Книжная фея делится с нами интересными книгами из своей библиотеки. Сегодня она знакомит с книгой "Малышам о звёздах и планетах" Левитана Ефрема Павловича с привлекательными иллюстрациями от Сергея Алимова.
Стиль книги можно выразить как художественно-научный, то есть автор через художественные образы рассказывает научные факты, которые будут понятны детям и взрослым.
Главные персонажи: папа – рассказывает об астрономии, даёт задания; Света, Алька – любознательные, наблюдательные дети, верящие в сказки. Второстепенный персонаж: гном Кнопкин – друг папы, который "очень любит астрономию – науку о Солнце и звёздах". О нём и всё, что знает гном, рассказывает только папа, сам Кнопкин напрямую не участвует в книге.
Читая и выполняя задания с героями книги, дети знакомятся не только с астрономией, но и с некоторыми разделами: физики, математики, истории, литературы.
Изучение книги продлится не один вечер, что может стать новой семейной традицией: знакомство с науками через художественные книги.
Откроем секрет: учёные всего мира очень давно мечтают о том, чтобы... сфотографировать какую-нибудь звезду. «Что за ерунда, – скажет кто-нибудь, – в интернете тысячи фотографий звёзд, созвездий и звёздного неба!» Но в том-то и дело, что учёные мечтают чуть-чуть о другом...
Звёзды находятся от нас на огромных расстояниях. Насколько огромных? А вот насколько: мысленно уменьшим наш мир в 10 миллиардов раз. Человек при этом уменьшится примерно до размеров атома водорода. Планета Земля – до миллиметровой песчинки. Солнце – до размеров апельсина. Тогда ближайшая к нам звезда – Проксима Центавра – будет размером с ягоду рябины и окажется от Солнца на расстоянии в 2 тысячи километров. Это как от Москвы до Сургута. Представляете – апельсин и ягодка рябины, и от одного до другой двое суток пути поездом!
А теперь вопрос: а сможете вы из Москвы сфотографировать ягодку рябины, лежащую на улице в Сургуте? Проблематично, правда?
Мы можем фотографировать звёзды ночью потому, что они очень яркие точки – но именно точки! Эти точки «безразмерные», то есть бесконечно маленького диаметра. Сфотографировать звезду «в лицо», то есть увидеть её не в виде точки, а в виде круглого диска (как мы видим наше Солнце или соседние планеты в телескоп) – вот это именно то, о чём мечтают астрономы всего мира.
На сегодняшний день это получилось с очень немногими звёздами. Например, удалось сфотографировать звезду Миру («мира» по-латыни значит «удивительная») из созвездия Кита.
Или сверхгигант Бетельгейзе из созвездия Ориона. И удалось это только потому, что Мира или Бетельгейзе имеют просто чудовищные размеры.
Если вернуться к нашей модели, уменьшенной в 10 миллиардов раз, когда Солнце окажется размером с апельсин, то Мира будет огромным (высотой в 10-этажный дом!) шаром. А Бетельгейзе ещё больше – с 25-этажный дом! И при этом – фотография Бетельгейзе, сделанная космическим телескопом «Хаббл», представляет собой невыразительное размытое оранжевое зёрнышко в 50 пикселей...
Кстати, вы знаете, почему самый известный космический телескоп называется «Хаббл»? Эдвин Хаббл – знаменитый американский астроном. Работал он на большом телескопе обсерватории Маунт Вилсон, и именно Хаббл смог доказать (именно доказать!), что во Вселенной существует множество галактик, что наша Галактика – не единственная, а только одна из многих...
А не так давно заработал новый космический телескоп – «Джеймс Уэбб». (Если вы думаете, что Уэбб – это тоже знаменитый астроном, то ошибаетесь – Джеймс Уэбб был чиновником, вторым директором американского космического агентства.) Диаметр главного зеркала у «Уэбба» – шесть с половиной метров (для сравнения – у «Хаббла» два с половиной), так что «чиновник» существенно мощнее «астронома».
В общем, учёные и все любители науки на Земле, затаив дыхание, ждали от нового телескопа потрясающих открытий... И вот 31 июля 2022 года в интернете появляется совершенно сенсационное фото – диск звезды Проксимы Центавра, снятый телескопом «Уэбб». Проксима Центавра, ещё раз напоминаем, это ближайшая к нам звезда, красный карлик. Диск виден великолепно, чётко, на снимке видны многочисленные и подробные детали...
Известие буквально взорвало интернет, астрономы и просто люди, интересующиеся астрономией, внимательно разглядывали буквально каждую чёрточку, каждую загогулинку на снимке... Каково же было их разочарование, когда автор сенсации, французский физик Этьен Кляйн, опубликовал сообщение о том, что «фотография звезды» – просто шутка, подделка. И на самом деле никакая это не Проксима Центавра, а всего-навсего... кусок колбасы сорта «чоризо»! (Да, на предыдущем фото именно она.)
