Горячее
Лучшее
Свежее
Подписки
Сообщества
Блоги
Эксперты
Войти
Забыли пароль?
или продолжите с
Создать аккаунт
Регистрируясь, я даю согласие на обработку данных и условия почтовых рассылок.
или
Восстановление пароля
Восстановление пароля
Получить код в Telegram
Войти с Яндекс ID Войти через VK ID
ПромокодыРаботаКурсыРекламаИгрыПополнение Steam
Пикабу Игры +1000 бесплатных онлайн игр Собирайте цепочки из трех и более одинаковых фишек, чтобы восстановить величие школы волшебников! Волшебство и захватывающие приключения ждут вас уже с первых шагов!

Волшебный особняк

Казуальные, Три в ряд, Головоломки

Играть

Топ прошлой недели

  • solenakrivetka solenakrivetka 7 постов
  • Animalrescueed Animalrescueed 53 поста
  • ia.panorama ia.panorama 12 постов
Посмотреть весь топ

Лучшие посты недели

Рассылка Пикабу: отправляем самые рейтинговые материалы за 7 дней 🔥

Нажимая «Подписаться», я даю согласие на обработку данных и условия почтовых рассылок.

Спасибо, что подписались!
Пожалуйста, проверьте почту 😊

Помощь Кодекс Пикабу Команда Пикабу Моб. приложение
Правила соцсети О рекомендациях О компании
Промокоды Биг Гик Промокоды Lamoda Промокоды МВидео Промокоды Яндекс Маркет Промокоды Пятерочка Промокоды Aroma Butik Промокоды Яндекс Путешествия Промокоды Яндекс Еда Постила Футбол сегодня
0 просмотренных постов скрыто
116
sdelanounas
sdelanounas
Топовый автор
Сделано у нас

Как Россия создает самые сложные устройства в истории человечества⁠⁠

7 месяцев назад

Как дополнение к этой новости, для лучшего понимания роли России в сложнейшем проекте человечества ITER, да и вообще о реальном весе России в мировой науке, для понимания тех потрясающих технологий, которыми обладает наша страна, хочу напомнить мою статью 2020 года об участии России в проекте ITER и о технологии термоядерного синтеза в целом.

Когда кто-то (включая и меня) хочет рассказать о высоких технологиях, которыми обладает Россия, то обычно приводит в пример технологии мирного атома и корпорацию Росатом.

Чаще всего говорят о строительстве АЭС по всему миру, иногда приводят в пример производство ядерного топлива – что, конечно, тоже относится к высоким технологиям. Иногда затрагивают тему уникальных российских реакторов на быстрых нейтронах, работающих на Белоярской АЭС – такого вообще нигде в мире нет.

Но на самом деле тема атома куда шире и не ограничивается лишь тепловыми и быстрыми реакторами, а также топливом для них. Сфера атомных технологий – это не просто энергетика, это целый клубок технологий и науки, в котором даже не всегда понятно, где заканчивается теория и начинается ее практическое применение.

Это то место, где прошлое, настоящее, будущее, «

если»
и «может быть» сходятся вместе и перемешиваются – к/ф «Трасса 60»

Вот эта цитата из моего любимого фильма как нельзя лучше подходит для описания того, что такое атомные технологии.

Вот, например, взять термоядерный синтез (ТС). Что это? Наука? Конечно, наука, причем уровня Megascience! Россия – ключевой участник международного проекта ИТЭР по созданию прототипа промышленного термоядерного реактора. Но и на своей территории у нас активно изучают ТС. Например, этой проблемой занимаются в Институте ядерной физики им. Г.И. Будкера.

Только представьте, сколько сложнейших инженерных задач пришлось решить ученым при проектировании термоядерных установок. Каждая из них – это шедевр инженерного искусства, то самое сплетение науки и технологий. Само по себе решение инженерных задач двигает науку вперед – исследования в области сверхпроводников, материаловедение, изучение элементарных частиц, полей, газодинамику и многие другие направления.

Термоядерный синтез – это процесс, при котором ядра легких атомов сливаются друг с другом, образуя более тяжелые атомы. Он сопровождается выделением большого количества энергии.

Такие же процессы происходят в звездах, включая наше Солнце. Там водород превращается в гелий с выделением громадного количества энергии. Задача ученых и инженеров – повторить это на Земле.

Но есть одна проблема. Атомы сливаются с выделением энергии благодаря фундаментальной силе, которую называют сильным ядерным взаимодействием (СЯВ). У него очень короткий радиус действия, поэтому атомы нужно буквально столкнуть друг с другом, а этому мешает другая фундаментальная сила – электромагнетизм, которая отталкивает ядра.

Расстояние, на которое нужно сблизить ядра, чтобы они стали притягиваться под действием СЯВ, называют Кулоновским барьером.

