От лица группы исследователей шаровой молнии, обращаюсь к Вам с просьбой. Кто реально сталкивался с таким явлением или Ваши родственники. Пожалуйста, опишите максимально подробно Ваш случай в комментариях, хотя бы что вспомните. Это очень поможет продвинуться дальше при исследованиях. Благодарю!
А может кто-то видел это видео или встречал эту теорию?
Лет много назад, но Ютуб уже был, мне там попалось видео (вообще не помню русское или иностранное) с теорией объяснения эффекта шаровой молнии. Суть теории (могу быть не точен, т.к. было давно): гранит при большом давлении в наэлектризованном воздухе при попадании в него электроразряда как раз выдаёт шаровые молнии. Мол, чаще всего максимально достоверные факты с "шариками" встречались где-то у гор/плато и т.п. (кстати, в статье как раз описывается "секретное видео" с гор Тибета и в спектре "шарика" там присутствует много кремния). И в видео даже было лабораторное моделирование! В камере сжали кусок гранита, что-то ещё с ним сделали, и в замедленной съёмке было видно, как от него отлетали искры и маленькие-маленькие шаровые молнии.
Сейчас нифига поиском не могу найти, но может кто-то тоже встречал подобное?
Шаровую молнию учёные (особенно физики) ужасно не любят.
Шаровая молния влетает в дом гравюра 1901 года
Почему? Потому что в науке чётко прописано, что можно, а чего нельзя. Любое явление, эффект или объект (а также их свойства) для «научности» должны быть:
а) чётко и неоспоримо зафиксированы в природе;
б) смоделированы в лаборатории в ходе опытов и экспериментов;
в) описаны теоретически с помощью формул и чисел;
г) полученные формулы и числа должны (хотя бы «чуть-чуть») совпадать с теми, которые были зафиксированы в природе и во время экспериментов.
Шаровая молния атакует церковь в Уидекомбе в 1638 году. Старинная гравюра
По таким вот строгим критериям учёные отбрасывают как ненаучные самые разные вещи и явления. И вечный двигатель, и НЛО, и привидения. Но вот шаровую молнию отбросить не получается, потому что есть не только многочисленные рассказы очевидцев, записи на киноплёнку и видеозаписи, но и экспертные расследования, и даже самая настоящая (вот уж «научнее не бывает») спектрограмма.
Этот случай произошёл не так давно, в 2012 году – китайские учёные на Тибетском плато изучали обыкновенные молнии – в природных условиях – с помощью различных приборов, в том числе спектрометров. Неожиданно на видео (которое до сих пор засекречено) и на запись спектрографа (которая опубликована) попала самая настоящая шаровая молния. По описаниям очевидцев – серьёзных учёных! – «сразу же после удара обычной молнии вдруг появился сияющий белый шар, размерами приблизительно около 5 метров. Он проплыл горизонтально расстояние примерно в 10 метров, после чего сменил цвет на красный и начал подниматься вверх».
Спектр шаровой молнии полученный китайскими учеными в 2012 году
И вот тут у учёных начинаются большие проблемы – очень серьёзные! Потому что если пункт «А» («доказанно существует и наблюдается в природе») для шаровой молнии выполняется, то остальные три – нет! Получить шаровую молнию в лаборатории учёным пока удавалось только в научно-фантастической литературе (например, «Замок ведьм» Александра Беляева). Более того – пока не удалось создать и более-менее убедительную теорию для этого явления, хотя этим занимались крупнейшие учёные мира (скажем, Пётр Леонидович Капица, знаменитый физик, лауреат Нобелевской премии). И вот из-за этого учёные шаровую молнию не любят. Учёные вообще не любят вещи, которые не могут объяснить – хоть студентам, хоть журналистам, хоть начальству. «Как летать с Земли до звёзд, как поймать лису за хвост, как из камня сделать пар» – могут. А вот с шаровой молнией – беда...
Каковы её свойства?
Что на текущий момент учёным удалось узнать достаточно достоверно из наблюдений? Довольно многое:
Размеры шаровой молнии – от теннисного мячика до шара диаметром в несколько метров.
Время существования – от нескольких секунд до нескольких минут.
Цвет – самый разный (белый, жёлтый, синий, красный), иногда постоянно изменяющийся.