В ответ на гневные и разочарованные комментарии Кляйн ответил: «Я просто хотел проиллюстрировать тот факт, что благодаря социальным сетям в наше время сфальсифицированные новости могут оказаться куда успешнее настоящих».
Вот такая история. Означает ли это, что «Уэбб» не сможет фотографировать диски звёзд? Сможет, конечно, – ну, таких огромных, как Бетельгейзе или Мира, – и его снимки должны оказаться подробнее снимков «Хаббла», новый телескоп действительно мощнее и «глазастее» – но...
Всё равно расстояния до звёзд настолько огромны, что подробного портрета «куска колбасы» из звезды даже у телескопа «Джеймс Уэбб» вытянуть никак не получится, увы! Уж больно далеки от нас объекты для съёмок...
В списке «Сто величайших рок-песен всех времён» эта песня занимает третье место. У неё восьмое место в списке «Сто величайших гитарных песен всех времён» и первое место – в списке «Сто величайших гитарных соло». Вы, конечно, догадались по картинке, о какой песне идёт речь?
Образ лестницы, устремлённой в небо, – исключительно яркий, запоминающийся, пробуждающий в человеке самые сокровенные мечты – использовал драматург Григорий Горин в пьесе «Тот самый Мюнхгаузен». Возможно, вы видели фильм, снятый по этой пьесе. Помните финальную сцену? Главный герой поднимается по верёвочной лестнице к месту своей казни – и та вдруг превращается в бесконечную лестницу, устремлённую в небеса...
А можно вспомнить и героев булгаковского романа «Мастер и Маргарита», идущих в небо по световому лучу...
Но откуда же взялся этот чудесный образ? Что это – фантазия художника, выдумка поэта? Вовсе нет! Лестница в небо действительно существует, её можно увидеть, но...
К сожалению, у нас, в России, это сделать очень трудно. Разве что на юге, где-нибудь в Крыму или на черноморском побережье Кавказа, причём вдали от крупных городов – там, где воздух чист и прозрачен, а горизонт не закрыт горами, самый лучший вариант – с борта корабля далеко в море...
Но надёжнее, конечно, отправиться ещё южнее – скажем, в египетскую пустыню. И вот там, вдали от городов, безлунной ночью, ещё задолго до рассвета, мы увидим, как на востоке из-за горизонта медленно поднимается огромный сияющий объект в форме конуса или вытянутого треугольника.
Стоит добавить самую капельку воображения – и вы увидите ту самую настоящую «световую дорогу», «лестницу в небо»!
«А разве это не Млечный Путь?» – спросят те из вас, кто астрономией интересуется, читает книжки и регулярно смотрит видео про науку. Нет, это не Млечный Путь! Положение Млечного Пути в небе неизменно – в нашем северном небе он проходит через созвездия Стрельца, Скорпиона, Орла, Стрелы, Лисички, Лебедя, Кассиопеи, Цефея, Персея, Возничего, Тельца и Близнецов. А вот положение «лестницы в небо» в течение года будет постоянно изменяться – она будет проходить по очереди через созвездия Стрельца, Козерога, Водолея, Рыб... в общем – через знаки Зодиака! Именно поэтому современные астрономы называют это удивительное природное явление «зодиакальным светом».
Зодиакальный свет (фотография)
Зодиакальный свет был отлично известен людям в древности. Ещё в древнеегипетских «Текстах пирамид» упоминается «лестница в небо, созданная богом солнца Ра для фараона». О той же самой «лестнице в небо» часто упоминают папирусы, найденные в гробницах, в том числе знаменитая «Книга мёртвых».
О «руке рассвета» или «дороге в небо» есть упоминания в мифах индейцев майя. Кстати, многие учёные считают, что своей формой пирамиды Древнего Египта и пирамиды индейцев доколумбовой Америки обязаны именно зодиакальному свету!
Из Древнего Египта вместе с еврейским народом образ «лестницы в небеса» попал в Палестину, где был навсегда запечатлён в Библии, в Ветхом Завете, в образе «лествицы Иакова»:
«И увидел во сне: вот, лестница стоит на земле, а верх её касается неба; и вот, Ангелы Божии восходят и нисходят по ней...»
Икона «Лествица Иакова». (Черти искушают праведников – пытаются сбросить их с лестницы, ведущей к Богу)
Ещё одно название зодиакального света – «ложный рассвет», «фальшивая заря». Например, в мусульманских хадисах, то есть преданиях о пророке Мухаммеде, его словах и деяниях, часто упоминаются «ложный рассвет» (по-арабски «аль-фаджр аль-каазыб»), который люди путают с «истинным рассветом» (по-арабски «аль-фаджр ас-саадык»).
Одной из главных обязанностей мусульмане считают утреннюю молитву, молитву на рассвете – и Мухаммед предостерегал своих последователей, чтобы они, увидев ночью свет на востоке, сперва удостоверились, что это именно настоящий рассвет, а не ложный (то есть зодиакальный свет, «лестница в небо»). Средневековый персидский поэт Омар Хайям писал в своих стихах:
Когда ложный рассвет пронзает восток Серым холодным лучом, Наполни ты чаши гостям до краёв Красным кровавым вином...