Чтобы ядра его преодолели, нужно много энергии: вещество (например, дейтерий и тритий) надо нагреть до температуры, превышающей 100 млн градусов. Но тут мы и сталкиваемся с проблемой. Нагреть несложно, например, с помощью лазера, но где удержать плазму с такой высокой температурой? Нужен «сосуд», в котором вещество могло бы находиться до начала термоядерной реакции.

Из чего же его сделать, ведь самые тугоплавкие вещества выдерживают температуру всего около 3500 °C? Этого, мягко говоря, маловато.

Остается лишь один способ – удерживать плазму в электромагнитном поле. И вот тут начинается самое сложное. Разогретая до десятков миллионов градусов плазма очень нестабильна и текуча. Поэтому удерживать ее с помощью электромагнитного поля долго в стабильном состоянии не получается.

Для решения задачи удержания плазмы создали специальные магнитные ловушки, одна из самых известных концепций – токамак (тороидальная камера с магнитными катушками). Международный проект ИТЭР как раз и базируется на ней.

Токамак – это замкнутая ловушка, то есть плазма удерживается внутри установки. Эту идею предложили советские ученые еще в 1950 году, и уже в 1958 году построили первую в мире экспериментальную термоядерную установку – «Токамак Т1». Но все оказалось сложнее, чем думали изначально.

Плазму удержать очень сложно, потому установки становились сложнее и сложнее – сегодня трудно представить устройство более сложное, чем токамак. Например, строящаяся установка ИТЭР состоит из более чем миллиона компонентов.

Разрез токамака ИТЕР

Разрез токамака ИТЕР

Но Россия развивает не только концепцию токамака. Есть и другие концепции, например, идея электромагнитных ловушек – установки открытого типа, над которыми активно работают в Институте ядерной физики им. Г.И. Будкера. Смысл такой: что если мы не будем пытаться удержать плазму в неподвижном состоянии? Пусть она течет, но в строго заданном направлении, а задача будет сводиться лишь к тому, чтобы минимизировать утечки.

Установки открытого типа представляют собой, грубо говоря, трубу из магнитов, в центре которой, не касаясь стенок, течет плазма. Концепцию открытой магнитной ловушки предложили в 1953 году независимо друг от друга два ученых: Г. И. Будкер из СССР и Р. Пост из Соединенных Штатов Америки. Через шесть лет С.Н. Родионов, сотрудник новосибирского Института ядерной физики СО АН СССР, экспериментально подтвердил работоспособность идеи.

Фото © Бионышева Елена/Сделано у нас

Фото © Бионышева Елена/Сделано у нас

В России работы по этому направлению продолжаются. На фото – экспериментальная установка СМОЛА (Спиральная магнитная открытая ловушка), созданная в ИЯФ и запущенная в 2017 году.

Фото © Бионышева Елена/Сделано у нас

Фото © Бионышева Елена/Сделано у нас

Установка использует новую концепцию – магнитное поле с винтовой симметрией позволит управлять вращением для подавления продольных потерь плазмы из открытой ловушки. Правда, как и в случае с Токамаком, идея оказалась проще, чем ее реализация. Ученые столкнулись со множеством проблем, о которых изначально не подозревали. Их постепенно решали, затем появлялись новые, и этот процесс борьбы человека с природой продолжается до сих пор.

Но эта борьба и называется наукой! Просто в случае с проблемой термоядерного синтеза уровень сложности решаемой задачи запредельный, ничего подобного человечество еще не делало в своей истории.

Россия же идет в авангарде мировой научной и инженерной мысли, помогая человечеству решить эту глобальную задачу. Содержания изотопа водорода дейтерия, основного топлива для ТС, в океанах хватит на 150 миллионов лет потребления цивилизацией. Представьте только: 86 грамм смеси дейтерия и трития могут выделить количество энергии, эквивалентное сгоранию 1000 тонн угля. Поэтому очевидно, что решение задачи ТС даст человечеству неисчерпаемый источник энергии. Это будет настоящий прорыв для цивилизации, выход на новый уровень развития.

И Россия совершенно точно уже внесла и еще внесет в решение этой задачи свой большой и неоценимый вклад.

Показать полностью 3
[моё] Наука ITER Росатом Токамак Научпоп Длиннопост
125
248
sdelanounas
sdelanounas
Топовый автор
Сделано у нас

Россия завершила поставку компонентов для крупнейшей в мире импульсной магнитной системы реактора ИТЭР⁠⁠

7 месяцев назад

Россия настолько важный участник в мировом проекте ITER, что несмотря на политическую обстановку в мире, несмотря на санкции, в этом проекте Россия продолжает участвовать и выполняет свои обязательства. Россия играет ключевую роль в обеспечении самого мощного из когда-либо создававшихся токамаков сверхпроводниковыми магнитными лентами, а также гиротронами исключительно высоких характеристик, которые европейские исполнители хотя и пытались создать самостоятельно, но не преуспели.

