Млечный Путь над обсерваторией, 10 ноября 2023 года
Оборудование:
-фотообъектив Sigma AF 4.5mm f/2.8 EX DC HSM Circular Fisheye
-камера Canon 550Da
Место съемки: Кавказская горная обсерватория ГАИШ МГУ, Карачаево-Черкесская Республика.
По ссылке также доступна сферическая панорама 360°.
Моя астротелега: t.me/ruslan_ilnitsky
Эмиссионная туманность в созвездии Цефей (NGC 7822)
Привет! Эта фотография (как и все другие в серии постов про астрофото) была получена на самодельной удаленной обсерватории в пригороде Оренбурга, управление которой осуществляется через интернет.
То, что вы видите на этом фото - cтолбы из газа и пыли, а также молодые, горячие звезды. Эта область звездообразования находится на краю гигантского молекулярного облака в северном созвездии Цефея, на расстоянии около трех тысяч световых лет от нас.
На этом красочном небесном пейзаже в туманности видны ярко светящиеся края структур с удивительными формами. Красные и синие цвета тут - это светится ионизированный газ (водород, кислород и сера). Он подсвечивается молодыми и горячими звездами на переднем плане фотографии.
На другом краю фотографии мы наоборот видим темные области туманности. Тёмные туманности представляют собой очень холодное и разреженное газопылевое облако, заметное только благодаря нечёткому силуэту на фоне видимого света более удалённых объектов.
Картинка составлена из изображений, полученных с помощтю узкополосных фильтров, и показывает излучение атомов кислорода, водорода и серы соответственно синим, зеленым и красным цветами. На фото ниже - астрономическая камера и колесо с узкополосными фильтрами, с помощью которых было получено изображение:
Энергию для свечения атомов газовых облаков дает мощное излучение горячих звезд, которое вместе с их сильными ветрами также формирует плотные столбы и разрушает их. Оно создает и характерную каверну размером в несколько световых лет около центра облака, из которого возникли звезды. Звезды все еще образуются внутри столбов при гравитационном сжатии, однако столбы постепенно разрушаются, и формирующиеся звезды в конце концов будут отрезаны от запасов вещества, из которого они были созданы.
Размеры этой туманности просто огромны! Туманность во много-много раз превышает размеры нашей Солнечной системы. И скорее всего, эта туманность образовалась в результате взрыва первых звезд в нашей ранней Вселенной. Теперь остатки этой звезды дали жизнь многим другим звездным системам.
🔭 Характеристики и используемое оборудование:
Экспозиция: 12 часов 10 минут
Сделано кадров: 73
Монтировка: Sky-Watcher HEQ5 Pro
Телескоп: Sky-Watcher BK P2001
Камера: ZWO ASI 1600mm
Гид: 50mm + ZWO ASI 120mm
Место съемки: пригород Оренбурга
🌌 Сделано кадров:
H: 270 минут (27 кадров)
O: 240 минут (24 кадра)
S: 220 минут (22 кадра)
Про увлечение космосом и обсерваторию с 2017 пишу тут: Ближний Космос, более подробно и выборочно буду продолжать писать на пикабу.
P.S. NGC - сокращенно от New General Catalogue of Nebulae and Clusters of Stars, то есть это новый общий каталог туманностей и звёздных скоплений. Он наиболее известный каталог в любительской астрономии, содержащий объекты далёкого космоса. Соответственно 7822 - это номер объекта в этом каталоге.
Всем добра 👋
Калязинская радиоастрономическая обсерватория
Калязинская радиоастрономическая обсерватория, она жерадиотелескопТНА-1500К, диаметром 64 метра. Это один из крупнейших радиотелескопов в мире!
Был введён в эксплуатацию в 1992 году и активно используется по сей день.
На данный момент Калязинский ТНА-1500К с 2016 года участвует в проекте ESA и Роскосмос ExoMars - совместном российско-европейском проекте по исследованию Марса с орбиты искусственного спутника и поверхности планеты.
Пожалуй одно из самых завораживающих творений человеческого труда, что мне приходилось встречать!
Также, если интересно, то эти, да и другие фото можно глянуть ещё здесь)
Как получаются цветные астрофотографии и есть ли в космосе цвет?
Привет, ребятки Пикабушники! Я тут изучаю Вселенную (или она меня) с помощью самодельной обсерватории и уже несколько раз выкладывал фотографии разных объектов дальнего космоса. Эти фотографии делаются не на простой фотоаппарат, а на специальное оборудование - любительский телескоп и самодельную астробудку, где все это расположено:
И сегодня я бы хотел рассказать о том, как и с помощью какого оборудования делаются фотографии дальнего космоса и почему фотографии изначально получаются черно-белыми:
А на пост-обработке астрофотографии обретают цвет, например, вот так:
Туманность "Хобот слона" или IC 1396A - яркая часть эмиссионной туманности и молодого звёздного скопления IC 1396 в созвездии Цефея.