Повторно зодиакальный свет «открыл» и описал в своей книге-энциклопедии «Бэконовская Британия» (по имени английского философа Фрэнсиса Бэкона) английский натуралист, астроном и астролог Джошуа Чилдри в 1660 году:
«В феврале вы увидите в небе чётко различимый луч света, простирающийся до самых Плеяд, и я думаю, что его всегда можно увидеть в такое время года. Но какова природа оного луча, я не могу вообразить и оставлю это для будущих исследований...»
Зодиакальный свет (обсерватория Мауна Кеа, Гавайские острова)
Первыми подробную научную теорию происхождения «лестницы в небо» дали французские астрономы – директор Парижской обсерватории Джованни Кассини и его ученик Никола Фатио де Дюилье. Кассини и Фатио указали, что зодиакальный свет проходит через двенадцать созвездий Зодиака, то есть как бы повторяет годичный путь Солнца, говоря мудрёным языком астрономии, «вытянут вдоль плоскости эклиптики».
Они также верно указали на то, что «треугольников» зодиакального света два – один из них виден поздно вечером, когда гаснет вечерняя заря после захода Солнца, а второй виден очень ранним утром, перед восходом. Всё тот же Кассини отмечал (и совершенно правильно), что яркость зодиакального света может быть различной – иногда он виден очень слабо или даже совершенно не виден («между 1665 и 1681 годами таинственный свет вдоль Зодиака полностью исчезал»), а иногда может быть в несколько раз ярче Млечного Пути... Но какова же природа этого свечения?
Джованни Доменико Кассини (1625–1712)
Наконец, астрономы нашли (как им казалось) правильный ответ. В работе Фатио «Письмо господину Кассини касаемо удивительного свечения, время от времени видимого в небесах» учёный подробно изложил свою теорию – зодиакальный свет возникает в результате рассеивания солнечного света внутри гигантского межпланетного пылевого облака («зодиакального облака») – в точности так же, как луч от карманного фонарика или прожектора красиво рассеивается ночью в тумане, в клубах дыма от костра или просто в сильно запылённом воздухе. Если пыли много – луч виден хорошо и чётко, если пыли мало – то виден еле-еле...
Свет автомобильных фар в тумане
Это было важнейшее открытие в астрономии: оказывается, в нашей Солнечной системе существуют не только центральная звезда (Солнце) и вращающиеся вокруг неё большие и малые планеты. В ней есть ещё и колоссальных размеров облако пыли в форме плоской линзы – причём чем ближе к Солнцу, тем гуще становится это облако, само же Солнце находится в его центре. Тогда становится понятным, почему мы видим с Земли зодиакальный свет как два треугольных «крыла», протянутых от Солнца. В дальнейшем (в 1803 году) немецкий путешественник Александр Гумбольдт открыл, что на самом деле два «треугольника» зодиакального света соединены между собой тонкой, еле различимой полоской слабого света – что означало, что наша с вами Земля находится внутри того самого пылевого облака!
Но, как это часто бывает в науке, разгадка одной загадки неожиданно сама по себе превратилась в другую загадку, ещё более сложную и головоломную. Хорошо, пускай зодиакальный свет – это результат рассеивания солнечного света внутри гигантского облака пыли, но тогда откуда же взялась эта пыль?
Ну подумайте сами: откуда может быть пыль в космосе, а? Каково её происхождение? Ни Кассини, ни Фатио не смогли дать внятного объяснения.
Первое объяснение дали немецкий философ Иммануил Кант и французский математик и астроном Пьер Лаплас – когда предположили (первыми в мире!), что наша Солнечная система не «была всегда», а сформировалась миллиарды лет назад из холодного газо-пылевого облака. А зодиакальный свет – это как бы «остатки строительного материала», «космический строительный мусор», оставшийся после формирования Солнца и планет.
Иммануил Кант (1724–1804) и Пьер-Симон Лаплас (1749–1827)
В XIX веке у астрономов появились новые мощные методы исследований, в частности, спектрометрия. Оказалось, что спектр зодиакального света – это очень сильно ослабленный спектр Солнца, то есть это действительно просто рассеивание солнечного света на крохотных пылинках. Фатио и Кассини были правы! Но... возникли и проблемы, причём ой какие серьёзные. В том же XIX веке было открыто такое явление, как давление света. Да-да, если вы этого не знали, свет обладает силой, он может «давить» на предметы – в точности так же, как это делает струя воздуха или воды! Это давление очень слабое, но для крохотной пылинки в масштабах космоса это штука вполне себе серьёзная, и учитывать её влияние нужно обязательно.
