Вопрос
Вот нейтрино пролетают сквозь Землю почти 100 процентов не задерживаясь, а сквозь черные дыры они тоже пролетают или если они попали в черную дыру то и остаются там?
Вот нейтрино пролетают сквозь Землю почти 100 процентов не задерживаясь, а сквозь черные дыры они тоже пролетают или если они попали в черную дыру то и остаются там?
Что будет, если недалеко (по космическим меркам) от Земли произойдет взрыв сверхновой или гамма-всплеск? Защитит ли нас атмосфера и какой удар она на себя примет? Будет ли нас ждать очередное вымирание в этом случае?
Лекция состоялась в научно-популярном лектории центра "Архэ"(http://arhe.msk.ru) 21 января 2022 года.
Вероятно, прошедший 2021й год запомнится в первую очередь запуском JWST. Однако несмотря на пандемию продолжалась не только инженерно-техническая, но и научная работа, и было получено много интересных результатов. Выделить явных лидеров среди них оказалось непросто. Мы рассмотрим очень широкий круг вопросов, отражающих все основные направления в современной астрофизике. В этот раз будет меньше результатов, связанных с экзопланетами, зато больше касающихся звезд и гамма-всплесков. Традиционно мы поговорим о нейтронных звездах и черных дырах, но добавятся и белые карлики с рекордными параметрами. Как всегда много интересных результатов получено в области внегалактической астрономии, включая исследования сверхмассивных черных дыр, а вот космологические вопросы мы затрагивать практически не будем. Зато не забудем про быстрые радиовсплески, которые продолжают радовать нас новыми загадками.
Лектор: Попов Сергей Борисович, доктор физико-математических наук, профессор РАН, ведущий научный сотрудник ГАИШ МГУ, лауреат (2016 год) премии «За верность науке» Министерства образования и науки РФ в категории «Популяризатор года».
Нейтрино — одна из самых неуловимых частиц в космосе, уступающая только сверхзагадочной темной материи. Они производятся в большом количестве — они участвуют в слабом ядерном взаимодействии и отвечают за ядерный синтез и распад. Так что каждый раз, когда происходит что-то ядерное, участвуют нейтрино.
Например, солнечное ядро представляет собой гигантскую реакцию ядерного синтеза, поэтому, естественно, оно производит довольно много нейтрино. Согласно прошлым исследованиям , если вы поднесете большой палец к Солнцу, примерно 60 миллиардов нейтрино будут проходить через ноготь большого пальца каждую секунду.
Но нейтрино так редко взаимодействуют с материей, что, несмотря на то, что триллионы и триллионы их проходят через ваше тело каждую секунду, за всю вашу жизнь общее количество нейтрино, которые действительно поразят ваше тело, составляет около… одного.
Нейтрино настолько ничтожно малы, что на протяжении десятилетий физики предполагали, что эти частицы совершенно не имеют массы и путешествуют по Вселенной со скоростью света. Но после того, как начали накапливаться горы доказательств, ученые обнаружили, что нейтрино все же имеют крошечную массу.
Точное значение массы нейтрино является предметом активных научных исследований. Существует три вида нейтрино: электронное нейтрино, мюонное нейтрино и тау-нейтрино. Каждый из этих «ароматов» участвует в разных видах ядерных реакций, и, к сожалению, все три типа нейтрино обладают странной способностью менять одну идентичность на другую по мере своего путешествия. Таким образом, даже если вам удастся увидеть нейтрино и определить его тип, вы будете знать лишь часть того, что хотели бы знать.
Масса нейтрино не имеет объяснения в Стандартной модели физики элементарных частиц, нашей современной и лучшей теории фундаментальных взаимодействий. Таким образом, физики хотели бы сделать две вещи: измерить массы трех разновидностей нейтрино и понять, откуда берутся эти массы. Это означает, что им предстоит провести множество экспериментов.
Эти эксперименты добились большого прогресса и становились все масштабнее с каждым поколением. Эксперимент Камиоканде в Японии, например, позволил обнаружить нейтрино, испускаемые сверхновой SN 1987A. Но для этого им понадобился чан с более чем 50 000 тонн воды.