Наверное ни для кого не секрет, что такие крутые обсерватории как Hubble или James Webb Space Telescope тоже получают исходные кадры астрономических объектов в черном-белом цвете.
Почему так? Ведь и в нашей самодельной обсерватории, да и в других профессиональных используются специальные черно-белые камеры. Конечно, на любительских телескопах можно делать фото и на обычный зеркальный фотоаппарат, но почему именно черно-белые камеры?
На это есть несколько причин:
Астрономические камеры обычно используются для наблюдения слабых и далеких объектов в космосе. Черно-белые камеры могут иметь более высокую чувствительность к свету, чем цветные камеры, потому что они могут собирать больше света на одном и том же сенсоре. Это позволяет обнаруживать более слабые объекты и собирать больше данных для научных исследований.
Разрешение: черно-белые камеры могут обеспечивать лучшее пространственное разрешение, что важно для астрономических наблюдений. Это позволяет получать более детальные изображения объектов в космосе и проводить более точные измерения.
Фильтры: для получения цветных изображений можно использовать специальные фильтры, которые пропускают только определенные диапазоны цветов. Это позволяет создавать цветные изображения из черно-белых фотографий, но с более гибким контролем над цветами и диапазонами, чем при использовании цветных камер.
Научные исследования: для многих астрономических исследований, особенно в области астрономии, черно-белые изображения предоставляют более полезные и точные данные. Например, при изучении изменений яркости звезд, галактик или планет черно-белые изображения могут быть предпочтительными.
Поэтому в нашей самодельной обсерватории установлена специальная астрономическая черно-белая камера с колесом фильтров. Вот она (точнее это та, которая была установлена ранее):
Эта камера оснащена специальным "холодильником" - элементом Пельтье с кулером, все это позволяет охлаждать сенсор камеры с разницей в 40 градусов. Охлаждение значительно снижает уровень шума матрицы на длительных выдержках (сейчас одиночные кадры снимаются с 10-минутной выдержкой).
Перед камерой установлено черное круглое "колесо". Вот внутренности этого колеса:
В эти свободные пазы устанавливаются специальные фильтры, которые пропускают свет только с определенной длинной волны. Фильтры выглядят вот так:
Колесо имеет интерфейс подключения USB и привод, который позволяет вращать фильтры для автоматической смены, чтобы не приходилось переключать их руками. А вот так уже выглядит "заряженное" колесо с уже установленными фильтрами:
В сборе, вся эта установка (астрономическая камера + колесо фильтров) выглядит вот так (на фото ниже). Эта камера установлена в фокусировочный узел телескопа и готова улавливать слабые фотоны наблюдаемых галактик и туманностей. Те самые фотоны, которые путешествовали во Вселенной от десятков тысяч до десятков миллионов лет, прежде чем попасть на сенсор нашей камеры.
На переднем плане установленная астрономическая камера ASI 1600mm с колесом фильтров. Красная коробочка за ней - это автоматичский фокусер.
Для чего нужны эти фильтры? Астрономические объекты испускают свет на определенных длинах волн, и фильтры могут быть использованы для выделения этих спектральных линий. Например, с помощью гелиевых линий можно изучать планетарные туманности, а с помощью водородных альфа-фильтров можно наблюдать газовые облака в галактиках. Каждый фильтр позволяет сделать кадры и заснять информацию о том свете только определенной длины волны.
Туманность Гантель (М27) и сумма одиночных кадров через разные астрономические фильтры. Фотографии сделаны на камеру ASI 1600mm.
На фото выше - фотография одной и той же туманности, которую я сделал через 7 разных фильтров (все, которые установлены в колесе фильтров). Вы можете увидеть разное количество деталей, которые получаются в зависимости от установленного фильтра перед камерой. Последняя фотография в этой группе - это сумма кадров, то есть полноценное цветное изображение. Как оно получилось?
В системе аддитивной цветовой смеси, такой как RGB (красный, зеленый, синий), используется три основных цвета. Эти три цвета считаются основными, потому что путем комбинирования их различных пропорций можно создать широкий спектр цветов. В системе RGB красный, зеленый и синий считаются первичными цветами, а другие цвета создаются путем смешивания или добавления этих цветов в различных пропорциях.
Даже пиксели матриц ЖК-экранов состоят из множества элементов, которые включают в себя три основных цвета. У вас тоже рябь в глазах от этой картинки? :)
Итак, цветные астрофотографии создаются путем объединения черно-белых изображений, полученных с использованием различных фильтров. Упрощенно процесс выглядит так:
Захват черно-белых изображений. Делаем несколько черно-белых фотографий одного и того же объекта или участка неба, используя разные астрономические фильтры.