В рамках проекта международного термоядерного реактора ИТЭР завершено формирование самой мощной и масштабной импульсной магнитной системы. Российские специалисты внесли значительный вклад в создание этого комплекса. Поставляемое Россией оборудование играет важнейшую роль в обеспечении работоспособности термоядерного реактора, поэтому даже с технической точки зрения исключение России из проекта было невозможно. Такой сценарий привел бы к остановке проекта.

Россия завершила поставку компонентов для крупнейшей в мире импульсной магнитной системы реактора ИТЭР

Кстати, вдруг кто не знает, и сам токамак был придуман в нашей стране. Его название расшифровывается как "тороидальная камера с магнитными катушками" - то есть то, что делает Россия - сверхпроводящие катушки - это действительно ключевая система всего устройства отраженная в его названии.

Система включает катушки тороидального и полоидального магнитных полей, корректирующие катушки и центральный соленоид.

Она является крупнейшей в мире сверхпроводниковой конструкцией, а её общий вес после полной сборки составит около 3000 тонн.

Этот этап стал важным шагом в реализации проекта ИТЭР, цель которого — доказать возможность использования термоядерной энергии в промышленных масштабах.

По мнению директора Проектного центра ИТЭР (учреждение «Росатома») Анатолия Красильникова, завершение изготовления сверхпроводящих катушек для создания магнитной системы реактора ИТЭР – грандиозное достижение всего мирового сообщества в совместной реализации проекта ИТЭР. «Россия, наши предприятия, принимали непосредственное участие в этом процессе. Мы произвели 120 тонн ниобий-титанового сверхпроводника, а также более 17 км ниобий-оловянного сверхпроводника. Мы также изготовили и доставили в Организацию ИТЭР одну из шести катушек полоидального поля. Проект ИТЭР в очередной раз доказал, что вместе мы способны решать задачи невероятной сложности», – сказал он.

Кстати, подписаться на сообщество «Сделано у нас» на Пикабу можно тут, а телеграмм проекта здесь

Показать полностью 1
[моё] Российское производство Производство ITER Росатом
107
22
Platinum88
Platinum88

Don't do this to Furina⁠⁠

1 год назад
Перейти к видео
Genshin Impact Furina (Genshin Impact) Neuvillette (Genshin Impact) ITER Онлайн-игры Компьютерные игры Юмор Видео Вертикальное видео
1
9
cakypacah
cakypacah

Крупнейший в мире термоядерный реактор запущен в Японии⁠⁠

2 года назад

Крупнейший в мире термоядерный реактор получил первую плазму. Это установка JT-60SA, которая создавалась для помощи в отработке термоядерных технологий международному проекту ITER. Высота рабочей камеры JT-60SA всего вполовину меньше высоты камеры реактора ITER, что делает эксперименты на японском реакторе достаточно ценными для приближения успеха международного проекта.

Источник изображения: Japan’s National Institutes for Quantum Science and Technology

Источник изображения: Japan’s National Institutes for Quantum Science and Technology

Термоядерный реактор JT-60SA был заново построен на месте старого реактора JT-60. Он стал больше, а магниты были заменены на сверхпроводящие. Это позволит ему удерживать плазму в самом большом на сегодня в мире объёме рабочей зоны в 135 м3. В реакторе ИТЭР, отметим, объём рабочей камеры составит 840 м3.

Обслуживающие реактор JT-60SA специалисты пока не сообщили о параметрах полученной в реакторе плазмы. В идеальном случае её температура (очевидно, речь об электронной плазме) должна дойти до 200 млн °C. В таком случае для запуска термоядерной реакции температура ионной плазмы должна достичь 100 млн °C. В таком состоянии реактор JT-60SA должен будет поддерживать работу в течение 100 секунд.

Получение первой плазмы на реакторе JT-60SA как на уменьшенной копии реактора ITER свидетельствует о правильном выборе конструкции и стратегии международного проекта. Реактор JT-60SA уже помог специалистам ITER, хотя далось это немалой кровью. В 2021 году во время пробного запуска JT-60SA в катушке одного из сверхпроводящих магнитов возникло короткое замыкание, что почти на три года отсрочило начало работы установки. Длительный и дорогой ремонт JT-60SA заставил инженеров ITER с повышенным вниманием отнестись к магнитам своего реактора помимо решения текущих проблем.

Эксперименты на JT-60SA позволят лучше подготовиться к запуску реактора во Франции. На последующих этапах пути этих реакторов разойдутся. Японский реактор может работать только на дейтериевом топливе, тогда как реактор ИТЭР со временем сможет перейти на более эффективное дейтерий-тритиевое топливо. Тем не менее, эксперименты на JT-60SA позволят японцам разработать собственную термоядерную электростанцию — проект DEMO, которую они намерены построить к 2050 году. А пока тон в отрасли задают китайцы, опытные термоядерные реакторы которых разогревают плазму до температур свыше 100 млн °C на сотни секунд.