Скопление межзвёздного газа и пыли. Визуализация (работа художника)
За работу принялись математики – и выдали результат, который никого не обрадовал. Получалось, что пылевое облако из «строительного мусора», оставшегося от формирования нашей системы миллиарды лет назад, долго просуществовать не сможет! Если пылинка очень маленького размера, сказали математики, тогда световое давление от Солнца рано или поздно «вытолкает» эту пылинку за пределы нашей системы. А если пылинка «большая», тогда световое давление начнёт тормозить её движение по орбите, и в итоге эта пылинка, опускаясь по спирали, упадёт на Солнце и сгорит. Скажем, пылинка из водяного льда поперечником в одну сотую миллиметра, находящаяся где-нибудь в районе орбиты Земли, должна упасть на Солнце и сгореть «всего-то» через семь тысяч лет. Для человека это очень долго, но для космоса – вообще «ни о чём».
Частичка космической пыли под микроскопом
Пылевое облако Кассини–Фатио оказалось нестабильным, буквально за какой-то десяток тысяч лет оно должно было исчезнуть, рассеяться в пространстве, как не было! Но оно было, оно есть, мы видим его собственными глазами – а значит, в него постоянно поступает свежая пыль. Если зодиакальный свет существует миллиарды лет, он должен был полностью обновиться тысячи раз. И это значило, что учёным надо срочно (!) искать – так откуда же берётся распроклятая пыль в этом облаке?
Тогда некоторые учёные выдвинули «теорию космической катастрофы». Дескать, не так давно (тысяч двадцать лет назад или около того) в нашей Солнечной системе была ещё одна большая планета, похожая на Землю (для этой планеты даже название придумали – Фаэтон). Находилась орбита Фаэтона где-то между орбитами Марса и Юпитера. Но в результате какой-то ужасной катастрофы эта планета взорвалась, разлетелась на мелкие части – и так образовались пояс астероидов плюс огромный пылевой диск зодиакального света.
Пояс астероидов на месте предполагаемой орбиты планеты Фаэтон
Красивая теория, правда? Были даже идеи, что планета Фаэтон была обитаема, что она взорвалась в результате использования её обитателями термоядерного оружия, что фаэтонцы летали на Землю... В общем, на толстую фантастическую книжку или фильм хватит.
Но снова вмешались вездесущие математики. Они просто взяли и посчитали – сколько же всего пыли в этой окружающей Солнце и планеты «линзе»? Оказывается, не так уж и много – если собрать всю эту пыль вместе и «слепить» из неё планету, то получится небольшой (диаметром около пятнадцати километров) астероид. Если даже добавить к этому вообще все-все астероиды из пояса, то получится объект с массой примерно в четыре процента от массы нашей Луны. Так что никакой «похожей на Землю планеты Фаэтон» не получается, хоть ты лопни!
Кадры из диафильма «Фаэтон, сын Солнца» (1974 г.)
В середине XX века голландский астроном Ян Оорт предположил, что главным источником «звёздной пыли» являются не астероиды, а кометы. Когда комета приближается к Солнцу, она начинает таять – образуется тот самый состоящий из крохотных пылинок длинный «хвост». Но ведь ни одна комета не может таять вечно, рано или поздно она должна исчезнуть, превратиться в пыль, а пыль или будет вытолкнута световым давлением за пределы системы, или упадёт на Солнце и сгорит.
Кометы – один из основных источников космической пыли
И тогда Оорт выдвинул теорию о том, что где-то немыслимо далеко (примерно один световой год от Земли) существует чудовищных размеров облако ледяных астероидо в, окружающее всю нашу систему – источник происхождения всех комет, «облако Оорта», оставшееся от протопланетного облака, существовавшего пять миллиардов лет назад. Примерная общая масса объектов в облаке Ооорта больше чем в пять раз превышает массу нашей Земли, то есть в данном случае на роль «источника космической пыли» облако Оорта вполне годится.
Ян Хендрик Оорт за телескопом
Но все эти гипотезы, все эти теории были чисто «умозрительными», проверить их справедливость не представлялось возможности – тут не поможет ни один телескоп, и летать на такие чудовищные расстояния в космос люди тоже пока не научились. И тут на помощь учёным пришёл... воздушный шар! Вы можете удивиться – дескать, какие космические исследования можно делать с помощью воздушного шарика?! Оказывается, можно.
Помните, мы говорили о том, что наша Земля тоже находится внутри пылевого облака? А это значит, что часть этой пыли должна выпадать на Землю – причём каждый день (по расчётам) на нашу планету выпадает от пяти до трёхсот тонн «космического мусора», представляете? Те же расчёты всё тех же математиков показали – частички космической пыли движутся с разными скоростями, и далеко не все они сразу сгорают в атмосфере Земли. Поэтому, если забраться на очень большую (около тридцати километров) высоту и взять пробу воздуха, она вполне себе может содержать образцы той самой космической пыли!
Строение облака Оорта
Тщательно проанализировав химический состав собранных образцов космической пыли, учёные пришли к выводу: источник постоянного пополнения зодиакального света не один! Там есть и остатки тех самых долгопериодических комет из облака Оорта, и пылинки, получающиеся при столкновениях каменных и железо-каменных астероидов, и даже пылинки, занесённые в космос с поверхности Марса!
