии: пунктирная на уровне 11 лет и штриховая на уровне 12 лет.
Что видно
Длительности циклов постоянно варьируют от одного к другому. Линия движется вверх и вниз: иногда возникают серии относительно коротких циклов, иногда — серии более длинных. Солнце не функционирует как надёжный метроном, отсчитывающий один и тот же интервал.
Цифра 11 лет — это исторический условный обозначение, а не физический закон природы. Хотя некоторые точки действительно располагаются рядом с отметкой 11 лет, множество других находятся существенно выше или ниже этой линии. На фоне всего ряда наблюдений становится ясно, что «11 лет» — всего лишь грубое усреднение.
Около 12 лет видна естественная центр концентрации данных. Если рассмотреть весь временной диапазон, облако точек в среднем явно тяготеет к уровню примерно 12 лет, чем к строгому значению 11 лет. Это ещё один аргумент в пользу того, чтобы говорить не о жёстком «11-летнем цикле», а об эффективном 12-летнем ритме, вокруг которого Солнце реально колеблется.
Как можно выразить это в научном тексте: «На этом графике видно, как от цикла к циклу меняется их длительность. Попадаются циклы покороче, попадаются подлиннее, а "классических" 11 лет — лишь приблизительный ориентир. Если обозреть всю историю инструментальных наблюдений, то естественный центр тяжести распределения оказывается ближе к 12 годам. По этой причине в качестве эффективного такта разумнее использовать не жёсткий 11-летний период, а 12-летний шаг.»
График 3. Интенсивность (амплитуда) цикла в зависимости от его длительности
По горизонтальной оси отложена длительность цикла в годах. По вертикальной оси — амплитуда цикла, то есть максимальное годовое значение числа солнечных пятен, достигнутое в пределах данного цикла. Каждая точка на графике соответствует одному циклу: она показывает, сколько лет он длился и насколько интенсивным был максимальный всплеск его активности.
Что показывает этот график
Циклы различаются одновременно и по продолжительности, и по мощности. Видно, что встречаются циклы короткие и слабые, короткие и очень сильные, длинные и слабые, длинные и мощные. Простой линейной зависимости типа «чем дольше длится цикл, тем сильнее его выброс» не наблюдается.
Сильные и слабые циклы встречаются при самых разных длительностях. Нет того, чтобы все самые мощные циклы обязательно приходились на 11 лет. Мощные всплески активности встречаются и в области 10–11 лет, и в области 12–13 лет. То же самое верно и для слабых циклов.
Этот график подтверждает целесообразность концепции «эффективного периода». На этом фоне 12-летний шаг удобно применять в качестве средней единицы отсчёта времени. Мы не привязываем мощность цикла к одной фиксированной длительности, а признаём реальное существование диапазона длин в 9–14 лет и описываем его через один эффективный период. Это особенно полезно при построении более крупных временных шкал — например, 72-летних блоков, каждый из которых представляет собой набор из шести условных 12-летних циклов.
График 4. Учебный «зум»: откуда берутся цифры длительности
Первые три графика показывают уже готовую статистику: набор значений длительностей, историю их изменения и связь с интенсивностью. Но естественный вопрос встаёт сам собой: «А как именно вы определяете длительность цикла? Откуда берутся все эти числа на гистограмме?»
Чтобы ответить, нужен учебный график с «увеличением» на несколько циклов подряд, где всё отчётливо видно прямо на исходном сигнале.
Что изображено
По горизонтальной оси отложены годы (например, 1900–1975). По вертикальной оси — сглаженное годовое число солнечных пятен. На графике показана плавная кривая солнечной активности за этот период. На ней вертикальными пунктирными линиями отмечены годы минимумов, возле каждой линии подписан год минимума. Между соседними минимумами нанесены двусторонние стрелки с подписью вида «10,4 года», «11,2 года» и т. д.