Источник: 3dnews.ru

Показать полностью 1
Термоядерный реактор Прогресс ITER
9
21
cakypacah
cakypacah

В России стартовало серийное производство ответственных компонентов термоядерного реактора ИТЭР⁠⁠

2 года назад

Предприятие Госкорпорации «Росатом» — АО «НИКИЭТ» — изготовило первую серийную партию высокотехнологичных компонентов для международного термоядерного экспериментального реактора (ИТЭР), строящегося на юге Франции. На базе компонентов российского производства будут изготовлены самые теплонагруженные передние стенки бланкета реактора — первой линии защиты реактора и внутрикамерного оборудования от контакта с плазмой.

Несущая конструкция панелей первой стенки бланкета ИТЭР. Источник изображения: АО «НИКИЭТ»

Россия должна изготовить 40 % передних стенок бланкета — это 179 изделий. Со стороны плазмы они покрыты бериллием, а под его защитой будет железоводный блок охлаждения с невероятной производительностью — до 100 кг теплоносителя в секунду. Передние стенки бланкета изготавливают АО «НИКИЭТ» и АО «НИИЭФА». Каждая такая стенка должна выдерживать нагрузку до 4,7 МВт на м2. Это сменная деталь реактора, которая будет заменяться по мере износа, что продлит эксплуатацию реакторной камеры до 25 лет или дольше вместо 5 лет, если бы эти модули были несъёмными. Заменять блоки бланкета будет роботизированная система.

Основу передней стенки бланкета составляет несущая конструкция панелей первой стенки (НКПС) бланкета. АО «НИКИЭТ» сообщило об изготовлении первых серийных изделий НКПС. Всего до конца года будет изготовлено 20 таких компонентов. На базе НКПС собирается передняя стенка из защитных панелей, тепловых экранов и системы протока теплоносителя. Эти элементы будут испытывать в термоядерном реакторе колоссальные нагрузки по целому ряду воздействий — от радиационных до химических и тепловых, что требует высочайшей точности изготовления и соблюдения чистоты материалов.

«НИКИЭТ обладает значительными компетенциями и является одним из ключевых производителей компонентов для ИТЭР. Серийное производство изделий осуществляется на собственных производственных участках с применением высокотехнологичного оборудования, что гарантирует их высокое качество и соответствие всем установленным международным стандартам. До конца текущего года планируется завершить первый этап производства компонентов для 20 НКПС», — отметил заместитель главного конструктора по ядерно-физическим системам ИТЭР, начальник отдела разработки бланкетов и систем преобразования энергии для термоядерных реакторов АО «НИКИЭТ» Максим Николаевич Свириденко.

Передняя стенка бланкета, блок охлаждения и модуль бланкета в сборе, а также схема размещения модулей бланкета в реакторе.

Разработка, изготовление и отправка уникального отечественного оборудования осуществляется в строгом соответствии с графиком сооружения экспериментального термоядерного реактора. Основной вклад Российской Федерации заключается в разработке, изготовлении и поставке 25 систем будущей установки. Но в какие сроки будет получена первая плазма в реакторе, сегодня можно только догадываться. Вместо продолжения сборки реактора его начали разбирать и ремонтировать.

Источник: 3Dnews

Показать полностью 2
ITER Термоядерный реактор Длиннопост
4
12
cakypacah
cakypacah

Начался ремонт строящегося термоядерного реактора ИТЭР — демонтирован первый сектор активной зоны⁠⁠

2 года назад

На строящемся термоядерном реакторе ИТЭР на юге Франции начались ремонтные работы. На самом первом этапе сборки активной зоны реактора обнаружились дефекты производства компонентов и дефекты сборки — сектора изготовлены с нарушением габаритов, а система охлаждения пошла трещинами. Ремонт на годы отложит запуск реактора, и новой даты получения первой плазмы пока не названо.

Начался ремонт строящегося термоядерного реактора ИТЭР — демонтирован первый сектор активной зоны

Активная зона реактора, по которой будет циркулировать 840 м3 плазмы, изготавливается в виде девяти одинаковых клиновидных секторов, каждый из которых весит 440 т и имеет высоту около 14 м. Каждый из секторов последовательно опускается в шахту реактора, и там происходит их сварка. Сварочные работы проводит робот. Первый сектор опустили в шахту в мае 2022 года. После спуска второго сектора выяснилось, что секции не совпадают по краям и робот не может наложить шов.

Проведение метрологической экспертизы выявило отклонения в размерах на других секторах. Это означало, что края секций необходимо в одних случаях подпиливать, а в других наращивать. С учётом габаритов каждой секции наращивать и спиливать необходимо будет сотни килограммов металла. Часть секций произведено в ЕС, а часть — в Южной Корее. Проблемы выявлены везде.

