Продолжение поста «Технологии: "Фотолитография" Принцип работы литографической машины»2
Далее пластина вновь перемещается в трековый инструмент. Здесь модифицированный резист смывается с ее поверхности с помощью растворителя, а для затвердевания оставшегося резиста еще раз применяются нагрев и высушивание.
После формирования рисунка пластина отправляется в другие машины. Области без затвердевшего резиста подвергаются травлению, и на них распыляются различные химические вещества — одни заполняют собой образовавшиеся канавки, а другие образуют основу для следующего слоя.
Данный процесс повторяется несколько раз, пока поверх первого слоя не образуется множество дополнительных слоев соединений. Именно через них транзисторы чипов будут «общаться» друг с другом. Толщина этих соединительных проводов зависит от высоты слоя: внизу с транзисторами контактируют самые тонкие, а наверху располагаются самые крупные.
Циклы построения слоев повторяются десятки раз, а количество их отдельных этапов приближается к тысяче. Поэтому общее время, необходимо для создания одной пластины с чипами, достигает четырех месяцев.
Транзисторный слой современных чипов формируется с помощью машин EUV (Extreme UltraViolet), которые работают с экстремально короткими ультрафиолетовыми волнами длиной всего 13 нм.
Верхние соединения чаще всего создаются с помощью машин DUV (Deep Ultra Violet), которые работают с более длинными ультрафиолетовыми волнами — обычно от 193 до 365 нм.
Машины DUV появились еще в 2000-х годах и обходятся намного дешевле, чем более передовые EUV. Поэтому некоторые простые чипы, для которых не требуются тонкие техпроцессы производства, до сих пор производятся только их силами.
Формирование EUV-света
Давайте заглянем внутрь EUV-машины. Она состоит из пяти основных компонентов: источника света (Source), осветителя (Illuminator), манипулятора и столика визирной сетки (Reticle Handler/Stage), проекционной оптики (Projection Optics), а также манипулятора и столика пластин (Wafer Handler/Stage).
Ключевой компонент — это источник экстремального ультрафиолетового света (EUV). Почему используется именно такой свет, и что он дает?
Представьте, что вы переносите буквы с трафарета на бумагу с помощью толстого маркера. Если закрашивать крупные буквы, они будут выглядеть четко. Но стоит закрасить несколько мелких букв рядом, и краска расплывется, не давая их прочитать. А вот если повторить тот же процесс с помощью тонкой ручки, то даже мелкие буквы перенесутся четко и будут читаемыми.
EUV-свет с длиной 13 нм — это та самая тонкая ручка, которая позволяет копировать рисунки с линиями толщиной около 10 нм.
Если использовать свет с большой длиной волны, то он не сможет проникнуть в микроскопические отверстия нашей маски-трафарета, и узор ее рисунка потеряется.
В отличие от него, экстремально короткие ультрафиолетовые волны беспрепятственно проходят через маску, четко перенося на пластину все детали и контуры.
Ультрафиолетовое излучение такой длины не встречается в природных источниках света, поэтому создается искусственно. Для этого используется сложная система из двух лазеров и нескольких усилителей, которые установлены под EUV-машиной.
С помощью зеркал импульсы лазера проходят в контейнер-источник, где на их пути распыляются микроскопические шарики из олова. Первый импульс мощностью в 5 кВт превращает олово в жидкую каплю. Второй импульс имеет мощность в 25 кВт — при взаимодействии с ним капля испаряется, переходя в состояние раскаленной плазмы. В процессе этого происходит выброс электронов, благодаря которому и возникает EUV-свет.
Олово для этой операции хранится в специальной емкости и поддерживается в расплавленном состоянии. С помощью системы шлангов оно попадает в пьезоэлектрический распылитель, который за счет высокого давления азота внутри своего резервуара обеспечивает подачу тонкой и равномерной струи.
Когда капля олова попадает в рабочую область контейнера, ее траекторию отслеживает несколько высокоскоростных камер. Эта информация передается приводам зеркал, цель которых сдвинуть отраженный лазерный луч так, чтобы он попал точно в каплю.
Для генерации EUV-света нужной интенсивности выстрелы по каплям совершаются около 50 тысяч раз в секунду. Чтобы поддерживать равномерный темп излучения, система может пропускать некоторые капли мимо лазера — они попадают в специальный отвод.
Излученный свет собирается в пучок с помощью первого зеркала, называемого коллектором. Он направляется в промежуточный фокус — микроскопическое отверстие, которое пропускает только EUV-лучи и отсеивает более длинные.
Затем луч EUV-света попадает в осветитель — систему из нескольких фацетных зеркал, которые рассеивают его на более широкий пучок из множества линий.
Пучок света проецируется на маску, а прошедшие через нее лучи с помощью еще одного массива зеркал отправляются в конечную цель путешествия — на поверхность кремниевой пластины.
Особенности работы с EUV-светом
Экстремально глубокий ультрафиолет отличается от видимого света многими свойствами. Например, он сразу поглощается молекулами воздуха, поэтому внутри его пути в EUV-машине всегда соблюдается вакуум.
Более того, EUV поглощается стеклом и почти всеми прочими материалами. Поэтому для фокусировки и передачи такого света используются зеркала, а не линзы. Но и обычные зеркала для этой цели тоже не подходят. В EUV-машине используются специальные зеркала, называемые отражателями Брэгга. Они состоят из десятков чередующихся слоев кремния и молибдена, каждый из которых имеет толщину всего в несколько нанометров. Когда EUV-луч попадает на поверхность такого отражателя, то только 3 % отражается от одного слоя, а оставшийся свет проходит насквозь. Благодаря множеству слоев луч отражается от каждого, поэтому в сумме одно зеркало способно перенаправить чуть более 70 % попавшего на него света.
В оптической системе EUV-машины более десяти зеркал, поэтому часть исходного потока света теряется после каждого переотражения. В результате до кремниевой пластины доходит менее 10 % от его изначальной яркости. Именно поэтому первоначальный свет от источника должен быть максимально ярким.
Другой особенностью работы с EUV-лучами являются фацетные зеркала. Они состоят из множества сегментов, наклон каждого из которых управляется независимо с помощью системы с миниатюрным электроприводом.
За счет этого можно создавать из точечного EUV-света сложные рисунки освещения.
В виду ограничения фотоматериалов
ПРОДОЛЖЕНИЕ СЛЕДУЕТ...



















































































