Иными словами, этот график выполняет следующие функции:
показывает «живой» сигнал — как растёт и падает активность на протяжении нескольких десятилетий;
явно отмечает точки, которые мы считаем границами циклов;
между этими границами показывает именно те числа, которые потом попадают на гистограмму длительностей.
Как читать этот график
Процедура простая и наглядная.
Находим минимум. Год, когда активность (после сглаживания) достигает локального минимума, — это одна «точка отсчёта».
Находим следующий минимум. Следующий такой минимум через несколько лет — это конец текущего цикла и одновременно начало следующего.
Вычитаем годы. Например, если минимум пришёлся примерно на 1901,5 года, а следующий — примерно на 1909,5 года, то длительность цикла равна примерно 1909,5 − 1901,5 = 8,0 года. Если следующий минимум окажется в районе 1928,5 года, то длительность следующего цикла составит примерно 1928,5 − 1909,5 = 19,0 года (это условный пример; реальные значения на графике подписаны с большей точностью).
Записываем это число в реестр длительностей. Именно эти значения потом попадают на гистограмму (График 1), на график эволюции длительностей во времени (График 2) и на график интенсивности против длительности (График 3).
Зачем нужен такой учебный «зум»
Этот увеличенный график важен для полной прозрачности методики. Он показывает, что:
длительность цикла — это не абстрактная модельная величина, а вполне конкретное расстояние между минимумами на реальном сигнале;
выбор минимумов виден визуально и может быть проверен;
все дальнейшие статистические построения опираются на одну простую и понятную процедуру.
Такой рисунок удобно помещать в качестве иллюстрации в приложение или в отдельный раздел статьи: он сразу рассеивает сомнения вроде «вы, наверное, что-то хитро подгоняете», поскольку вся логика измерения длительностей лежит буквально на поверхности и доступна для проверки.
Итоговая картина: что дают четыре графика вместе
Если рассмотреть все четыре изображения в совокупности, картина складывается следующая:
Учебный «зум» показывает, как из реального сигнала выделяются минимумы и измеряется расстояние между ними.
Гистограмма длительностей показывает, что эти расстояния варьируют в широком диапазоне и никакого «строгого» 11-летнего периода не существует.
График эволюции длительностей во времени показывает, как эти значения «гуляют» от цикла к циклу и намекает на более естественный центр концентрации около 12 лет.
График интенсивности против длительности показывает, что Солнце свободно варьирует как длину, так и мощность своих циклов; попытка привязать всё к единственной цифре 11 лет чрезмерно упрощает реальность.
На этом фоне идея эффективного 12-летнего такта выглядит вполне обоснованно. Солнце живёт в диапазоне примерно 9–14 лет, однако значительная часть циклов концентрируется в области около 12 лет. Такой шаг удобно брать в качестве базовой единицы, когда мы строим более крупные временные шкалы — например, 72-летние «блоки» из шести условных 12-летних циклов и затем сопоставляем их с климатической и исторической динамикой.
Эта диаграмма представляет собой «общий вид» нашей схемы 12-летних циклов Ленского и 72-летних блоков, размещённых на фоне моды Глейсберга.
Что изображено
Горизонтальная ось
По горизонтальной оси отложены годы примерно от 1750 до 2050 года. Это условная временная шкала, в которую вписаны два примера 72-летних блоков.
Два 72-летних блока (полупрозрачные прямоугольники)
На диаграмме выделены две широкие цветовые полосы:
Блок 1 (нижний, примерно 1784–1856 гг.) с подписью «72-летний блок (минимум Дальтона)». Это пример 72-летнего интервала, который охватывает область пониженной солнечной активности, исторически известной как минимум Дальтона.
Блок 2 (верхний, примерно 1933–2005 гг.) с подписью «72-летний блок ("современный максимум")». Это пример 72-летнего интервала, соответствующего повышенной активности середины XX века, которую часто обозначают как «современный максимум» Солнца.