Обработка изображений первоначальных кадров. Выравнивание и регистрация изображений, убираем шум и добавляем калибровочные кадры.
Комбинирование изображений. Черно-белые изображения, полученные с различных фильтров, затем комбинируются для создания цветного изображения. Каждому из черно-белых изображений присваивается цвет, соответствующий цветовому фильтру, с которым оно было получено. Например, изображение, полученное с фильтром, настроенным на красный цвет, будет отображено красным.
Создание цветного изображения: Цветные каналы из всех черно-белых изображений объединяются в одно окончательное цветное изображение. Это может быть выполнено с использованием специализированного программного обеспечения для обработки изображений.
Калибровка цветов: Иногда требуется калибровка цветов для того, чтобы добиться точных цветовых балансов и устранения возможных искажений. Это может включать в себя настройку цветовых насыщенностей и коррекцию цветовых кривых.
Другими словами, от того, на какие каналы (RGB) мы кинем черно-белые кадры различных групп фильтров, будет зависеть итоговая палитра изображения. Вот для примера одно и тоже изображение туманностей, собранное из одних и тех же исходников (сумма кадров в SII фильтре - смотрите выше), но в разных палитрах:
Напишите комментарий - какой вариант вам кажется лучше?
Но означает ли это, что все астрофото - фотошоп? И да, и нет! В космосе объекты не имеют такого цвета, как мы привыкли видеть его на Земле. Отсутствие атмосферы и различных источников освещения в космическом пространстве делает его визуально монохромным (для глаза, но не для камеры, которая умеет накапливать фотоны).
Например, вот фотография одной туманности, которую мы снимали 5 лет назад еще на обычный зеркальный фотоаппарат:
Или вот большая туманность Ориона (М42) - она тоже была получена с помощью нашего телескопа, к которому была подсоединена цветная зеркальная камера. На фотографии отлично проявились цвета и при чем не было никаких манипуляций с каналами. Да, такая фотография получается, когда мы делаем множество кадров, а потом соединяем их, но никакую палитру при сложении кадров не используем.
При этом весь процесс съемки выглядел вот так, как на фото ниже. Наш телескоп Sky-Watcher 250мм, два ноутбука - один управляет монтировкой, ко второму подключена камера, чтобы не приходилось каждый раз нажимать на кнопку спуска затвора.
А теперь давайте сравним с точно таким же изображением туманности Ориона (М42), фотографию которой мы уже получили на специальную астрономическую черно-белу камеру через фильтры:
Цвет сильно отличается, но это мы уже экспериментировали с расцветкой и получили не совсем естественные цвета. Тут уже на усмотрение художника (фотографа, который обрабатывает данные с телескопа). Какой вариант расцветки туманности вам нравится больше?
Так что цвет в космосе все-таки есть, не такой, какой мы видим на астрономических фотографиях, но частично все же похожий. Сейчас в обсерватории у нас новая астрономическая камера с фильтрами. Она тоже черно-белая, но гораздо более современная. С помощью нее обсерватория сейчас снимает более детализированные изображения.
Есть общепринятые астрономами варианты расцветок астрономических объектов, которыми пользуются все астрофотографы. Например - палитра Хаббла, или еще одна палитра Natural Narrowband. В ней используются более сложные формулы получения цветного изображения, например:
R: SII*(255/255) + OIII*(0/255) + Ha*(211/255)
G: SII*(0/255) + OIII*(254/255) + Ha*(65/255)
B: SII*(0/255) + OIII*(179/255) + Ha*(250/255)
Огромный минус черно-белой камеры перед цветной - нужно гораздо больше времени для съемки объекта. Например, чтобы получить просто цветное изображение какой-нибудь галактики, для ч/б камеры нужно снять кадры через три фильтра - red, green, blue. В цветной достаточно просто сделать такое же количество кадров, как и через один фильтр ч/б камеры, то есть в три раза меньше времени.
Я в дальнейшем буду выкладывать остальные фотографии, которые уже были сделаны на обсерватории и те, которые мы получаем прямо сейчас. Кстати, мне как-то писали, что это все враки, и все астрофотографии это фотошоп. Так вот, обсерватория сохраняет весь отснятый материал на облачное хранилище, где любой желающий может воспользоваться данными для чего угодно:
На этом, пожалуй, закончу. Хочу лишь добавить, что каждая астрофотография - это трудоемкое занятие, результат работы телескопа несколько часов, а потом еще и сложение кадров, постобработка занимает тоже много времени. Но это того стоит - ловить древние фотоны очень увлекательное занятие.