Плотность – меньше воздуха.
«Смерть» – иногда просто растворяется в воздухе, иногда взрывается, причиняя серьёзные разрушения
Взаимодействие с предметами – иногда плавит или поджигает, иногда отбрасывает в сторону на много метров, иногда проходит насквозь.
Какова энергия, содержащаяся внутри шаровой молнии? В 1936 году английский физик Брайан Гудлет привёл совершенно уникальный случай: средних размеров (с грейпфрут) шаровая молния залетела в небольшой бочонок с водой, стоявший на кухне. Вода, только что принесённая из колодца, немедленно начала кипеть. Даже спустя 20 минут после происшествия вода была настолько горячей, что в неё нельзя было опустить руку. Поскольку физику было известно количество воды и её изначальная температура, то рассчитать энергию «по школьным формулам» не составило никакого труда: примерно 100 киловатт-часов, или 360 мегаджоулей на 1 килограмм массы. Это очень много. Достаточно сказать, что шар такого же размера, наполненный нитроглицерином (очень мощным взрывчатым веществом), содержит примерно в четыре раза меньше энергии...
Что касается взаимодействия с веществом – то тут всё ещё загадочнее. В том же самом наблюдении Гудлета сообщается, что шаровая молния, прежде чем залететь в бочонок с водой, пережгла металлические телеграфные провода и сильно опалила деревянную оконную раму. Температура плавления стали, из которой сделана проволока, в среднем составляет +1400 градусов. Значит, молния была примерно такой же температуры? Но тогда она должна была не «опалить» деревянную раму, а поджечь. Странно... Однако всё-таки в этом случае молния «как и положено» взаимодействует с веществом: плавит металл, поджигает древесину, кипятит воду. Среди других примеров «взаимодействия» есть и более «агрессивные»: шаровая молния может при взрыве перевернуть многотонный трактор, выломать в помещении все двери, сломать, как спичку, толстое бревно...
Но были и другие случаи! Скажем, «случай Дженнисона», описанный в 1963 году. Или «случай Аккуратова», описанный в 1946 году. И тут, и там шаровая молния каким-то неизвестным образом сумела пройти сквозь металлическую толстую стенку и попасть внутрь самолёта, летящего на большой высоте! При этом впоследствии, во время расследования, на стенках не было обнаружено никаких – ни проплавленных, ни просверленных, ни «прогрызенных» отверстий. Умение проходить сквозь стены – про такое знает квантовая физика (физики называют это «туннельный эффект»), но чтобы такое происходило в «большом» макромире?! А наблюдения лётчиков (людей психологически подготовленных и вовсе не склонных фантазировать) говорят обратное – сперва молния была снаружи самолёта, пролетела вдоль крыла к кабине, а потом вдруг оказалась внутри (где устроила пожар и чуть не убила радиста).
Обложка журнала Техника Молодежи 1982 год с рассказом о случае 1946 года
Одна ли она?
Удивление вызывает «разнообразие» поведения шаровой молнии при взрыве. Если мы, допустим, возьмём две тротиловые шашки одной и той же массы, то и взорваться они должны с одной и той же силой. А тут при наблюдениях всё совершенно иначе – в одном случае шаровая молния, попав в деревянную мачту корабля, «разносит её в щепки и поджигает весь корабль целиком». А в другом – залетев под кресло радиста в самолёте, взрывается, разносит в куски рацию, плавит (!) металлическое основание сиденья, но сам радист при этом каким-то чудом остаётся цел и невредим.
Столько же вопросов вызывает поведение шаровой молнии при контакте с металлическими объектами или электрическими проводами. Обычная молния, благодаря своей электрической природе, как известно, «любит» именно металлические предметы (на этом основан принцип работы громоотводов). В мультфильме «Ничуть не страшно» мальчики Коля и Юра спасаются от шаровой молнии именно благодаря свисающему со столба электрическому проводу.
Но вот с настоящей шаровой молнией – не вполне так. Иногда она действительно движется в сторону электрических проводов или антенн, а иногда – проплывает мимо них абсолютно «равнодушно», и даже наоборот:
...В нашей палатке – а она была закрыта – лежали радиостанция, карабины и альпенштоки. Но шаровая молния не тронула ни одного металлического предмета, казалось, она «охотилась» только на людей...