Да-да! Слышали о страшной силы пылевых бурях на Марсе? Гравитация у Марса слабая, атмосфера сильно разрежённая, и тонны пыли могут улетать с поверхности планеты в космос, там путешествовать (тысячи лет!) и в результате даже выпадать на Землю! И наоборот – частицы земной пыли, оказавшиеся на огромной высоте при извержении вулкана (или взрыве водородной бомбы), вполне себе могут пролететь за тысячи лет десятки миллионов километров – и оказаться на поверхности Марса! То есть планеты в нашей системе далеко не так изолированы друг от друга, как казалось людям раньше – между ними есть «пылевая почта», «космическая связь»!
Пылевая буря на Марсе
А самая интересная часть космической пыли – менее одного процента от общей массы – это те самые невероятно древние пылинки, чудом сохранившиеся с тех самых времён газо-пылевой туманности, протопланетного облака, существовавшего пять миллиардов лет назад на месте нашей Солнечной системы...
Изучение звёздной пыли из зодиакального облака – одна из интереснейших отраслей современной астрономии, и кто знает, какие ещё открытия предстоит в ней сделать...
А напоследок – ещё одно очень забавное, почти что анекдотическое совпадение. Мы же начинали наш рассказ о звёздной пыли и зодиакальном свете с рок-музыки, с песни «Лестница в небо» группы «Лед Зеппелин», с гитарного соло, которое исполнял знаменитый гитарист Джимми Пейдж, да? Так вот. Не менее знаменитый рок-гитарист Брайан Мэй из группы «Квин» в 2007 году защитил кандидатскую диссертацию по астрофизике на тему... «Исследование радиальных скоростей в зодиакальном пылевом облаке».
Как будто не дают спокойно спать рок-музыкантам лестница в небо и звёздная пыль!
Откроем страшную тайну: учёные всего мира очень давно мечтают о том, чтобы всего-навсего... сфотографировать какую-нибудь звезду. «Что за ерунда? – скажете вы. – В интернете тысячи фотографий звёзд, всяких созвездий и звёздного неба!». Да, но учёные мечтают чуть-чуть о другом.
Скажите, сможете ли вы, находясь в Москве, сфотографировать ягодку рябины, висящую на ветке в Сургуте?
Воспользуемся воображаемой волшебной палочкой и уменьшим наш мир в 10 миллиардов раз. Человек при этом уменьшится примерно до размеров атома водорода. Планета Земля – до миллиметровой песчинки. Солнце – до размеров апельсина. Тогда ближайшая к нам звезда – Проксима Центавра – будет размером с ягоду рябины и окажется от Солнца на расстоянии 2 тысячи километров! Примерно как от Москвы до Сургута.
Повторим вопрос: сможете вы из Москвы сфотографировать ягодку рябины, висящую на ветке в Сургуте? Проблематично, правда?
Мы можем фотографировать звёзды ночью потому, что они очень яркие точки – но именно точки. Особенность точки в том, что она «безразмерная», то есть бесконечно маленького диаметра. А вот увидеть звезду не в виде точки, а в виде диска (как мы видим наше Солнце или соседние планеты в телескоп) – вот это именно то, о чём мечтают астрономы всего мира.
На сегодняшний день это получилось очень с немногими звёздами. Например, удалось сфотографировать звезду Миру («мира» по-латыни значит «удивительная») из созвездия Кита.
Диск звезды Миры из созвездия Кита
Или сверхгигант Бетельгейзе из созвездия Ориона.
Диск звезды Бетельгейзе из созвездия Ориона
И удалось это только потому, что Мира или Бетельгейзе имеют просто чудовищные размеры. Если вернуться к нашей модели, уменьшенной в 10 миллиардов раз, когда Солнце окажется размером с апельсин, то Мира будет огромным (высотой в 10-этажный дом!) шаром. А Бетельгейзе ещё в два раза больше – то есть с 25-этажный дом! Представляете? И при этом – фотография Бетельгейзе, сделанная космическим телескопом «Хаббл», представляет собой невыразительное размытое оранжевое зёрнышко в 50 пикселей...
Космический телескоп Хаббл
Кстати, почему самый известный космический телескоп называется «Хаббл»? Эдвин Хаббл – знаменитый астроном. Работал он на большом телескопе обсерватории Маунт Вилсон, и именно Хаббл смог доказать (именно доказать!), что во Вселенной существует множество галактик, что наша Галактика – не единственная, а только одна из многих...
Эдвин Хаббл (1864–1934)
А совсем недавно (летом 2022 года) заработал новый космический телескоп – «Джеймс Уэбб». Если кто-то подумал, что Уэбб – это тоже знаменитый астроном или учёный, то не угадал – Джеймс Уэбб был чиновником, вторым директором американского космического агентства. Диаметр главного зеркала у «Уэбба» – 6 с половиной метров (для сравнения – у «Хаббла» 2 с половиной), так что «чиновник» существенно мощнее «астронома».