Фух, спасибо, что дочитали! Следующий мой пост будет раскрывать мою идею постройки народной обсерватории, расскажу как она управляется, покажу что сделал, чтобы можно было смотреть результаты ее работы и как поучаствовать в проекте любому желающему.
Спасибо за интерес к космосу! На пикабу я буду стараться писать общие посты, в весь мой дневник тут: Ближний Космос. Я его веду с 2017 года и там довольно специфичный контент, не для всех будет интересно 🙂
Всем добра, пикабутяне 👋
Туманность Гантель - будущее нашего Солнца
Привет, уважаемые Пикабушники! Продолжаю публиковать астрономические фотографии, которые были сделано на самодельной обсерватории в пригороде Оренбурга. Сегодня я хочу поделиться с вами одной интересной фотографией туманности M27, известную также как туманность Гантель. Это одна из наиболее известных планетарных туманностей, и ее внешний вид действительно впечатляет.
Туманность M27 находится в созвездии Лисичка и считается одной из самых ярких планетарных туманностей на небе. Она действительно выглядит, как поднятая над головой гантель, готовая использоваться для поддержания формы. На самом деле, это звездный обломок, который в недалеком космическом будущем станет местом для совершенно иных процессов.
Туманность M27 - это типичный представитель планетарных туманностей. Когда звезда подходит к концу своей жизни и исчерпывает запасы термоядерного горючего, она начинает отбрасывать свои внешние слои в космос. В результате этого процесса, внутри туманности остается горячий белый карлик, светящийся в рентгеновских лучах. Это невероятное зрелище позволяет нам заглянуть в будущее нашего собственного Солнца, когда оно завершит свой жизненный цикл.
Астрономия - это путь к пониманию прошлого, настоящего и будущего Вселенной. Наблюдение и фотографирование таких объектов, как туманность M27, помогает нам расширить горизонты знаний и позволяет заглянуть в самые глубокие уголки космоса.
🔭 Характеристики и используемое оборудование:
Экспозиция: 6 часов 10 минут
Сделано кадров: 74
Монтировка: Sky-Watcher HEQ5 Pro
Телескоп: Sky-Watcher BK P2001
Камера: ZWO ASI 1600mm
Гид: 50mm + ZWO ASI 120mm
Место съемки: пригород Оренбурга
🌌 Сделано кадров:
O: 110 минут (22 кадра)
R: 30 минут (6 кадров)
H: 120 минут (24 кадра)
S: 45 минут (9 кадров)
L: 25 минут (5 кадров)
B: 20 минут (4 кадра)
G: 20 минут (4 кадра)
Спасибо за интерес к космосу! Я веду небольшой дневник о жизни обсерватории с 2017 - Ближний Космос, там довольно специализированно все, поэтому не выкладываю все тут. Не думаю, что будет всем интересно 🙂
Всем добра 👋
Путешествие в туманность Пузырь (NGC 7635)
Привет, друзья пикабушники! Сегодня я приглашаю вас в захватывающее путешествие сквозь космос, чтобы познакомиться с туманностью Пузырь, фотография которой была получена на самодельной обсерватории! :)
Туманность Пузырь (NGC 7635) - это одно из самых захватывающих и загадочных явлений во Вселенной. Эта туманность находится в созвездии Кассиопея и была открыта в 1787 году Уильямом Гершелем.
Получив свое название благодаря своей форме, напоминающей огромный пузырь, Туманность Пузырь - это область, где новые звезды зарождаются и блистают с невероятным свечением. Молодые звезды внутри туманности испускают интенсивное ультрафиолетовое излучение, которое заставляет окружающие газы светиться и создает это волшебное зрелище.
Смотреть на звезды и туманности - это не только увлекательное хобби, но и способ взглянуть на наш мир с новой точки зрения.
🔭 Характеристики:
Экспозиция: 9 ч. 5 мин.
Монтировка: Sky-Watcher EQ5 Pro
Телескоп: Sky-Watcher BK P2001
Камера: ZWO ASI 1600mm
Гид: 50mm + ZWO ASI 120mm
🌌 Сделано кадров:
H: 215 мин (43 кадра)
O: 190 мин (38 кадров)
S: 60 мин (12 кадров)
R: 20 мин (4 кадра)
B: 20 мин (4 кадра)
L: 20 мин (4 кадра)
G: 20 мин (4 кадра)
P.S. Фотография в этом посте старая, но я начну выкладывать весь архив, чтобы дойти до последних сделанных фотографий и показать прогресс :). Я веду свой блог с 2017 г. в Telegram - Ближний Космос. Никому не будет интересно. Не переходите туда 🙂
Всем добра 👋