Кстати, «вдогоночку». А вообще – насколько и чем опасна шаровая молния для человека? И здесь данные тоже есть самые противоречивые. Многим знаком хрестоматийный случай гибели в Петербурге в 1753 году от удара шаровой молнией физика Георга Рихмана, друга Ломоносова. На лбу учёного нашли «всего лишь красное пятнышко величиной с мелкую монету». Но вот упомянутый нами только что случай, произошедший с группой альпинистов на Северном Кавказе в 1978 году – там шаровая молния «размером с мячик для тенниса» оставляла на теле «страшные глубокие раны, буквально выдирая мясо до костей» (тогда 4 человека получили серьёзные травмы и остались инвалидами, а один погиб).
Гибель Георга Рихмана от шаровой молнии в 1753 году
Именно поэтому многие исследователи всерьёз задаются вопросом – а действительно ли мы имеем дело с одним и тем же явлением? Реагирует шаровая молния на металл – или НЕ реагирует? Прожигает предметы – или проходит их НАСКВОЗЬ? Какой запах остаётся в помещении после взрыва шаровой молнии – запах ОЗОНА или запах СЕРЫ (да-да, и здесь показания свидетелей тоже бывают самые разные)? Или шаровых молний вообще не одна – а две (или три, или даже больше?). Схожих внешне, но обладающих совершенно разными свойствами?
А молния ли это?
«Шаровая молния» – устоявшийся, привычный термин. И в самом деле большинство свидетельств описывают появление шаровой молнии именно во время грозы, то есть как бы подразумевают «родство» молнии обыкновенной и молнии шаровой. Однако «большинство» – совершенно не значит «все». Возьмём тот же самый случай в самолёте, произошедший в 1946 году – тогда шаровая молния проникла в самолёт зимой, при забортной температуре минус пятнадцать градусов, и никаких признаков грозы не наблюдалось на сотни километров вокруг! Но тем не менее – шаровая молния была, её прекрасно видели второй пилот и оба штурмана...
Второй момент. Обычная молния – это раскалённая добела плазма с температурой порядка 30 тысяч градусов, здесь физики друг с другом не спорят. Но и гаснет («высвечивается») обычная молния, как вы знаете, очень быстро. Шаровая же молния может существовать длительное время – несколько десятков секунд, а то и несколько минут! Учёным очень хорошо знакомо такое явление, как «высвечивание» плазменного «огненного шара» при взрыве ядерной или водородной бомбы. Ещё академик Капица справедливо указывал – если огненный шар диаметром 150 метров высвечивается за 10 секунд, тогда «плазменная» шаровая молния диаметром 10 сантиметров должна высветиться всего лишь за сотую долю секунды! А закон сохранения энергии никто не отменял – если вытащить из детской игрушки батарейку, она перестанет работать. А вот шаровая молния, выходит, «в батарейке не нуждается»...
Кстати, единственное (пока) исследование шаровой молнии спектрометром в 2012 году показало, что в её составе есть железо, кремний, кальций, кислород, алюминий, фосфор и титан. То есть на спектр «обыкновенной» молнии спектр шаровой молнии решительно не похож – она «из другого вещества». Так что весьма вероятно, что «шаровая молния» – это вовсе не «молния»... Но тогда что это?
Возможные гипотезы.
Почему шаровая молния круглая? Скорее всего, по той же самой причине, почему круглую форму приобретают капли воды в невесомости. По той же самой причине, почему при взрыве атомной бомбы образуется плазменный шар (а не куб и не пирамидка). Шаровая молния – просто по законам физики – как бы «стремится» тратить как можно меньше энергии на поддержание собственной формы, а потому и превращается в плавающую в воздухе шарообразную «каплю». Но... это только одно из многих объяснений.
Почему летает? Вот уж точно не потому, почему летает воздушный шар. Шар, наполненный горячим воздухом (или состоящий из раскалённого вещества, как при взрыве атомной бомбы), по тем же самым законам физики обязан полететь – но полететь строго вверх! Как пузырёк воздуха внутри открытой бутылки с газированной водой. А движение шаровой молнии может быть очень сложным – она может висеть неподвижно, подниматься, опускаться, двигаться быстрее или медленнее, причём «сама по себе», безо всякого там «ветра». Движение шаровой молнии во время трагедии 1978 года очевидец описывал так:
…Странный это был визитёр. Казалось, он сознательно и злобно, методически, соблюдая одному ему известную очерёдность, раз за разом проникал в наши спальные мешки и жёг нас, предавая страшной пытке...