Фрагмент туманности Эты Киля слева телескоп Хаббл справа телескоп Уэбб
В общем, учёные и все любители науки на Земле, затаив дыхание, ждали от нового телескопа потрясающих открытий...
Космический телескоп Уэбб
И вот 31 июля 2022 года в интернете появляется совершенно сенсационное фото – диск звезды Проксимы Центавра, снятый телескопом «Уэбб».
Проксима Центавра, ещё раз напоминаем, это ближайшая к нам звезда, красный карлик. Диск виден великолепно, чётко, на снимке видны многочисленные и подробные детали!
Твит буквально взорвал интернет, астрономы и просто люди интересующиеся астрономией внимательно разглядывали буквально каждую чёрточку, каждую загогулинку на снимке...
Каково же было их разочарование, когда автор твита – французский физик Этьен Кляйн – опубликовал сообщение о том, что «фотография звезды» – просто шутка, подделка. И на самом деле никакая это не Проксима Центавра, а всего-навсего... кусок колбасы сорта «черизо»!
В ответ на гневные и разочарованные комментарии Кляйн ответил: «Я просто хотел проиллюстрировать тот факт, что благодаря социальным сетям в наше время сфальсифицированные новости могут оказаться куда успешнее настоящих».
Вот такая вот история. Означает ли это, что «Уэбб» не сможет фотографировать диски звёзд? Может, конечно, – ну, таких огромных, как Бетельгейзе или Мира, – и его снимки должны оказаться подробнее снимков «Хаббла», новый телескоп действительно мощнее и «глазастее» – но... Всё равно расстояния до звёзд настолько огромны, что подробного портрета «куска колбасы» из звезды даже у телескопа «Джеймс Уэбб» вытянуть никак не получится, увы! Уж больно далёки от нас объекты для съёмок...
Туманность Южное Кольцо снимок телескопа Хаббл
Туманность Южное Кольцо снимок телескопа Уэбб
Как измеряют расстояние до звезд? Почему Земля вращается? Как устроена бесконечность? Что такое гиперпространство? Рассказывает журнал "Лучик".
А теперь подробнее. В галактике Млечный путь, по оценкам астрономов, как минимум триллион планет. Условия на этих планетах (давление, температура, химический состав атмосферы, скорость ветра и так далее) могут быть самыми разными. Но при этом у абсолютно всех планет есть одна общая черта: почти* все они имеют форму шара. Но почему? Почему не бывает планет случайной формы? Или в форме кольца?
Планеты Солнечной системы (в масштабе)
* Справедливости ради стоит сразу сказать: далеко не все планеты представляют собой совершенный, идеальный шар. Например, спутник Сатурна Пан имеет форму... «правильного пельменя»! Об этом и о других удивительных исключениях из правила мы поговорим ниже.
А сплюснутость Юпитера видна даже в школьный телескоп. Он сплюснут, потому что вращается очень быстро - сутки на Юпитере длятся всего 10 часов! Пять часов ночь и пять часов день...
Кстати, наша с вами Земля тоже не правильный шарик. На языке науки её форма называется «эллипсоид вращения», а ещё более точно – «геоид».
Впервые понятие геоида в науку ввёл ещё знаменитый немецкий математик Карл Фридрих Гаусс. Геоид тоже слегка сплюснутый (хотя и не так сильно, как Юпитер), а ещё как бы «примятый», со своего рода «волнами» на поверхности. Связано это с особенностями строения нашей планеты – её масса распределяется (как на поверхности, так и глубоко внутри) неравномерно, отсюда и отклонения от идеальной математически правильной формы. Для школьной географии такими отклонениями можно пренебречь – но вот, скажем, для точной работы GPS-навигатора они исключительно важны!
Однако в целом, если не углубляться в подробности, и Юпитер, и Земля – «круглые». Как и все остальные планеты во Вселенной. Почему? И ладно бы все объекты во Вселенной были бы круглые. Но это не так! Скажем, многие астероиды и ядра комет обладают совершенно неправильной формой – они напоминают не мячики, а причудливой формы булыжники...
Ядро кометы Чурюмова-Герасименко. Ну и где тут "универсальная" шарообразность?
Звёзды тоже могут быть неправильной формы: да, наше с вами Солнце – «шарик», а вот, скажем, звезда Шелиак (она же Бета Лиры) имеет крайне причудливый вид: вытянутый шар, от которого тянется «рукав», закрученный в спираль.
Звезда Шелиак (вид в телескоп и реконструкция)
А звезда VFTS 352 из Большого Магелланова облака и вовсе выглядит как раскалённая «гантель».
Звезда VFTS 352 из Большого Магелланова Облака
А вот планеты – шарики. Все! Почему?
Внимание, правильный ответ: потому что наша планета – капля.