Проблему усугубляло то, что на каждый сектор в шахте установлены магниты тороидального поля, тепловые экраны и другое «железо», что увеличивает вес каждого модуля, который опускается в шахту, до 1200 т. Перед инженерами проекта стояла задача извлечь всё это из шахты без разборки, и эта процедура не была предусмотрена планом. Соответственно, не было никакой документации и регламента работ. Первый сектор извлекали четыре дня, и эта операция проведена успешно. Теперь его отвезли в сборочный цех для окончательного демонтажа навесных компонентов и ремонта.

Также предстоит ремонт тепловых экранов. Контроль выявил трещины в трубах охлаждения, которые появились вследствие коррозии после проведения сварочных работ (часть которых проводили сварщики без должной квалификации, как выяснилось). Необходимо в общей сложности заменить свыше 20 км труб охлаждения. Эти работы также невозможно было вести в шахте, и ремонтом будут заниматься после демонтажа экранов.

Совет ИТЭР должен был дать оценку происходящему весной этого года, чтобы установить новую дату получения первой плазмы. Очевидно, что ранее установленный срок — 2025 год, который и так неоднократно переносился, уже не подходит. Но совет уклонился от принятия ответственного решения и пообещал установить новую дату запуска реактора весной следующего года.

Реактор проекта ИТЭР не будет производить электрическую энергию. Это лишь доказательство концепции возможности запустить управляемую термоядерную реакцию с получением избытка энергии. Реактор должен в течении не менее 400 с вырабатывать 500 МВт энергии при затратах на запуск 50 МВт (в реальности потребуется ещё до 300 МВт на поддержку работы вспомогательных систем). Реактор ИТЭР утыкан датчиками, как ёжик иголками. В этом его основная задача — дать науке полное представление о возможностях практической реализации термоядерной реакции на уровне полномасштабных термоядерных электростанций.

Источник: 3dnews.ru

Показать полностью 1
ITER Термоядерный реактор Гастарбайтеры
7
779
cakypacah
cakypacah

Сварочные работы на проекте термоядерного реактора ИТЭР проводили сварщики без должной квалификации⁠⁠

2 года назад

На днях французские и европейские СМИ сообщили, что на проекте термоядерного реактора ИТЭР часть сварных работ проводили сварщики с поддельными сертификатами. Выявлено и уволено 13 рабочих, чья квалификация не нашла официального подтверждения. В то же время у руководства ИТЭР к сделанной им работе нет замечаний, хотя в свете вскрывшегося подлога её всё равно придётся инспектировать заново.

Рубашка контура охлаждения рабочей камеры реактора, в трубах которой обнаружены трещины. Источник изображения: ITER

Проблема отсутствия специалистов с необходимой квалификацией — это проблема не только ИТЭР (ITER), но также всех работ, связанных с проведением сложных строительно-монтажных операций во Франции и, возможно, в ЕС. Например, на атомных электростанциях EDF во Франции участились случаи ремонта сварных швов, что говорит о наличии скрытых дефектов в изначально проделанных швах. Квалифицированных специалистов становится меньше и вакансии приходится замещать людьми с сомнительными документами и неподтверждённым опытом работы.

С другой стороны, многие рабочие операции по сборке термоядерного реактора и сопутствующего оборудования проводятся впервые, и сертификация может просто не успевать за этим процессом. Часть ответственных работ, кстати, проводится роботами-сварщиками, например, роботизированная установка сваривает сегменты рабочей камеры реактора, по которой будет циркулировать разогретая до 150 млн °C плазма. В этом есть плюс, но и минус тоже. Выяснилось, что все девять сегментов рабочей камеры выполнены с превышением допустимых пределов и робот не может её сварить.

Наконец, хотя все уличённые в подделке сертификатов сварщики были уволены, а с подрядчиком разорвали контракт, работники могут задним числом подтвердить свою квалификацию. Ранее в Гааге уже был прецедент, когда три сварщика получили сертификаты после того, как были уволены с работы, для которой они формально не были квалифицированны.

Заметим, у проекта ИТЭР есть более серьёзные проблемы, чем сварщики без сертификата. Это несоответствие секторов рабочей камеры требуемым размерам, что придётся устранять спилами в одних местах и наращиванием металла в других, а это сотни килограмм металла, а также выявленные трещины в контуре охлаждения (вот тут сварщики без диплома могли натворить дел), что может потребовать заменить экран и десятки километров труб охлаждения. Всё это на годы отодвинет получение первой плазмы на ИТЭР, которую все ждали в 2025 году.

Добавим, руководство ИТЭР ещё в марте само проинформировало надзорную организацию Nuclear Safety Authority (ASN) Франции о проблеме со сварщиками. ASN посоветовала больше так не делать.

