H20 + Si
Ученые из Германии создали систему, которая вырабатывает электричество с помощью воды, давления и кремния.
В микроскопических порах кремния вода трется о стенки, создавая электрический заряд. Этот процесс называется трибоэлектрический эффект — когда трение превращается в электричество. И теперь ученые научились использовать его контролируемо и стабильно.
Устройство уже демонстрирует эффективность 9%, что является рекордом среди подобных наногенераторов.
И все это — без редких металлов, без токсичных веществ, только вода и кремний 👆
Перспективы огромны:
⏺ сенсоры, которые сами себя питают;
⏺ умная одежда с автономными датчиками;
⏺ системы мониторинга в технике и медицине, которым не нужны батарейки.
Больше интересной информации про источники энергии и энергетику в телеграм-канале ЭнергетикУм
Лазер складывает оригами из микроскопических стеклянных пластин
Исследователи из Тель-Авивского университета разработали метод складывания стеклянных листов в микроскопические 3D-структуры с помощью лазера. Процесс получил название "фотонное оригами".
Открытие произошло случайно. Ученые осветили лазером стекло, но увеличили мощность, и пластинка неожиданно сложилась. Это открыло простой способ формования стекол. Физика процесса заключается в том, что при нагреве лазером одна сторона стекла плавится, и поверхностное натяжение становится сильнее гравитации, заставляя материал складываться именно в том месте, на которое светит луч.
Метод позволяет создавать структуры длиной 3 мм и толщиной всего 0,5 микрона – это в 200 раз тоньше человеческого волоса. На сегодня это рекорд соотношения длины к толщине для 3D-структур.
Исследователи продемонстрировали возможность складывания тонких стеклянных листов на кремниевом чипе менее чем за миллисекунду. Они создали разнообразные формы – от изгибов под углом 90 градусов до спиралей, вогнутые и выпуклые зеркала с поверхностями настолько ровными (отклонение менее нанометра), что свет отражается без искажений.
Практическое применение технологии "фотонного оригами" обещает быть широким – от создания микро-зум-объективов, способных заменить пять отдельных камер в смартфонах, до изготовления микрофотонных компонентов, использующих свет вместо электричества для более быстрых и эффективных альтернатив традиционной электронике.
Перевод с английского
Зачем ученые посолили солнечные панели?
В Лондоне исследователи нашли простой способ, который повысил эффективность перовскитных солнечных элементов. Оказывается, добавление определенного типа соли (тиоцианата гуанидиния) в процессе производства меняет все: материал кристаллизуется медленнее и ровнее, что делает слои более однородными, снижает количество дефектов и увеличивает срок службы панелей.
Результат впечатляет — «соленые панели» показали эффективность 22,3%, почти равный лучшим образцам кремниевых элементов. Но главное — этот подход открывает путь к созданию тандемных солнечных ячеек, где несколько слоев работают вместе. Такие системы уже достигли свыше 30% эффективности в лабораториях, и теперь могут побить этот рекорд.
Фактически, исследователи научились тонко управлять структурой перовскита, делая солнечные элементы одновременно более мощными и стабильными. Это значит, что в будущем солнечная энергия станет дешевле, эффективнее и доступнее.
Больше интересной информации про топливо, нефть, энергию и энергетику в телеграм-канале ЭнергетикУм
Мысли
Человечество взяло кремний и создало из него компьютер с собственным языком. Затем человечество придумало новый язык, чтобы было проще с ним общаться. Теперь же человечество заставило его научиться понимать язык человечества. Человечество буквально научило общаться кусок кремния.
Ты слышишь как поёт кремний? А я слышу.
Как сделать МЭМС: от идеи до реализации
В предыдущем посте я попросил оставить в комментариях темы, которые были бы интересны. Сразу предупрежу, что некоторые вопросы не будут мной разобраны в том виде, в котором они сформулированы, чтобы не опозориться не вводить никого в заблуждение. Но постараюсь рассказать о чем-то наиболее приближенном по моему мнению.
@sweeper.xms оставил две темы, начну со второй:
Каков путь от программы на Verilog/VHDL до реального чипа, минуя ПЛМ?
Область моих компетенции связана непосредственно с микроэлектромеханическими системами (МЭМС), а точнее я занимаюсь разработкой технологии их изготовления. Поэтому расскажу, какой нужно проделать путь от идеи до реализации ее в виде конечного продукта. Надеюсь, будет интересно не нудно.
МЭМС - это такой чип, состоящий из механической части (именуется чувствительным элементом), которая может вибрировать, перемещаться или изгибаться, и электрической части (обычно интегральная схема специального назначения, она же ASIC), которая позволяет считывать и преобразовывать сигналы, и управлять механической частью. Короче, это всякие микромеханические акселерометры (датчики ускорения), гироскопы (датчики угловой скорости), датчики давления и т.п. Зачем они нужны? Конечно же для функции автоповорота экрана в смартфоне, иначе как ещё смотреть видео на Ютубе Рутубе. На самом деле применяют датчики МЭМС много где.