«Что?! – скажете вы, – какая такая капля? Во-первых, капля – она сверху остренькая. Как слеза. А во-вторых, капля бывает только у воды или другой жидкости. А Земля – она сделана из гранита и базальта. А они – твёрдые!».
Мда. А ведь так хотелось обойтись без длинных объяснений...
Начнём с «во-первых». Характерную вытянутую форму «слезы» капля воды приобретает, когда стекает по поверхности, или же только-только начинает падать – скажем, с листа дерева после дождя. Но вот во время свободного падения капли воды (или любой другой жидкости) имеют форму шарика, иногда слегка неправильного, сплюснутого... Совсем как планеты...
Капли дождя в полёте
Но почему капля приобретает именно шарообразную форму?
Как известно, капля воды состоит из молекул. Движущихся крохотных частичек. Молекул в капле непередаваемо много – примерно 40 секстиллионов. Вот столько:
40 000 000 000 000 000 000 000
Эти молекулы связаны между собой особыми силами – силами молекулярного сцепления. На поверхности воды образуется как бы натянутая «плёнка» из сцепленных друг с другом молекул. А дальше происходит нечто необыкновенное. Каждая из молекул как бы «стремится» к тому, чтобы тратить на поддержание связей с другими молекулами как можно меньше сил. Само собой, молекулы не являются живыми – но в данном случае ведут себя совсем как живые. Это явление можно описать языком дифференциальных уравнений, то есть высшей математики. Но, подозреваю, что такое объяснение вам не очень «зайдёт». Попробуем объяснить нагляднее и понятнее.
Возьмём детей из одного школьного класса – допустим, 30 человек. Вы можете даже уговорить своих одноклассников на такой «эксперимент» на школьном дворе. Будет весело, обещаю. Пускай они все возьмутся за руки и встанут в хоровод – как на новогоднем празднике, «вокруг ёлочки». И начнут двигаться, желательно как можно быстрее. Главное – не расцеплять руки! Если мы посмотрим на этот хоровод сверху, то убедимся, что он образует почти идеальный круг.
Остановите хоровод и расставьте детей так, чтобы они образовали НЕ круг. Скажем, треугольник. Или квадрат. Или даже пятиконечную звезду. Руки при этом НЕ расцепляем! А теперь отдадим команду – снова начинаем движение! Быстрее, ребята, быстрее!
Сохранит ли детский хоровод форму треугольника? Или квадрата? Нет! Как только он придёт в движение, буквально через пару-тройку секунд снова станет «кругленьким», «без углов». Происходит это потому, что каждый ребёнок в цепочке стремится тратить при движении как можно меньше сил, найти максимально комфортное положение. Примерно то же самое происходит при взаимодействии молекул воды внутри капли – и, если на неё не действуют никакие посторонние силы, она обязательно примет шарообразную форму.
Теперь «во-вторых». Да, «снаружи» наша Земля твёрдая. Она из камней, скал и так далее. Но «твёрдая снаружи» вовсе не означает «твёрдая внутри»! Планета Земля начала формироваться больше 4 с половиной миллиардов лет назад. Крохотные частички пыли, из которых состояла окружающая совсем молодое Солнце туманность, слипались в комочки, комочки – в комки побольше, ещё больше, ещё... Образовывались неправильной формы «булыжники» – многие из них дожили до наших дней, это те самые астероиды и ядра комет. Но многие сталкивались друг с другом, «сцеплялись», образуя всё более и более крупные небесные тела... Будущая Земля (учёные говорят «Протоземля») медленно росла, «пухла» в самом прямом смысле этого слова!
Шли тысячи лет. Земля стала настолько большой, что верхние её слои стали сильно, очень сильно давить на находящиеся в глубине. Как при игре в «кучу малу» на перемене – пока играет только 3-4 ребёнка, всем весело и хорошо. А если вдруг в кучу малу собрался весь класс? Тогда тем, кто окажется в самом низу, на полу, придётся очень даже несладко, правда? Вот и Протоземля – давление в её центре поднималось всё выше. А когда поднимается давление – обязательно поднимается температура, это обыкновенная школьная физика. 100 градусов, 500, 1000... Входящие в состав «булыжников» материалы начинают плавиться. Сперва олово, цинк, затем алюминий, кремний... При температуре +1800 градусов начинает плавиться железо. Жидкая зона начинает расширяться – более лёгкие материалы (алюминий, кремний) стремятся подняться «наверх», а более тяжёлые (железо, никель) – опуститься «вниз», к центру. И в какой-то момент оказывается, что вся Протоземля превратилась в гигантскую «каплю» из расплавленных железа и никеля, покрытую тонкой «корочкой» из силикатов и других лёгких соединений! А капля у нас приобретает форму... ну вы поняли.