Источник: 3dnews.ru

Показать полностью 2
ITER Термоядерный реактор Гастарбайтеры Длиннопост
125
1043
LightTool
LightTool
Энергетика

Когда будет термояд? Интервью с инженером из ITER⁠⁠

3 года назад


Когда будет коммерческий термояд? Почему температура в реакторе должна быть в 10-20 раз больше, чем на Солнце? Какие проблемы сейчас на проекте? Интервью с инженером и ученым Виталием Красильниковым, работающим в ITER более 10 лет.


Виталий родом из подмосковного Троицка. В данный момент находится во Франции под Марселем в непосредственной близости от главной стройки, где курирует разработку нескольких нейтронных диагностик.

# …если вы предпочитаете видео тексту – в конце поста есть ссылка на полную версию интервью на YouTube.

- В чем основная фишка термояда?


Во-первых, на входе у нас, по сути, безлимитное топливо. Топливом для той термоядерной реакции, о которой мы сегодня говорим, является дейтерий и тритий — изотопы водорода. Дейтерий доступен в мировом океане, его можно выделять из морской воды. Тритий в природе не встречается. У него короткое время полураспада. Но его можно производить из лития. Это деньго- и трудозатратно, но это тоже, можно сказать, бесконечное топливо.


Вторая особенность термояда – на выходе у нас нет ядерных продуктов реакции. То есть нет тех отходов, которые производит, например, атомная энергетика. На выходе термоядерной реакции – гелий.

- Почему до сих пор нет реактора, который давал бы полезную энергию?


Проблема в трудностях организации самого процесса реакции. Как сделать такую установку, которая в достаточном объеме произвела бы необходимое количество реакций и тем самым произвела бы необходимое количество энергии? Токамаки начинались с каких-то настольных приборов, переходили в комнатные, потом занимали половину здания. И сейчас мы строим токамак размером с семиэтажное здание. Размеры растут. Это важно.


Для того, чтобы пошла реакция, нам нужно некую субстанцию — назовем это газом, а на самом деле это плазменное образование — нагреть до очень высоких температур. При таких температурах никакие стенки не смогут выдержать. Поэтому нам нужно ее удерживать другими способами. Была создана конфигурация с удержанием плазмы магнитным полем.


Представьте какую-то полоску воды. Вы снизу дуете струйками воздуха и пытаетесь ее удержать. А гравитация эту воду пытается прижать к земле.


Это очень сложно сделать. Вода постоянно будет стараться искать где-то лазейку. Так и плазма. Потому что веществу неудобно, невыгодно находиться в каком-то энергетическом состоянии. Ему всегда хочется остыть, отдать свою энергию, успокоиться. А мы, наоборот, пытаемся удержать этот процесс, этот огонь, чтобы он горел и давал нам пользу.


Ну и просто из-за технических, физических в том числе, сложностей самого процесса.



- На Солнце идут те же самые термоядерные реакции — горит водород, синтезируется гелий — но нам нужно достичь температур в 10-20 раз больше, чем на Солнце. Почему?


Я могу ответить шуткой: солнце неэффективно, мы строим что-то более эффективное.


В этом есть доля правды. Зачем нам нагревать именно до той температуры, о которой говорится? На этих энергиях имеется пик сечения взаимодействия дейтерия и трития. При таких температурах наибольшая вероятность реакции этих двух изотопов. Если температура ниже, они летают мимо друг друга и не реагируют. Если температура выше, они слишком горячие, и тоже пролетают мимо. Так получилось в природе, что, если вещества имеют эту температуру, у них максимальное количество реакций происходит.



- Чем крут ITER кроме того, что это самый большой токамак?


Всем. Куда ни посмотри, в ITER практически все уникальное, все впервые в мире. Это огромная вакуумная камера. Мощнейшая система нагрева. Мощнейшая система охлаждения для магнитных систем. Это самый крупный в мире криогенный комплекс. Это со всех сторон уникальный проект: от организации процесса, от административной стороны, когда семь партнеров объединились и строят вместе. И сам проект так организован, что центральная команда находится здесь, а производство компонентов установки происходит в разных уголках планеты, вплоть до того, что похожие компоненты изготавливаются в разных странах, как, например, элементы вакуумной камеры — в Корее, в Европе и в России. Для чего это сделано? Для того, чтобы каждый партнер получил опыт строительства таких компонентов.

Если со стороны физики посмотреть, принципиальное отличие от предыдущих установок в том, что в ITER планируется осуществить контролируемое горение. Что подразумевается под этим термином? Горение — это когда ты в огонь положил дрова, и он сам горит, ему ничего не нужно. Так же и в плазме. Если ты создал ей какую-то конфигурацию, то она сама себя может поддерживать. Она сама производит достаточное количество энергии для того, чтобы поддерживать свою температуру на том же уровне и продолжать находиться в этом квазистационарном состоянии.