Знакомьтесь, датчик МЭМС: внутри корпуса расположены та что побольше и поярче - интегральная схема, а невзрачный - это чувствительный элемент (взято из интернета)
Приступим к идее. Во-первых, нужно определиться для каких целей делать датчик. Универсальных решений не существует, к сожалению. Не получится сделать и суперкомпактный, и мегаточный, и со сверхнизким потреблением энергии, да ещё и практически бесплатный. Поэтому у топовых компаний типа Analog Devices только микромеханических акселерометров более 15 разновидностей! Отмечу, что электроника может быть универсальной, и одна и та же интегральная схема может хорошо подходить для большинства датчиков. Подробно я разберу именно механическую часть (чувствительный элемент). У каждого чувствительного элемента есть особый слой (именуют его обычно приборным) или слои, которые являются определяющими с точки зрения характеристик датчика.
С помощью ПО Comsol Multiphysics или Ansys подбирают конструкцию этого особого слоя или слоев, чтобы они потенциально обеспечивали нужные характеристики. Затем уже в виде некой принципиальной схемы разрабатывают целиком топологию чувствительного элемента, который вообще может состоять не просто из нескольких слоев, но и из нескольких пластин.
Как только с топологией определились, появляется намек уже на какую-то документацию. Важно понимать, что топологию и конструкцию разрабатывают с учётом имеющихся технологических возможностей, а также наличия конкретного материала. Условно, если в наличии имеются пластины толщиной 380 мкм или особый слой могут сделать сейчас только толщиной 100 мкм, то в первую очередь будут исходить из этого. После согласования топологии и конструкции чувствительного элемента обычно утверждают геометрические размеры и электрические параметры, которые будут контролировать в процессе изготовления для определения качества изделия и его работоспособности. Далее формируют документацию для изготовления фотошаблонов для литографии в формате GDSII. Во-первых, необходимо полностью отрисовать все слои и посмотреть, как в пределах одного чипа они накладываются друг на друга. Во-вторых, необходимо размножить разместить чипы на подложке как можно больше и плотнее друг к другу. Но меру тоже нужно знать, поэтому от края пластины обычно отступают 5-10 мм. В-третьих, нужны метки совмещения для литографии.
Так может выглядеть метка совмещения. Красным выделены нониусы, обеспечивающие точное совмещение (взято из интернета)
Главными элементами меток совмещения являются нониусы, их размер и расстояние между ними позволяют оценивать рассовмещение слоев между друг другом. При заказе фотошаблонов также указывают, какие области должны быть прозрачными, а какие нет. Некоторые фотошаблоны должны быть ещё и отзеркалены. Короче, одна ошибка и ты ошибся. Технологический процесс изготовления в виде маршрута набрасывают ещё при формировании документации на фотошаблоны. Делают сопроводительную документацию на изготовление. Также параллельно заказывают необходимые материалы (всякие фоторезисты, проявители, смыватели, кислоты, щелочи и т.п.). И ждут уведомления от озона поставку фотошаблонов и материалов.
Как только все необходимое есть, начинают отрабатывать какие-то отдельные элементы или операции, чтобы потенциально меньше возникло проблем где-то в середине процесса изготовления. И наконец-то пробуют сделать первую партию пластин. Помните, я упоминал, что для изготовления одного МЭМСа (или одной партии) может потребоваться несколько пластин?
Это чувствительный элемент микромеханического акселерометра, и он не слышал ни о каких планарных технологиях (взято из интернета)
Микроэлектроника построена фактически на планарной технологии. Это когда вы на лицевой стороне пластины последовательно формируете различные слои, что и приводит к изготовлению конечного продукта. В МЭМС так не получится, так как есть всякие подвижные элементы. А чтобы они двигались нужны различные ямы полости над ними, под ними, между ними. Кроме этого все эти подвижные элементы следует располагать в герметичном объеме (чтобы в зазоры размером 2-3 микрометра не попадали твердые частицы в принципе), а в некоторых случаях ещё и нужно поддерживать вакуум!
Так что чтобы сделать одну пластину, нужно запустить минимум 2-3 и помолиться надеяться на чудо. Почему? Потому что может случиться вот это:
Поэтому обычно запускают 10-20 пластин, чтобы на выходе гарантировано получить 1-2 с готовыми изделиями.
Особо неприятно, когда "пластина-шахид" унесла не только свою "жизнь", и необходимо начинать заново (взято из интернета)
После того, как получили хотя бы одну пластину с чувствительными элементами, проводят контроль на зондовой станции, которая тыкается своими иголками зондами в металлические контакты и измеряет электрические параметры (ёмкости, сопротивления). По неким установленным критериям бракуют чипы и появляется карта годных чипов по пластине. Пластину кромсают пилят между чипами, чтобы их отделить друг от друга. После этого годные чипы устанавливают в корпус вместе с электроникой. Микросваркой соединяют чип с электроникой и выводят контакты на корпус. Затем корпус закрывают крышкой и герметизируют. Вот и получили первый датчик МЭМС. Но бывают нюансы, например, датчик давления ставят на штуцер. Дальше начинаются испытания для определения характеристик датчика и степень соответствия с тем, что закладывали в самом начале. Вероятность получить с первого раза даже что-то работающее невысока, а уж чтобы это соответствовало ожиданиям, ещё ниже. Поэтому идёт поиск виноватых проблем и их решений, чтобы добиться нужных характеристик изделий. Корректируют конструкцию, топологию, технологию, фотошаблоны, то есть идет нормальный итерационный процесс.
На этом пожалуй завершу. Что-то я мог упустить, что-то опустил специально. Получилась простыня, я честно старался написать ёмко, но не смог, не получилось.
