Как устроена? Самая сложная часть вопроса. Все существующие теории (и их создателей) можно разделить на несколько больших групп:
Группа 1 – «иллюзионисты»: Шаровая молния – это своего рода устойчивая галлюцинация, вызванная воздействием электромагнитных волн на человеческий мозг. Так легче всего объяснить, скажем, «прохождение шаровой молнии сквозь стены». Или тот же случай с альпинистами в 1978 году объясняется тем, что спортсмены, «загипнотизированные» галлюцинацией, сами себе наносили раны... Минусы таких теорий: галлюцинации не могут плавить стекло и железо, а также переворачивать трактора и разносить в щепки корабельные мачты.
Группа 2 – «традиционалисты»: Шаровая молния – это устойчивый объект шарообразной формы, наполненный неизвестным науке веществом. Сам объект может быть устроен по-разному – и как некая «губка» из плазмы, и как некий быстро вращающийся «вихрь», переносящий раскалённое содержимое. Здесь минус – обычный закон сохранения энергии: из такого объекта энергия должна «перетекать» в окружающую среду, причём очень быстро. Да и сквозь стены такой пройти уже не сумеет.
Группа 3 – «волновики»: Шаровая молния – это особая стоячая электромагнитная волна (математики и физики называют такие удивительные волны-одиночки «солитонами»), которая и подпитывает энергией «снаружи» сгусток плазмы – «резонансную область». Минусы здесь – наблюдаемые явления, тот же «опыт Гудлета». Такая стоячая волна никаким образом не смогла бы вскипятить бочонок с водой (это противоречит всем законам физики сразу). Ну и взрыв такого «резонанса» по расчётам – просто хлопок воздушного шарика. Разнести на куски прочный предмет он не способен.
Группа 4 – «пространственники»: Шаровая молния – это результат «прокола» нашего пространства-времени, как бы проникновения в нашу вселенную другой вселенной. Представьте себе шар или цилиндр, который проходит сквозь тонкий лист бумаги – на листе «из ниоткуда» возникает точка, которая превращается в круг, какое-то время «живёт» на листе, а затем снова исчезает в никуда. Взрыв шаровой молнии – результат действия силового поля, возникающего на границе тех самых разных вселенных. Минусы – столкновение двух вселенных, по идее, должно не то что бочонок воды вскипятить, а как минимум пару галактик разнести в клочья... Но... кто знает?
Группа 5 – «биологи»: Шаровая молния – это ни на что не похожая и крайне редко наблюдаемая атмосферная форма жизни (у некоторых исследователей – даже разумной жизни). Эта жизнь питается электричеством или электромагнитными волнами (как «волновики» в одноимённом фантастическом рассказе Фредерика Брауна), но при определённых обстоятельствах может стать видимой для людей и взаимодействовать с «обыкновенной» материей. Этакий вариант рассказа Виктора Драгунского «Он живой и светится», только для взрослых...
Кстати, вам какая теория «устройства шаровой молнии» нравится больше? В любом случае, это явление природы, до сих пор учёными не разгаданное...
Все мы любим грозу. Грохочет гром, дождь льет как из ведра, сверкают молнии... И каждому ребенку известно, что молния всегда бьет сверху вниз. Ведь так?
Но, как оказывается, вообще-то не всегда. Еще в далеком 2001 году сканировавшие грозовое небо ученые из обсерватории Аресибо в Пуэрто-Рико заметили странное явление - молния внезапно вырвалась из облака и устремилась прямо в космос! Тут стоит отметить, что сам по себе механизм формирования и распространения молнии до сих изучен достаточно слабо, но есть устоявшаяся теория о том, как они вообще появляются.
Обычно это происходит так: на дне грозового облака накапливается отрицательный электрический заряд, и, когда количество накопленной энергии превышает определенный порог, высвобождается разряд, который движется в сторону земли. При этом молния, проходя сквозь воздух, очень быстро нагревает его примерно до 30.000 градусов цельсия. В результате такого быстрого нагрева воздух мгновенно расширяется, а затем резко сжимается, что вызывает ударную волну, которую мы можем отлично слышать и называем громом.