Внутри каждого блока — шесть циклов Ленского
Каждый прямоугольник разделён вертикальными линиями примерно на 6 равных отрезков. Это представляют собой:
6 условных 12-летних циклов Ленского, содержащихся внутри каждого 72-летнего блока;
над каждым делением проставлены номера 1, 2, 3, 4, 5, 6, чтобы наглядно показать, что блок состоит из шести циклов.
Рядом помещена подпись: «циклы Ленского (≈12 лет)», что подчёркивает, что 72 года здесь понимаются как 6×12.
Гладкая кривая сверху — мода Глейсберга
Над прямоугольниками проходит плавная волнистая линия с подписью «концептуальная мода Глейсберга (~88 лет)». Это не отражение реальных наблюдений, а схематичный фон, который показывает:
восходящие и нисходящие фазы долгопериодической (~88 лет) модуляции солнечной активности;
как наши 72-летние блоки размещаются на этом фоне: один располагается ближе к минимуму, другой — ближе к максимуму.
Как читать эту диаграмму
72 года как «солнечное поколение»
Каждый прямоугольник представляет собой 72-летний блок, который:
состоит из шести 12-летних циклов Ленского;
может интерпретироваться как одно «солнечное поколение» в нашей системе.
Формально: 6 × 12 лет ≈ 72 года. Хотя реальные циклы Швабе варьируют по длительности, на агрегированном уровне такой масштаб оказывается устойчивым и удобным.
Связь с минимумом Дальтона и «современным максимумом»
Левый/нижний блок (примерно 1784–1856) — это пример 72-летнего периода, в который вписан минимум Дальтона. В этом случае солнечная активность в среднем понижена, и блок попадает в нисходящую и низкую фазу модуляции.
Правый/верхний блок (примерно 1933–2005) — пример 72-летнего периода, соответствующего «современному максимуму» середины XX века, когда активность повышена и блок оказывается в восходящей и высокой фазе моды Глейсберга.
Глейсберг как внешний фон
Волнистая кривая символизирует:
долгий (~88-летний) ритм усиления и ослабления солнечной активности;
положение наших 72-летних блоков относительно максимумов и минимумов этого ритма.
Иерархическая структура
В итоговой конструкции выявляется трёхуровневая организация:
На нижнем уровне находятся отдельные циклы Швабе (9–15 лет) с их естественной вариативностью.
На среднем уровне расположен эффективный 12-летний такт (циклы Ленского), который служит удобной и стабильной «единицей отсчёта».
На верхнем уровне располагаются 72-летние блоки (6×12 лет), рассматриваемые как «солнечные поколения», которые развиваются на фоне 88-летной моды Глейсберга.
Заключение
Предложенная трёхуровневая схема организации солнечной активности позволяет преодолеть упрощённое представление о 11-летнем цикле и раскрывает истинную сложность солнечной динамики.
На основе анализа реальных данных Международного числа солнечных пятен (SILSO) становится ясно, что индивидуальные циклы Швабе не подчиняются жёсткому периоду. Они варьируют в диапазоне 9–15 лет, при этом значительная часть концентрируется около 12 лет. Эта вариативность не случайна — она отражает фундаментальные процессы в магнитодинамике солнечной конвективной зоны.
Введение эффективного 12-летнего такта (циклов Ленского) как удобной единицы отсчёта позволяет работать с более стабильным масштабом без утраты информации об истинной изменчивости. Такой подход оправдан статистически: большинство реальных циклов группируются именно в этом диапазоне.
Агрегирование шести 12-летних циклов в 72-летние блоки («солнечные поколения») открывает возможность анализа долгопериодических модуляций солнечной активности. Эти блоки демонстрируют чёткую связь с известными эпохами повышенной и пониженной активности — минимумом Дальтона и «современным максимумом» XX века. Такое соответствие указывает на реальность и методологическую целесообразность данной иерархической структуры.
Размещение 72-летних блоков на фоне 88-летной моды Глейсберга создаёт многоуровневую модель, которая объединяет:
микромасштаб индивидуальных циклов Швабе;
мезомасштаб эффективных 12-летних ритмов;
макромасштаб многодесятилетних модуляций.