Протоземля (рисунок художника)
Само собой, на этом история возникновения Земли не заканчивается. Земля продолжала расти, она сталкивалась с другими небесными телами, иногда очень крупными... Давление на глубине стало настолько огромным, что в самом центре планеты образовалось твёрдое железное ядро. Раскалённое до температуры +6500 градусов, это жарче, чем поверхность Солнца! Но всё-таки твёрдое. Вокруг твёрдого ядра находится жидкое ядро из расплавленных железа и никеля. Именно благодаря такому сложно устроенному ядру, кстати, у нашей планеты возникло магнитное поле... Выше жидкого ядра располагается вязкая мантия, а на самой поверхности – тонкая твёрдая кора.
Все другие планеты формировались схожим образом. Какие-то из них оказались больше Земли (как Юпитер), какие-то – меньше (как Меркурий или Марс). Какие-то из них остались активными (как Земля и Венера), какие-то уже давно остыли, «умерли» (снова как Марс или Меркурий) Но все они так или иначе проходили через «капельную», «полужидкую» фазу развития – и стали круглыми «шариками».
Вопрос: почему мелкие астероиды и ядра комет сохранили древнюю «неправильную» форму?
Тот самый спутник Сатурна Пан
Ответ: потому что они не смогли набрать достаточно большую массу, «не доросли». Температура внутри у них просто не смогла подняться до такой степени, чтобы горные породы внутри начали плавиться. Вот и всё.
* А теперь что касается «почти». (Помните, в начале статьи мы написали что почти все планеты имеют шарообразную форму?)
Бывают и исключения. Например, планету Хаумеа назвать шарообразной трудно, и расположена она, кстати, в нашей Солнечной системе!
Хаумеа
Её диаметр – всего 100 километров, тем не менее у малютки есть два спутника и целая система колец. Хаумеа, как и наша Земля, является спутником Солнца. Период её обращения вокруг Солнца – около 282 земных лет.
Почему эта планета такой странной формы? Все дело в том, что она вращается с очень большой скоростью. Это самый быстро вращающийся объект Солнечной системы из известных сегодня! Период обращения Хаумеа вокруг своей оси – меньше четырёх земных часов. Скорость настолько велика, что планету «сплющило». Учёные предполагают что когда-то в планету врезался астероид и увеличил скорость её вращения вокруг своей оси.
Сравнительные размеры Хаумеа и её спутников
Кстати, кольца и спутники Хаумеа состоят из той же породы, что и сама планета. Это подтверждает теорию с астероидом. Возможно, спутники и кольца – это обломки планеты.
Планета Хаумеа была открыта в 2003 году сразу двумя командами астрономов. До сих пор идут споры, кто же её открыл. Названа планета в честь гавайской богини плодородия. В любительские телескопы эту планету увидеть нельзя: она очень маленькая, и находится в поясе Койпера, за орбитой Плутона.
«Каниба» – так называли жители Багамских островов своих беспокойных соседей, обитателей острова Гаити.
Взгляните на карту: от Гаити до Багам рукой подать!
Всё ещё уверены, что электродрель по утрам и сопровождаемые танцами ночные застолья – худшее соседство, какое только бывает на свете?
Так вот, каннибализм бывает не только на Земле. В космосе он тоже встречается. Посмотрите на фотографию. Это спиральная галактика М51 из созвездия Гончих Псов. Обратите внимание на её странную форму – возле привычной галактической спирали как бы «прицепилось» яркое облачко...
Галактика каннибал М51 из созвездия Гончих Псов
Но это никакое не облачко! Это ещё одна галактика, точнее – то, что от неё осталось. Перед нами – типичный пример «галактического каннибализма» – то есть явления, когда одна галактика поглощает, «пожирает» другую.
Сливающиеся галактики
Как возникает подобное явление? Галактики, нетрудно догадаться, не висят в космическом пространстве, как прибитые гвоздями – они постоянно движутся. И если во время движения одна галактика приблизится к другой, сработает закон всемирного тяготения – и более крупная галактика, как пылесосом, начинает «выкачивать» вещество (звёзды, газ и пыль) из меньшей галактики. Никаких шансов на спасение у маленькой галактики нет – рано или поздно она будет полностью поглощена более крупным соседом. Во время движения взаимодействующие галактики могут оставлять за собой длинные «следы» из звёзд – приливные потоки. Их, например, очень хорошо видно у галактик «Антенны» (NGC4038/4039) в созвездии Ворона.
Образование приливного потока при поглощении
Галактический каннибализм – явление очень распространённое. Например, астрономы утверждают, но Млечный Путь – наша с вами Галактика – за время своего существования уже «съела» пять или шесть более мелких галактик! У нашей Галактики есть две галактики-спутника – это Большое Магелланово Облако и Малое Магелланово Облако.
Магеллановы облака - спутники нашей галактики
Расчёты и наблюдения показывают, что наша Галактика уже «высасывает» вещество из Магеллановых облаков, и между нашими галактиками как бы протянут «мостик» из межзвёздного газа. Через 10 миллиардов лет Магеллановы облака будут полностью поглощены нашей Галактикой.
Есть идея приложения для смартфона - фоткаешь большую медведицу, а приложение показывает время по указанным формулах и сравнивает с текущим. Название только надо придумать крутое Не благодарите!