И всё-таки, как тогда молния может бить вверх? Чёткого ответа на этот вопрос тоже ещё нет, но есть кое-что получше: ещё одна теория!
Заключается она в том, что заряд может скапливаться не только на дне облака - в верхней его части, в противовес, собираются положительно заряженные частицы, и именно они при сильных порывах ветра устремляются не к земле, а наоборот, ввысь, долетая даже до космоса.
Этот феномен называют "Обратной молнией"; его высота достигает нижней границы ионосферы (40-70км). Событие это возникает в основном в тропических регионах, и оно очень редкое. Настолько редкое, что его почти невозможно застать, не то что запечатлеть на фото - именно поэтому снимки с МКС можно назвать по-настоящему уникальными.
Учёные из Всемирной метеорологической организации (ВМО) при ООН зафиксировали самый длинный молниеносный разряд в истории наблюдений, используя данные геостационарного спутника. Этот уникальный природный феномен произошёл 22 октября 2017 года и охватил территорию протяжённостью 829 километров с небольшой погрешностью около восьми километров. Разряд простирался от Восточного Техаса до окрестностей Канзас-Сити в штате Миссури, что значительно превзошло предыдущий рекорд длины молнии в 768 километров, установленный пятью годами ранее.
Данные для этого открытия были получены со спутника GOES-16, принадлежащего Национальному управлению океанических и атмосферных исследований США (NOAA). Этот современный геостационарный спутник оснащён высокоточным сенсорным оборудованием, позволяющим ежедневно фиксировать около миллиона молниеносных разрядов по всему земному шару. Сенсоры GOES-16 способны с высокой точностью определять не только местоположение каждого разряда, но и измерять его длину и продолжительность, что делает спутник незаменимым инструментом для мониторинга атмосферных явлений.
Снимок спутника GOES-16, на котором запечатлена рекордная молния
Молния длиной 829 километров стала настоящим прорывом в метеорологии, поскольку ранее считалось, что разряды такого масштаба невозможны. Это открытие расширяет наши знания о природе грозовых явлений и механизмах формирования молний. Учёные предполагают, что столь протяжённая молния могла возникнуть благодаря уникальным атмосферным условиям, включая наличие мощных восходящих потоков воздуха и обширной грозовой системы, протянувшейся на сотни километров.
Кроме того, использование спутниковых технологий для наблюдения молний позволяет получать непрерывные данные в реальном времени, что существенно улучшает прогнозирование гроз и связанных с ними опасностей, таких как пожары, наводнения и повреждения инфраструктуры. Это особенно важно для обеспечения безопасности населения и минимизации ущерба от природных катаклизмов.
Фиксация рекордной молнии также подчёркивает важность международного сотрудничества в области мониторинга климатических и атмосферных процессов. ВМО и NOAA продолжают развивать и совершенствовать системы наблюдения, что способствует более глубокому пониманию глобальных изменений климата и улучшению методов предупреждения стихийных бедствий.
Таким образом, открытие самой длинной молнии в истории наблюдений стало значительным шагом вперёд в науке о погоде и атмосфере, демонстрируя возможности современных технологий и важность постоянного мониторинга природных явлений для защиты жизни и имущества людей.
Прогуливаясь вдоль линии электропередач в сырую, туманную погоду, можно услышать, как шепчутся между собой провода.
И тут возможны два варианта: либо вы окончательно поехали головой (времена такие нынче, понимаем), либо стали свидетелем коронного разряда – вестника невидимой войны воздуха и электричества. Это он тревожно шипит и потрескивает, а иногда даже светится - не менее тревожным фиолетовым цветом. Не живи мы в век технологий и просвещения, тут могла бы получиться красивая и страшная легенда… Ну да ладно.
Давайте быстро про то, что вообще подразумевается под словом разряд, и почему он похоронный коронный. Значицца, есть два стула – проводник и «непроводник» id est диэлектрик (есть еще третий стул - полупроводник, но мы таких товарищей игнорируем, когда говорим про газы). Если для некоторого электрического поля проложена удобная «дорожка» в виде проводника, он растекается по нему током и никого не трогает. Если же среда для него неблагоприятная и сопротивляется, эл поле либо сдается в попытках прогнать ток через нее, либо все же продирается. Сквозь кровь, пот, слезы и… разряды.