Такая иерархия не только описывает наблюдаемые закономерности, но и предоставляет инструмент для сопоставления солнечной динамики с климатическими и историческими процессами, которые также развиваются на множественных временных масштабах.
Данный подход демонстрирует, что солнечная активность — это не случайный процесс и не строго периодический маятник, а система с упорядоченной, но гибкой внутренней организацией, в которой глобальные ритмы согласованы на нескольких уровнях одновременно.
Исследование гамма-излучения из пузырей Ферми проливает свет на механизмы ускорения и распространения космических лучей вблизи центра нашей Галактики.
Представленная модель удельной энергетической плотности межзвездного излучения 𝑢𝜆 в зависимости от длины волны 𝜆, основанная на данных popescu_radiation_2017, демонстрирует различия в спектральном распределении энергии в центре Галактики и на расстоянии 8 килопарсек над плоскостью Галактики, подчеркивая влияние звездного, пылевого и космического микроволнового излучения на энергетический баланс в различных областях космоса.
Анализ пространственно-спектральной морфологии пузырей Ферми указывает на необходимость пересмотра моделей распространения космических лучей из Галактического центра и предполагает возможность локального ускорения или альтернативных механизмов излучения.
Несмотря на значительный прогресс в изучении гамма-излучения, природа и источник энергии пузырей Ферми, простирающихся от центра Млечного Пути, остаются загадкой. В работе ‘Analysis and implications of the spatio-spectral morphology of the Fermi Bubbles’ представлен анализ морфологии и спектральных характеристик этих структур на основе десятилетних данных прибора Fermi/LAT. Полученные результаты указывают на то, что как адронические, так и лептонические модели могут объяснять наблюдаемое гамма-излучение, однако простые сценарии распространения космических лучей от центра Галактики представляются маловероятными. Какие альтернативные механизмы ускорения космических лучей или эмиссии гамма-квантов могут объяснить наблюдаемые особенности пузырей Ферми?
Отражения в Центре Галактики: Загадка Пузырей Ферми
В центре нашей Галактики наблюдаются гигантские симметричные структуры, известные как пузыри Ферми – значительная загадка современной астрофизики, требующая пересмотра моделей активности галактических ядер. Их обнаружение стало возможным благодаря данным Большого телескопа гамма-излучения.
Пузыри Ферми проявляются прежде всего в гамма-излучении, однако природа их происхождения и механизмы эмиссии остаются предметом дискуссий. Первоначальные наблюдения позволили определить их структуру, что подтолкнуло к исследованию связи с активностью в центре Галактики. Различные гипотезы включают всплески активности чёрной дыры Sagittarius A*, интенсивное звёздообразование или даже аннигиляцию тёмной материи.
Восстановленный поток гамма-квантов всенебесного диффузного излучения, не связанного с пылью, был получен на основе модели M2 из работы platz_multi-component_2023, при этом представленные данные соответствуют энергетическому интервалу с центром на 133 ГэВ, а логарифмическая шкала цветовой шкалы позволяет оценить интенсивность излучения, при этом черная линия отмечает визуально определенные границы источника, а белая пунктирная линия указывает на область исследования, ограниченную координатами −40° < ℓ < 40° и −60° < b < 60°.
Эти структуры, словно отражения скрытых процессов, напоминают о том, что любое предсказание – лишь вероятность, которая может быть уничтожена силой гравитации.
Гамма-излучение: Два Пути Объяснения
Существуют две основные модели объяснения гамма-излучения из пузыря Ферми: адронная и лептонная. Адронная модель предполагает взаимодействие космических лучей с газом, приводящее к распаду пионов. Лептонная модель акцентирует внимание на обратном комптоновском рассеянии, где высокоэнергетичные электроны рассеивают фотоны.
Обе модели зависят от распределения космических лучей, обычно описываемого степенным законом. Анализ показал, что спектр гамма-излучения уплотняется к краям пузыря, что не согласуется с предсказаниями о разрывах, связанных с охлаждением обратного комптоновского рассеяния или синхротронного излучения.