До этого все предыдущие токамаки, включая ныне действующие, выходили на мощность порядка единицы-полтора. Это коэффициент полученной мощности к затраченной, то есть, когда мы получаем энергии столько же либо чуть-чуть больше, чем затратили. И это уже горение, но оно происходило доли секунды или порядка нескольких секунд.


В ITER предполагается 500-секундный разряд с коэффициентом выхода 10. То есть мы получаем в 10 раз больше энергии, чем затрачено на нагрев плазмы.

- А как будет работать реактор? Это какие-то периоды-вспышки в несколько минут, когда плазма зажигается, потом затухает, потом все повторяется?


Именно так. Установка токамак, про которую мы сегодня говорим, тороидальная камера с магнитной катушкой — это принципиально импульсная установка. Импульс может быть очень долгим. 500 секунд, про которые мы говорили чуть ранее — это работа установки с высокой мощностью. Еще предполагаются режимы на 3 000 секунд с чуть более низкой мощностью. Но это в любом случае ограниченное время.


Почему? Потому что вихревое магнитное поле, которое создается в токамаке, создается путем наращивания тока через соленоид. У нас поле создается, когда изменяется ток. Мы, например, его увеличиваем — и поле закручивается. То есть не просто ток идет и поле появляется, а именно увеличивается.


Любую величину невозможно увеличивать бесконечно. Мы можем только от сих и до сих увеличивать. Если бы можно было поддерживать ток стабильным, то мы бы могли его поддерживать. Но поскольку это поле создается путем увеличения тока через соленоид, оно принципиально может создаваться ограниченное время.

- Каким образом будет сниматься энергия с токамака?


Существует несколько подходов. Первый — аналогичный с атомными станциями, когда мы банально греем воду. Реактор производит гелий и нейтроны. Нейтроны прекрасно взаимодействуют с водой. У них огромное сечение взаимодействия с водородом. Можно «обложить» реактор достаточным количеством воды. Она замедлит нейтроны и защитит от них, и сама нагреется. Дальше — турбина или всевозможные способы применения энергии воды.


Есть еще альтернативные способы. Поскольку у нас есть источник нейтронов, можно обложить установку ураном — это я очень условно говорю; не просто обложить, а ввести в уравнение уран — тогда нейтроны будут реагировать с ураном, производить атомную реакцию и у нас получится гибридный реактор, термоядерный и атомный в одном флаконе.


Можно еще — и это предполагается — иметь некие полости с литием и использовать эти же нейтроны для производства трития из лития.

- Возможно ли, что какие-то коммерческие термоядерные проекты будут разрабатываться параллельно с экспериментами на ITER?


Думаю, что очень вероятно. Азиатские страны, мы видим, очень в этом заинтересованы. Уже сейчас строятся системы крупного размера, которые будут отрабатывать разные особенности, например, выход на долгие разряды, поддержание высокой мощности на длительное время. Это принципиально важно для коммерческого реактора.


И я думаю, что параллельно с ITER будут и должны строиться машины, установки коммерческие или околокоммерческие, уже с положительным выходом.



- Не получится ли так, что они опередят ITER?


Да, и это будет здорово. Тут нет какой-то конкуренции. Она есть, конечно, психологическая: «мы первые — они первые». Но в целом мы делаем это для человечества. И, работая здесь, ты постоянно пересекаешься со всеми национальностями, с гражданами разных стран практически со всей планеты. Никто на себя одеяло не перетягивает. И, если кто-то начинает это делать, это выглядит глупо. Мы работаем вместе на благо человечества. Это очень ощущается.


Допустим, Китай или Корея построили свою машину, которая заработала также, как ITER. Отлично. Но вот Корея это сделала. А в России нет доступа туда. У Японии нет доступа. У США нет. У Европы, Франции, Германии нет туда доступа.


По крайней мере, ITER как бы общий, но в то же время он свой для каждого из партнеров. Каждый имеет доступ к полному объему информации и ноу-хау, ко всем чертежам, ко всем моделям и так далее. Каждый партнер имеет полное право взять это и при желании построить у себя. Это часть идеологии проекта.



- А как вообще в непосредственной близости друг от друга могут располагаться самая горячая точка в галактике в 100-150 млн градусов и самая холодная?


Специальные материалы, специальная теплоизоляция одного от другого. На расстоянии примерно шести метров действительно будет две точки: одна — самая горячая в галактике, вторая — самая холодная. Самая холодная — это 4 К (-269 0С). И самая горячая, надеемся — 100-150 млн градусов.


Для чего нужна холодная температура? Для проводника, из которого намотаны катушки, создающие магнитное поле. Эти катушки переходят в режим сверхпроводимости. В них уменьшаются потери. Поэтому мы можем гонять по ним огромный ток без потерь.

Катушка диаметром примерно 3-5 см упаковывается в пакет теплозащиты. Потом еще теплозащита. В итоге получается кубик примерно 1,5 метра – из проводника и теплозащиты.