Их бывает несколько видов, в зависимости от их "настроя". Например, тлеющий разряд – чилловый гай, ленивый и не особо агрессивный, со сравнительно низкой плотностью тока. Или есть его противоположность – искровой разряд, та еще истеричка, знакомая нам чаще по мгновенным и мощным вспышкам молнии. Есть еще суровый работяга – дуговой разряд. Но вернемся к "коронному" номеру программы.
Воздух в нормальном состоянии электричество не проводит, являясь диэлектриком. Что не мешает электрическому полю искать пути его «пробития», а делает оно это очень изощренно. Электрическое поле вокруг опор и проводов "стекает" на острые углы и выступы и концентрируется там, создавая «точки силы», места, где напряженность поля выше. Там оно разрывает молекулы воздуха на ионы (т.е. ионизирует) и таким образом насильно создает проводящую среду, по которой потихоньку стравливается, издавая шипение и светясь оттенками синего и фиолетового.
Но человек не был бы человеком, если бы даже строптивые газовые разряды не придумал, как применить в жизни. Тлеющего флегматика он засунул в неоновые лампы вывесок ночных клубов и баров, трудоголика в виде дуги - приспособил для сварки и плавки металла, а искрового холерика - заставил работать в свечах зажигания. И разумеется, для меланхоличного коронного разряда тоже нашлось место, например, в очистке воздуха на предприятиях. Но, как мне кажется, гораздо прикольнее значение коронного разряда в авиации, где контролируемое стравливание напряжения хранит безопасность полетов. Итак, пришло время для истории по мотивам архивов NTSB.
*играет драматичная музыка*
24 декабря 1971 года самолет Lockheed Electra перуанской авиакомпании LANSA, вопреки предупреждениям о сильной грозе, взял курс из Лимы в Пукальпу. На высоте около 6400 метров лайнер закономерно влетел в эпицентр мощного фронта. Если вам кажется, что события развивались по сценарию "нарушаем все, что можно - пронесет", вовсе нет. Ребята ничего не нарушали, просто еще раз взгляните на дату событий и осознайте: тогда молний не особо боялись, так же как когда-то не боялись обледенения.
Самолет считался надежной клеткой Фарадея - металлическим пустотелым проводником, через который разряд побежит и никого внутри не тронет. Ну, иногда локально поджарит корпусню - ничего страшного. И разумеется, на этот раз все произошло ровно наоборот.
В зону стыка левого крыла и фюзеляжа, прямо рядом с топливным баком, ударила молния. Причем не просто ударила, а мощно так ебанула, усиленная накопленным на поверхности самолета зарядом. Дело в том, что каждый самолет в полете – жертва для электричества не только в виде молний, но и статики. Когда корпус лайнера, особенно его нос и кромки крыльев, с огромной скоростью рассекают воздух, сталкиваясь с каплями дождя и частицами пыли, возникает трибоэлектрический эффект.
Помним же приколы с расческой или эбонитовой палочкой? Электроны "вырываются" с поверхности материала при трении, столкновении (или наоборот "прилипают" к ним). Самолет, изолированный от земли, превращается в летающий конденсатор, накапливающий мощный электрический потенциал – десятки, а иногда и сотни тысяч вольт.
И чтобы как-то избавляться от него придумали статические разрядники. Вы сто процентов их видели на самолетах - такие тоненькие стержни на задней кромке крыла. Они искусственно создают те самые точки, где электрическое поле становится настолько сильным, что ионизирует окружающий воздух, позволяя лишнему потенциалу медленно "стекать" в атмосферу постоянным коронным разрядом и не давая напряжению достичь опасного уровня.
Ииии... снижая привлекательность летающего куска металла для удара молнии. Правда, это все равно не спасло рейс 508 из Лимы.
Мы там остановились на моменте, где его мощно приложило молнией, а затем мощно от этой молнии разорвало. Самолет рухнул в амазонскую сельву, разрушившись на куски еще в воздухе, и самое удивительное, что это спасло жизнь семнадцатилетней пассажирке Джулиане Кёпке. Ее вместе с креслом выбросило из фюзеляжа и опустило на плотный полог леса, это смягчило падение (насколько это вообще возможно при сложившихся обстоятельствах) и после 11 дней борьбы за выживание в джунглях она сама нашла помощь, дойдя до лагеря лесорубов. Все остальные пассажиры погибли.