Вклад звездного (зеленый), пылевого (красный) и реликтового (фиолетовый) компонентов в общее гамма-излучение (оранжевая кривая наилучшего соответствия) для наилучшей лептонной модели в точках, обозначенных ‘a’ — ‘d’ на рисунке 1, показывает, что пылевой компонент вносит наибольший вклад во все исследованные области, за ним следует звездный компонент, ослабленный эффектом Клейна — Нишины, при этом вклад реликтового излучения остается незначительным.
Моделирование Окружающей Среды: Ключевой Шаг
Межзвёздное радиационное поле (ISRF) играет важную роль как в адронных, так и в лептонных процессах эмиссии, оказывая влияние на взаимодействие космических лучей. Точное моделирование ISRF – сложная задача, требующая использования данных Planck Map для представления фонового излучения. Вариации в плотности и спектре ISRF могут существенно изменять наблюдаемые характеристики гамма-излучения.
Для построения карт гамма-неба всё чаще применяются методы Template-Free Reconstruction, не требующие использования заранее заданных шаблонов. Эти методы позволяют повысить точность реконструкции, особенно в областях со сложной морфологией.
Наилучшее соответствие спектральным моделям, полученным для шести различных моделей, оцененных в точке b = 45° и l = 0.38° (обозначенной как ‘a’ на рисунке 1) в пределах источника, демонстрирует, что модели EPL и BPL превосходят модели PL как в адронном (слева), так и в лептонном (справа) случаях, что подтверждается соответствием между наблюдаемыми данными (синие точки с погрешностями) и вычисленным спектром излучения (черные, зеленые и красные линии).
Результаты исследований указывают на временной масштаб охлаждения космических лучей около 1 Мр на границах пузыря, что ставит под сомнение простые транспортные модели. Наблюдаемое время охлаждения требует пересмотра механизмов ускорения и распространения космических лучей в галактическом масштабе.
Многоволновое Подтверждение: За Гранью Гамма-Лучей
Наблюдения в рентгеновском диапазоне выявили структуры eROSITA Bubbles, пространственно совпадающие с пузырями Ферми. Это совпадение предоставляет дополнительные доказательства в пользу общего происхождения этих масштабных структур. Анализ данных указывает на возможность единого физического механизма, ответственного за их формирование.
Северный шпор, ранее идентифицированный как рентгеновская структура, теперь рассматривается как составная часть eROSITA Bubbles. Это позволяет пересмотреть понимание его природы и масштаба, предполагая, что он является лишь локальным проявлением более глобального явления.
Микроволновое свечение, впервые картированное с помощью WMAP, коррелирует с пузырями, что указывает на более широкое распространение этого феномена по всей плоскости Галактики. Оценка полной мощности, теряемой в виде адронного излучения, составляет 2.1 ×1038 эрг/с, что соответствует текущим скоростям звездообразования в ядре Галактики.
Оценка плотности энергии космических лучей, полученная для наилучшей лептонной (слева) и адронной (справа) моделей EPL, показывает зависимость от нормализации популяции протонов космических лучей относительно базового значения плотности числа атомов водорода (nH).
Эти масштабные структуры, обнаруженные в различных диапазонах электромагнитного спектра, свидетельствуют о сложной и динамичной активности в центре нашей Галактики. Подобно отражению в чёрной дыре, наше понимание Вселенной всегда ограничено горизонтом наблюдаемого, а каждая теория, какой бы убедительной она ни казалась, может исчезнуть в бездне неизвестного.
Исследование структуры и морфологии пузырей Ферми демонстрирует, как даже самые сложные модели могут оказаться несостоятельными перед лицом новых данных. Анализ гамма-излучения указывает на необходимость пересмотра существующих представлений о происхождении космических лучей, указывая на то, что простые модели переноса от центра Галактики маловероятны. Никола Тесла однажды сказал: «Самая большая сила — это вера в себя». Это утверждение находит отклик в научном поиске, где необходимость в альтернативных механизмах излучения и локальном ускорении частиц требует уверенности в возможности отказа от устоявшихся теорий ради более точного описания реальности. Пузыри Ферми, как и чёрные дыры, поглощают старые представления, заставляя переосмыслить границы познания.