- Хочу спросить про людей. У вас же интернациональная команда, но, наверное, большинство французы?


Французов в проекте много, четверть или треть. Какой-то статистики нет. Может, она есть, но я не знаю. А остальных примерно по 7-10%: Россия, США, Индия, Япония, Корея, Китай. Европа вкладывает 40%. Имеется в виду и финансовый вклад, и натуральный вклад, в том числе люди. Из Европы — большинство. Наиболее представлены французы, испанцы, немцы, Северная Европа, Польша, Румыния.


Все общаются, работают.



- Насколько хорошо финансируется проект? Каковы зарплаты в сравнении с другими институтами или проектами? И какова разница со среднеевропейской зарплатой? Это хорошо оплачиваемая работа?


Да, скорее, хорошо оплачиваемая. Естественно, есть градация от начального уровня работников до дирекции. Это все открытая информация, она есть на сайте проекта. Разница в зарплатах в два или в три раза.


Наверное, для России нормально, когда в 100 раз у директора выше зарплата, чем у уборщицы. Но здесь — нет. У директора в четыре раза выше зарплата, чем у уборщицы. Или в три. Примерно так.


Однако надо понимать, что и расходы высокие: цена аренды жилья, цена топлива – машину заправить, цена еды — цена всего примерно в 1,5-2 раза выше. Просто сходить в продуктовый магазин здесь дороже.


Второй момент, что ты в отрыве от своей страны. И это накладывает некоторые ограничения. Например, нужно решать какие-то жилищно-коммунальные вопросы. Кран потек. И если где-то в Троицке я знал, где дядю Васю позвать, и за условные 200 рублей он кран бы починил, то здесь ты обращаешься к каким-то официальным фирмам, которые всегда дороже. Помните, в советское время было, что «цена для иностранца другая». Может быть, в Париже, где много иностранцев, это нормально, а здесь в деревне иностранцу жить дороже.


И еще французская налоговая система и социальная система очень нацелены на поддержку и уравнивание. Если у тебя низкая зарплата — меньше 2 000 евро чистого дохода в месяц, например 1 500 или 1 000 — то тебе государство очень сильно поможет со всеми расходами, начиная от билетов на еду, на продукты, заканчивая тем, что если у тебя дети, то школа будет либо дешевле, либо бесплатно, всякие субсидии на ЖКХ.


Для нас этого всего нет. У нас высокая зарплата и высокие расходы.



- Ты сам веришь, что мы когда-нибудь увидим коммерческий термояд?


У меня нет сомнений, что термояд когда-либо будет. Вернее, у меня нет сомнений, что термояд осуществим в коммерческих масштабах. В форме токамака или в какой-то другой форме, в форме стелларатора или в какой-то конфигурация пинча, или что-то еще, или вообще открытые ловушки. Так или иначе человечество рано или поздно найдет способ коммерчески эффективно эту энергию приручить. Если только захочет.

- Как ты думаешь, в каком примерно году появятся коммерческие реакторы?


Я стараюсь об этом не думать. Если серьезно, то, наверное, где-то в районе 2050-2060 года. С тем темпом, который сейчас идет. Мы старались политику не обсуждать. Но темпы в разные годы разные. И иногда кажется, что все идет к ускорению, иногда кажется, что все пойдет к замедлению


Но если продолжится какая-то похожая тенденция, то прицел на 2050-2060-е годы.

Я думаю, что темп через 10-20 лет изменится. В районе 2030-го мы можем увидеть, что темп увеличится и, возможно, к 2040-ому увидим коммерческие станции. По крайне мере, после 2030-х, когда ITER, я надеюсь, будет работать в полную термоядерную мощность, будет уверенность, что эта технология работает. И тогда многие государства заинтересуются в применении этой технологии у себя.


P.S. полная версия этого интервью выложена на моем канале на YouTube.

В нем есть простое и краткое объяснение сути термоядерного синтеза, откуда берется энергия и как устроен ИТЭРовский токамак.

Tech_debunker

Показать полностью 6 1
[моё] Термоядерный реактор Термоядерный синтез Термоядерная реакция ITER Токамак Видео YouTube Длиннопост
140
Посты не найдены
О нас
О Пикабу Контакты Реклама Сообщить об ошибке Сообщить о нарушении законодательства Отзывы и предложения Новости Пикабу Мобильное приложение RSS
Информация
Помощь Кодекс Пикабу Команда Пикабу Конфиденциальность Правила соцсети О рекомендациях О компании
Наши проекты
Блоги Работа Промокоды Игры Курсы
Партнёры
Промокоды Биг Гик Промокоды Lamoda Промокоды Мвидео Промокоды Яндекс Маркет Промокоды Пятерочка Промокоды Aroma Butik Промокоды Яндекс Путешествия Промокоды Яндекс Еда Постила Футбол сегодня
На информационном ресурсе Pikabu.ru применяются рекомендательные технологии