В последние годы нейтринная обсерватория IceCube в Антарктиде повысила планку. Эта обсерватория состоит из твердого кубического километра (0,24 кубической мили) льда на Южном полюсе с десятками нитей приемников размером с Эйфелеву башню, погруженных на километр (0,6 мили) в поверхность. После десяти лет работы IceCube обнаружил одни из самых энергичных нейтрино за всю историю и сделал предварительные шаги к выяснению их происхождения.
Почему и Kamiokande, и IceCube используют так много воды? Детектором нейтрино может служить большой кусок практически чего угодно, но идеально подходит чистая вода. Когда один из триллионов пролетающих нейтрино сталкивается со случайной молекулой воды, она испускает короткую вспышку света. Обсерватории содержат сотни фоторецепторов, а чистота воды позволяет этим детекторам очень точно определять направление, угол и интенсивность вспышки.
Это все хорошо для обычных, повседневных нейтрино. Но самые энергичные нейтрино необычайно редки. Однако эти чрезвычайно редкие нейтрино также являются самыми захватывающими и интересными, потому что они могут быть вызваны только самыми гигантскими событиями во Вселенной. К сожалению, вся мощь IceCube после десятилетнего наблюдения смогла зафиксировать лишь горстку этих сверхмощных нейтрино.
Есть идея Pacific Ocean Neutrino Experiment (P-ONE), нового предложения, описанного в статье, опубликованной на сервере препринтов arXiv в ноябре: превратить огромную полосу Тихого океана в собственный природный нейтринный детектор.
И снова концепция удивительно проста: найти подходящую, уединенную часть Тихого океана, сконструировать длинные нити фотодетекторов не меньше километра, опустить эти нити на дно океана, желательно на глубину более мили (примерно 2 километра), прикрепить к ним поплавки, чтобы они стояли в воде вертикально, как гигантские механические водоросли и в принципе все.
В настоящее время конструкция P-ONE включает в себя семь 10-струнных кластеров, каждая из которых содержит 20 оптических элементов. Это в общей сложности 1400 фотодетекторов, плавающих в Тихом океане на несколько миль в поперечнике, обеспечивая гораздо большее покрытие, чем IceCube.
Как только он заработает, вам просто нужно подождать. Даже нейтрино попадут в океанскую воду и произведут небольшую вспышку, и детекторы ее отследят.
Конечно, это сложнее, чем кажется. Нити будут постоянно двигаться, колеблясь вместе с самим океаном. А Тихий океан… далеко не чистый, с солью, планктоном и всевозможными рыбьими экскрементами, плавающими вокруг. Это изменит поведение света между нитями, что затруднит точное измерение. Это означает, что эксперимент потребует постоянной калибровки для корректировки всех этих переменных и надежного отслеживания нейтрино. Однако команда P-ONE занимается этим вопросом и уже планирует создать меньшую демо-версию из двух потоков в качестве доказательства концепции.
Источники: Space.com и Интересные Новости
Кто из российских ученых-астрофизиков самый известный в мире, а о ком мы не знаем ничего? Почему такое открытие, как «кольцо Эйнштейна» на деле заслуга не только Эйнштейна? И, наконец, сколько раз должна быть процитирована научная статья, чтобы стать по-настоящему знаменитой?
В новом «Толке» популяризатор науки и астрофизик Сергей Попов расскажет про самые значимые космические открытия ученых из России, которыми по праву стоит гордиться. Например, вы знали, что магнитары были открыты в Советском Союзе? А современная модель Вселенной родилась в Петрограде начала 1920-х? Поверьте, это далеко не все.
00:00 - Интро
00:27 - Классификация заслуг в науке
01:10 - №1 космическое открытие: открытие магнитаров
03:17 - №2 космическое открытие: фотография черной дыры
04:43 - №3 космическое открытие: лазерные интерферометры для регистрации гравитационных волн
05:46 - №4 космическое открытие: Вселенная Фридмана
07:15 - №5 космическое открытие: кольцо Хвольсона-Эйнштейна
08:51 - №6 космическое открытие: модель аккреционных дисков Шакуры и Сюняева
10:56 - №7 космическое открытие: Байкальский нейтринный детектор
12:55 - Какая главная трудность современной науки?
РБК Тренды
Текст https://trends.rbc.ru/trends/futurology/61e52e449a794709762d...