Что дальше?
Анализ пространственно-спектральной морфологии пузырей Ферми, представленный в данной работе, лишь обнажает глубину нерешенных вопросов. Когда утверждается, что обнаружены ограничения на простые модели переноса космических лучей от центра Галактики, космос, кажется, едва заметно улыбается. Предположение о необходимости внутриместного ускорения или альтернативных механизмах излучения – это не триумф, а признание собственной неполноты. Мы не покоряем пространство – мы наблюдаем, как оно покоряет нас, заставляя пересматривать представления о происхождении и распространении космических лучей.
Дальнейшие исследования должны быть направлены не только на усовершенствование моделей переноса и ускорения, но и на поиск совершенно новых физических процессов, способных объяснить наблюдаемую картину. Игнорирование нелинейных эффектов, сложных магнитных полей и взаимодействия космических лучей с межзвездной средой – это все равно, что смотреть на черную дыру, закрыв глаза.
Каждая новая деталь, каждая уточненная карта излучения пузырей Ферми – это лишь временное успокоение. Чёрная дыра — это не просто объект, это зеркало нашей гордости и заблуждений. Когда мы называем это открытием, пузыри Ферми продолжают расширяться, поглощая наши теории в своем бесконечном горизонте событий.
Осень традиционно богата яркими научными достижениями, и сентябрь 2025-го не стал исключением. Давайте посмотрим, какие важные открытия были сделаны учеными в этот период.
🚀 Магнитные явления и тайны Вселенной
Учёные достигли важного прорыва в изучении природы магнетизма. Им удалось создать первые квантово-запутанные состояния на уровне атомных ядер. Это открытие открывает путь к новым технологиям передачи информации и обещает развитие квантовых компьютеров следующего поколения.
Также астрономы сделали сенсационное заявление: вспышка молнии длиной почти 830 километров была официально признана самой протяжённой в истории наблюдений. Ранее такая мощность считалась невозможной, теперь учёные активно изучают механизмы формирования столь мощных электрических разрядов.
Исследования туберкулёзной бактерии дали удивительный результат: выяснилось, что бактерия обладает уникальным механизмом, позволяющим ей избегать атаки иммунной системы человека. Это открытие может привести к появлению принципиально новых методов лечения туберкулёза.
Специалисты открыли совершенно новое заболевание, проявляющееся поражениями печени и мышц. Причина — генетическая мутация, нарушающая нормальную работу белков-липаз. Теперь перед учёными стоит задача разработать методы диагностики и терапии этого недуга. -
☝️ Здоровье и медицина
Немецким специалистам удалось вырастить сердечную мышцу в лабораторных условиях. Этот успех приближает создание эффективных способов трансплантологии и регенерации тканей. Возможно, вскоре пациенты смогут получать собственные органы взамен повреждённых или утраченных.
Учёные также выяснили, что витамин D способен значительно снизить риск развития депрессии у пожилых людей. Оказалось, что недостаток витамина отрицательно влияет на психоэмоциональное состояние пациентов пожилого возраста. Сейчас проводятся дополнительные исследования для подтверждения и детализации выводов.
Изучая природу льда, исследователи пришли к выводу, что ледяные шапки являются хранилищем огромного количества ценных сведений о климатических изменениях прошлого. Так, учёные считают, что изучение ледяного покрова сможет раскрыть секреты климата тысячелетней давности и даже подсказать пути адаптации человечества к современным изменениям.
Биологи определили виды растений, обладающих способностью очищать почву от тяжёлых металлов и нефти. Среди них выделяются фацелия и злаковая смесь, эффективность очистки которыми достигает 40%. Такие растения станут незаменимым инструментом в экологических проектах по очистке загрязнённых территорий.