Воспоминания Джулианы о яркой вспышке в левом крыле незадолго до катастрофы стали ключом для следователей, а сама девушка, наряду с Весной Вулович и Людмилой Савицкой вошла в список женщин, которые выжили, буквально упав с небес.
В отчетах о катастрофе указывается примерно такой ход событий:
1. Молния ударила в крыло
2. Очень сильно ударила
3. Всякие микроскопические зазоры, следы краски или коррозия создали локальные участки высокого электрического сопротивления
4. В этих зазорах и щелях появились микродуги (привет, дуговой разряд), раскаленные до тысяч градусов
5. Одна из таких дуг возникла в опасной близости от стенки топливного бака и воспламенила насыщенную парами керосина воздушную смесь над топливом
6. Минус крыло
7. Минус самолет
8. Минус 91 человек
Накопленный же перед этим статический заряд усугубил ситуацию: он добавил свою энергию к разряду молнии, значительно увеличив суммарный ток и температуру дуги. (Все это можно было рассказать в духе войны дугового и коронного разрядов, но я подумал об этом слишком поздно).
Что в итоге? В итоге, к списку событий можно добавить пункт 9 - глобальные изменения авиационных норм. Катастрофа LANSA 508 серьезно перекроила отношения авиации и электричества, причем как с точки зрения конструкции, так и с точки зрения закона. Самым кардинальным решением стала система генерации инертного газа (OBIGGS): теперь воздух, отбираемый от двигателей, проходит через специальные фильтры-генераторы, которые снижают концентрацию кислорода. В таких условиях горение паров топлива становится почти невозможным.
Помимо этого, поставили под контроль всякие "неидеальные соединения". Металлические элементы теперь соединяются с корпусом самолета множеством параллельных проводящих путей - металлизации. Ну, правда, выглядит она далеко не так новучно, как называется, - это просто металлические ленточки, прикрученные повсюду внутри конструкции. Дополнительно, любые детали, где возможно трение или удар, выполняются из искробезопасных материалов, а все остальное зачищается, красится и проверяется сложными процедурами моделирования молний и контролем потенциалов внутри топливных баков.
Авиационные правила США (FAR) и Европы (CS), в частности пункты FAR/CS 25.954 и 25.981, теперь требуют, чтобы топливная система исключала воспламенение паров при любых условиях, включая прямой удар молнии в любую часть самолета, воздействие статического электричества или неисправностей бортовых систем.
Ну а на десерт: требования к эффективности и количеству статических разрядников стали строже. Их изучают, делают эффективнее и устанавливают в больших количествах, чтобы в принципе не особо светиться перед молниями, а только осторожно отсвечивать фиолетовым цветом коронного разряда в темноте. Вот такая небольшая авиационная пасхалка к шипящим ЛЭП.
P.S. Кстати, о легендах. Вообще-то такая существовала у моряков, и вы наверняка про нее слышали. Так вот, в ней тоже идет речь про естественный коронный разряд.
Пара слов о шаровой молнии. Шаровой молнии не бывает, никто никогда не видел, не регистрировал, ни кто никогда не смог воспроизвести, шаровая молния выдумка фантастов, неучей и пьянчуг.
Видел шаровую молнию в начале 90-х. Проводил лето на даче, началась гроза, а моя комната была на втором этаже с балконом. Я вышел на балкон, полюбоваться грозой, а с балкона была видна соседняя деревня на холме и старый храм ( ещё не восстановленный) на колокольне которого в советское время был установлен молниеотвод. И вот я стою, любуюсь стихией и вдруг увидел очень большой, белый светящийся шар плавно подлетающий к колокольне с молниеотводом. Шар подлетел к молниеотводу и исчез, была ли вспышка я не помню, но грохнуло трындец как сильно, вот грохот я запомнил на всю жизнь.
Почему я пишу, что шар был большой, да потому что соседняя деревня была где-то в 1.5км от нас. Подозреваю, что шар был не менее 50см. В диаметре.