Научные группы провели успешные эксперименты по редактированию генома эмбрионов.Удалось доказать, что изменение генов действительно способно предотвратить наследование серьёзных заболеваний. Однако пока этические вопросы остаются нерешёнными, поэтому подобные методики требуют тщательного изучения и контроля.
Наконец, немецкие инженеры представили первую искусственную руку, управляемую исключительно сигналами головного мозга. Прототип руки показал высокую точность движений и адаптивность к индивидуальным особенностям каждого пользователя. Это значит, что скоро парализованные люди получат шанс снова полноценно пользоваться конечностями.
1 июля этого года телескоп ATLAS обнаружил комету, летящую из другой системы. Она получила название 3I/ATLAS, что означает, что это третий известный человечеству межзвездный объект. Буква «I» — «interstellar» (межзвездный), ATLAS — название телескопа. Первые два объекта не из нашей Солнечной системы были Оумуамуа в 2017 году и комета Борисова в 2019 году.
В этом материале мы вместе с астрофизиком Даной Алиной, изучающей межзвездное пространство, разбираемся в том, что происходит и что ученые ждут от 3I/ATLAS.
Комета старше нашей Солнечной системы
Верхний предел диаметра ядра кометы составляет 5,6 км, но при этом нижний предел может достигать 320 метров, говорится на сайте Европейского космического агентства. 3I/ATLAS движется со скоростью около 210 000 км/ч — это самая высокая скорость, когда-либо зарегистрированная для кометы, побывавшей в Солнечной системе. Ученые полагают, что комета путешествует уже многие миллиарды лет.
«Возраст кометы оценивается в срок между 7, 6 и 14 млрд лет. Возраст нашей Вселенной — 13, 5 млрд лет. Этот предмет, скорее всего, был рожден примерно половину жизни Вселенной назад. Это интересно, потому что возраст нашей Солнечной системы — 4,6 млрд лет. Эта комета старше нас и старше Солнца. Она из другой звездной системы внутри нашей Галактики», — объясняет астрофизик Дана Алина.
По мере приближения кометы к Солнцу, льды, окружающие её каменистое ядро, образуют газовую атмосферу, или кому. Судя по снимкам, кома 3I/ATLAS состоит преимущественно из углекислого газа. По данным ученых сама комета имеет повышенное содержание углекислого газа, никеля и циана.
Фото: International Gemini Observatory/NOIRLab/NSF/AURA/Shadow the Scientist
Откуда появилась теория про инопланетян
Официальная позиция НАСА и Европейского космического агентства состоит в том, что это комета. Однако физик-теоретик Ави Лоуб выдвинул теорию о том, что это может быть искусственный объект. Он считает, что комета движется по странной траектории — мимо Марса, Сатурна и Венеры. Кроме того, он обращал внимание на большие размеры объекта. Однако, позже ученые их скорректировали и они оказались меньше, чем предполагалось вначале. Заявления Лоуба вызвали массу дискуссий в среде ученых и громкие заголовки в СМИ.
Дана Алина, как и большинство ученых, считает, что 3I/ATLAS — комета: «Мы знаем, что у такой системы как наша, есть разные объекты, летающие вокруг Солнца, у нас есть пояс астероидов, пояс Койпера, есть облако Оорта, значит, у других звёзд и Солнца тоже есть такие объекты. Когда-нибудь эти звёзды умрут, эти объекты расползутся, какие-то будут сожжены, какие-то просто улетят, станут пылью, превратятся в атомы. Вероятность того, что какое-то Солнце, какая-то звезда уже умерла, и это просто какой-то кусочек той звёздной системы, намного больше, чем вероятность того, что это какая-то цивилизация. Причём мы ищем цивилизации, но мы их не находим. Вероятность того, что это комета, выше».
Чем интересен 3I/ATLAS для ученых
«Уже есть данные по составу 3I/ATLAS, и он не такой как у наших комет. И вот это уже интересно, что там было во вселенной, скажем, 8 миллиардов лет назад, когда нашей Солнечной системы еще не существовало. В астрономии, когда мы смотрим далеко, мы смотрим в то же время и вглубь времён. Нам интересно каким был давно Млечный путь, но мы можем сделать только модель, а тут не модель, а что-то, прилетевшее из прошлого нашей галактики. Это как посылка, которая приехала из другой страны. И в этой посылке есть история», — считает Дана Алина.
На этом снимке показано наблюдение за кометой 3I/ATLAS, когда она была обнаружена 1 июля 2025 года обзорным телескопом ATLAS. Фото: ATLAS/Гавайский университет/NASA
Прежде ученые изучали только состав комет нашей Солнечной системы. К примеру, в 2016 году космический аппарат «Розетта» сел на поверхность кометы Чурюмова — Герасименко, которая была открыта в 1969 году благодаря снимкам, сделанным в Алматинской обсерватории. Это позволило определить точную массу кометы и ее состав. Но это была «наша» комета, из нашей системы.
«К нам ничего не прилетало такого, чтобы мы могли взять и посмотреть. У нас была миссия, называлась Stardust, она пролетела в хвосте кометы из Солнечной системы, собрала частички этой кометы, и этот аппарат приземлился на Землю и мы смогли изучить, что такое кометная пыль, — говорит Дана Алина. — Но чтобы что-то пролетело издалека, и мы можем это изучить, такого еще не было. Когда только родилась вселенная, не было ничего, кроме водорода, потом появлялись звёзды, из-за ядерных реакций рождались новые элементы. Потом звезда умирает, эти элементы оказываются в вокруг в межзвездной среде. Новая звезда рождается, элементы у нее уже другие, более продвинутые. И так далее и с возрастом галактика, вселенная накапливает как можно больше каких-то элементов. А 3I/ATLAS может быть был создан тогда, когда элементов могло быть меньше. Это нам поможет узнать о том, каким был космос очень давно».
Путь кометы
Дана Алина объясняет, что 3I/ATLAS — маленький объект, и из-за гравитационного влияния у него может меняться траектория: «Траектория рассчитана учеными, но это не значит, что она не будет меняться. Мы не знаем кого комета повстречает на своем пути».
При этом комета не представляет опасности для Земли, она будет пролетать примерно в 240 миллионах километрах от нас.
В октябре 2025 года 3I/ATLAS пройдет непосредственно внутри орбиты Марса, возможно, что аппарат Mars Reconnaissance Orbiter сможет ее заснять. Еще одна попытка будет, когда комета пролетит рядом с Сатурном, где есть аппарат Jupiter Polar Orbiter. По сообщению NASA за 3I/ATLAS будут наблюдать: Hubble, Webb, TESS, Swift, SPHEREx, марсоход Perseverance, Mars Reconnaissance Orbiter, марсоход Curiosity, Europa Clipper, JUICE, Lucy, Psyche, Parker Solar Probe, PUNCH и SOHO (ЕКА/НАСА).
Изображение траектории кометы с сайта NASA
По данным NASA, 3I/ATLAS достигнет своей ближайшей точки к Солнцу примерно 29-30 октября 2025 года на расстоянии около 210 миллионов километров. После этого, уже в декабре, он покинет Солнечную систему. Итого его путешествие по нашей системе составит около полугода. Комету можно будет увидеть только в телескоп. У NASA есть приложение, в котором можно следить за 3I/ATLAS.
Дану Алину как исследователя вдохновляет то, что 3I/ATLAS приводит к сотрудничеству ученых из разных стран: «Разные обсерватории решают посмотреть на этот предмет, выбирают лучшее время, когда они могут это сделать, как изучить, это же здорово. Это общее усилие для того, чтобы исследовать какое-то редкое явление».
На вопрос о том, с чем связано то, что это уже третий обнаруженный межзвездный объект с 2017 года, Дана Алина отвечает, что это может быть и случайность и то, что «глаз», наблюдающих за небом, стало больше.