93

Как понять матанализ и решать им задачи классической физики | Часть 2

Итак, продолжаем познавать матанализ в физике. Перед прочтением очень рекомендуется ознакомиться с первой частью, но если коротко, то тезисно напомню:
- Функция - зависимость одной величины от другой или других
- Производная отражает скорость роста функции, является отношением дифференциала функции к дифференциалу аргумента, сами дифференциалы - бесконечно малые приращения
- Интеграл является действием, обратным взятию производным, и в то же время является операцией суммирования бесконечно большого числа бесконечно малых величин
- Дифференциальное уравнение - уравнение в котором неизвестной является некоторая функция

Ну а теперь продолжаем

Поскольку мы с вами уже освоили диффуры, интегралы и производные, то сейчас сами по себе они нас интересовать не будут. Будем считать, что если уравнения у нас уже есть, то мы гарантировано можем решить задачу. Сейчас сделаем упор на то как составлять уравнения для задач
Общее правило довольно простое: нужно записать известные из физики формулы, которые могут что-то описывать в задаче, ограничения, при этом их должно быть достаточно для однозначного решения задачи, не больше, не меньше. Сходу может быть непонятно: а какие именно формулы подходят, какие такие ограничения надо задавать, как понять, что уравнений достаточно и так далее. Поэтому все эти моменты мы разберем, и разберем на примере, так будет понятнее

И для этого возьмем вот такую задачу:

Звучит задача, конечно, немного страшно. Но это только так кажется. Как я написал выше, нужно записать необходимые формулы и из них искать решение, и для удобства, будем делать это последовательно

И первая формула, что приходит в голову, - второй закон Ньютона для поршня. Действительно, здесь на поршень будет действовать куча всяких сил, под действием которых он будет как-то двигаться, а движение поршня нам как раз и надо описать. Помимо этого, понятно, что двигаться он может только вверх-вниз, поэтому и рассматривать движение стоит только в этом направлении (то есть в проекции на это направление, но об этом чуть дальше). Уже что-то вырисовывается:

Теперь разберемся с силой, действующей на поршень (ну вернее силами, F в уравнении заменится на сумму сил). Поршень находится в поле тяжести, значит на него будет действовать сила тяжести. Также есть внешнее атмосферное давление, которое будет вдавливать поршень. С другой стороны, под поршнем же ведь газ, который тоже будет с какой-то силой его выталкивать. А еще при его движении будет возникать сопротивление. Вот эти 4 силы и будут вызвать движение поршня:

Теперь, как я думаю в уже поняли, нужно узнать, чему будет равна каждая из сил (очевидно, что для полного описания движения поршня нам будет достаточно определить все эти силы: тогда мы будем знать ускорение поршня в любом его положении и, соответственно, сможем из уравнения определить его движение). Ну с силой тяжести все просто, F = mg. С силами давлений (от атмосферы и от газа в сосуде) тоже все довольно понятно: давит и то, и то на поршень в каждой точке одинаково (так как газы однородны), поэтому можно воспользоваться простейшей формулой, связывающей давление и силу: F = pS. Сила сопротивления тоже не сложная, F = rv, в условии ж сказано. Так что слегка перезапишем наше уравнение, и перейдем к проекциям

Проецируем все на ось h

Проецируем все на ось h

Оставлю примечание насчет проекций. Нам, понятное дело, работать с векторами очень неудобно, поэтому мы их переводим в обычные числа - проекции векторов. Сама по себе проекция получается при опускании перпендикуляров (на картинке ниже), но при этом ее прелесть в том, что она отражает направление вектора. Если он сонаправлен с тем, на что проецируем, то проекция будет положительна, противоположно направлен - отрицательно. Ну а если вектор находится под углом к тому, на что проецируем, то проекция будет меньше, чем длина этого вектора (если что, длина вектора силы равна числовому значению силы, то есть это не совсем привычная длина в метрах и сантиметрах). Короче вот:

Надо будет как-нибудь запилить пост по векторам

Надо будет как-нибудь запилить пост по векторам

Ускорение и скорость проецируются как сонаправленные с осью, на которую проецируем. Это объясняется тем, что проекции скорости и ускорения есть ни что иное, как производные координаты. Проверить довольно легко, просто сверяя знаки проекции и производной при различных направлениях вектора

Вернемся к нашим барашкам. В силе тяжести неизвестных нет, она нам сразу известна. В силе сопротивления есть скорость, но скорость определяется из самой диффуры (искомая функция в дифференциальном уравнении), поэтому ее мы оставляем так. С атмосферным давлением тоже все предельно просто: мы всегда знаем силу его давления, давление и площадь то нам даны) А вот с давлением газа в сосуде сейчас будем разбираться
Что приходит в голову в первую очередь, когда мы пытаемся описать газ? Уравнение идеального газа есестно. Поскольку цифры здесь не какие-то экстремальные, то оно будет вполне рабочим, поэтому им и будем пользоваться. Запишем его пока в уме) По условию, у нас еще газ теплоизолирован. Хм... Понятно, что нужно еще какое-то уравнение, которое будет описывать газ без теплообмена. А какое уравнение содержит в себе подводимое тепло? - Первое начало термодинамики, конечно. Из этих двух уравнений мы можем получить третье, уравнение адиабатного (без теплообмена то есть) процесса. Вот вывод, если кому интересно, вообще можно это уравнение и без вывода использовать:

В нем у нас есть давление, объем и какая-то константа. Ну давление мы выразим, а что делать с объемом и константой? С объемом все просто, у нас ведь газ находится в цилиндре, значит, объем его – это площадь основания цилиндра на высоту. То есть на высоту поршня над дном. Снова неизвестная? А вот и нет, высота цилиндра определяет положение поршня, поэтому она у нас перестанет быть неизвестной при совокуплении с первым уравнением (вторым законом Ньютона, оно ж ведь и будет описывать положение и движение поршня):

Ну а что касается константы - какой момент времени мы бы ни выбрали, константа останется константой. То есть, она равна давлению с объемом и в какой-то произвольный момент, и в начальный. А значит мы ее просто напросто заменим на давление и объем в положении равновесия (для них ведь это тоже выполняется). А как посчитать давление в положении равновесия - тоже все просто, у нас ведь поршень должен будет оставаться неподвижен, то есть понадобится еще одно уравнение, для движения, и тут опять таки подойдет 2 закон Ньютона, только в этот раз скорость и ускорение мы сразу занулим, а положение поршня будет таковым, каковым было изначально. Возьмем уже выведенный закон Ньютона и переделаем его под наши нужды, ну а потом запишем наконец силу давления:

У нас в неизвестных теперь остались только характеристики движения, а они определятся из дифференциального уравнения (2 закона Ньютона) Доведем до конца уравнение для поршня. Подставим найденные силы, заменим скорость и ускорение на производные координаты (за координату мы выбрали высоту поршня над дном) и получим, наконец, конечное уравнение:

Буквы h с точками - это как раз скорость и ускорение. Вспомните, как обозначаются производные по времени

Буквы h с точками - это как раз скорость и ускорение. Вспомните, как обозначаются производные по времени

И вот у нас получилось нужное нам дифференциальное уравнение. Добавляя к нему ограничения, то есть начальную высоту цилиндра (дана в условии, сумма высоты в равновесии и расстояния, на которое поршень подняли) и начальную скорость (по условию равна нулю), у нас будет достаточно всего для однозначного решения задачи (по сути, задача свелась к одному дифференциальному уравнению второго порядка, для него нужно два начальных условия, поэтому так).
Оставлю небольшое дополнение: количество ограничений, нужных для задачи мы определяем путем суммирования порядков старших производных функций. Например, было 2 диффура для функций x(t) и y(t) (сколько диффуров - столько и неизвестных функций), причем в общем в двух уравнениях мы встречаем старшие производные x'''(t) (3 порядка) и y''(t) (2 порядка). Тогда количество ограничений (начальных или граничных условий) будет равно 3 + 2 = 5.
Аналитическое решение данное уравнение имеет только при малых изменениях h (попробуйте решить самостоятельно, позже разберем этот вариант), поэтому сейчас воспользуемся численным моделированием и решим это уравнение при помощи Wolfram Mathematica

Код для численного моделирования и график функции, полученной численным решением

Собсна, задача решена. Также оставлю в виде картинки ее полное решение, вдруг кому так удобнее:

А, ну и еще кое-что красивое - анимация данного процесса (выполнена кстати тоже в Wolfram-е, цилиндр если что серый, а поршень оранжевый):

Выше я упоминал про случай с малым отклонением от положения равновесия. Давайте рассмотрим его (а после поймем, почему это так важно)

Что означает малое отклонение, думаю понятно: поршень колеблется очень близко к положению равновесия. Иными словами, если мы из функции h вычтем h0 (которое соответствует положению равновесия), то полученная величина (она и будет являться отклонением от положения равновесия) будет значительно меньше, чем h или h0
Но что нам дает этот факт? Разность h и h0 значительно меньше самих h и h0, а значит разделив разность на, например, h0, мы получим очень маленькое число, и такая функция может с достаточно высокой точностью считаться бесконечно малой, и к ней можно применять формулы для этих самых бесконечно малых (например, зануление величин более высокого порядка малости для дифференциалов, если забыли, гляньте первую часть :) ). А они позволяют очень удобно преобразовывать уравнения, и сейчас мы как раз на это посмотрим (хотя я выше уже проспойлерил, что для них мы получим аналитическое решение диффуры)

Как я уже сказал, мы будем использовать формулы для бесконечно малых, так давайте сперва эту бесконечно малую получим. Как? Так уже же находили, вычтем h0 из h:

В последних двух строках мы получаем выражения, которые подставим вместо h

Сама новая функция x не будет являться бесконечно малой. В принципе, это и так понятно, абзацем выше написал, но на всякий случай. Вернемся к задаче и преобразуем дифференциальное уравнение с учетом того, что x/h0 - бесконечно малая:

Что мы видим? - А мы видим линейное дифференциальное уравнение с постоянными коэффициентами, которое крайне легко решается аналитически (надеюсь, все хотя бы краем глаза глянули, как это делается :)?):

Попробуйте на досуге доказать, что решение второй вариант решения (только с косинусом) тоже является решением (делается несложно, подстановкой). Более интересный вариант - доказать что эта же форма является общим решением диффура

Попробуйте на досуге доказать, что решение второй вариант решения (только с косинусом) тоже является решением (делается несложно, подстановкой). Более интересный вариант - доказать что эта же форма является общим решением диффура

А что, собственно, примечательного? Да то, что в этой довольно сложной задаче мы смогли получить ответ не численным моделированием, а в виде формул. То есть мы получили результат не только для конкретных условий, которые заданы в задаче, а вообще для всех возможных, лишь бы начально отклонение было маленьким (кстати, интересный факт, для любых колебаний с малым отклонением от положения равновесия мы можем получить аналитическое решение, попробуйте доказать это на досуге). Да, это решение, конечно, приближенное. Однако оно все же довольно точное, и помимо того, позволяет гораздо лучше исследовать то или иное физическое явление

И обращу внимание, почему это важно. Да, здесь диффур компьютер решает довольно быстро. Но и диффур у нас всего один и только лишь от времени. Попадись нам 3-мерная, да еще и нестационарная задача (речь про диффуры в частных производных), и решение бы мы ждали довольно долго, к тому же такое решение само по себе не получится толком проанализировать. Поэтому в практических задачах важно уметь находить, подбирать какие-либо приближения, которые позволят хотя бы часть задачи из численного решения перевести в аналитическое

Ну а кому интересно удостовериться в точности, вот различие между численным и приближенным аналитическим решениями, вот графики:

Обратите внимание: даже для нашей изначальной задачи, где отклонение от положения равновесия довольно большое, погрешность составляет не более 10%. Ну а для случаев, где отклонение действительно мало, и того меньше: не более сотой процента. Это, в общем-то, довольно хорошая точность

Ну и приведу еще полное решение картинкой (опять таки, вдруг кому так удобнее):

Что ж, на этом можно закончить мучать поршень с цилиндром) Но я попрошу вас здесь сделать паузу и пробежаться глазами по решению. Обратите внимание на подход: мы сперва записали одно из уравнений, которое должно будет что-то описывать в задаче (закон Ньютона), расписали его для случая в данной задаче. В результате у нас появился ряд дополнительных неизвестных, которые мы последовательно определяли, используя еще какие-либо формулы (сперва раскрыли каждую из сил, затем, так как у нас получилось неизвестным давление, записали формулы для газа, из них нашли давление и подставили в уравнение, и когда неизвестные в уравнении кончились, решили само уравнение). А при рассмотрении малых отклонений - внесли этот факт в уравнение. Думаю, осмысление и понимание этого принципа (записали формулу(-ы) и последовательно избавляемся от неизвестных в ней (них) при помощи других формул) позволит преодолеть такую проблему, как "не понятно, с чего вообще начинать решение". Хотя, конечно, тут еще будет важен опыт, то есть надо понарешивать задачек

Естественно, последовательно записывать и изменять уравнения - не единственный подход. Мы можем рассматривать бесконечно малый элемент какого-то процесса, также возможен вариант, когда мы записываем сразу все исходные уравнения и потом уточняем и редуцируем к более простой (в соответствии с условием). Но о них как-нибудь в другой раз...

Ну а на этом пост подходит к концу. Надеюсь, мне удалось изложить тему понятно, но если остались какие-то вопросы, то смело задавайте их в комментариях

Всем добра и аналитических решений!)

Наука | Научпоп

9.5K пост83K подписчиков

Правила сообщества

Основные условия публикации

- Посты должны иметь отношение к науке, актуальным открытиям или жизни научного сообщества и содержать ссылки на авторитетный источник.

- Посты должны по возможности избегать кликбейта и броских фраз, вводящих в заблуждение.

- Научные статьи должны сопровождаться описанием исследования, доступным на популярном уровне. Слишком профессиональный материал может быть отклонён.

- Видеоматериалы должны иметь описание.

- Названия должны отражать суть исследования.

- Если пост содержит материал, оригинал которого написан или снят на иностранном языке, русская версия должна содержать все основные положения.


- Посты-ответы также должны самостоятельно (без привязки к оригинальному посту) удовлетворять всем вышеперечисленным условиям.

Не принимаются к публикации

- Точные или урезанные копии журнальных и газетных статей. Посты о последних достижениях науки должны содержать ваш разъясняющий комментарий или представлять обзоры нескольких статей.

- Юмористические посты, представляющие также точные и урезанные копии из популярных источников, цитаты сборников. Научный юмор приветствуется, но должен публиковаться большими порциями, а не набивать рейтинг единичными цитатами огромного сборника.

- Посты с вопросами околонаучного, но базового уровня, просьбы о помощи в решении задач и проведении исследований отправляются в общую ленту. По возможности модерация сообщества даст свой ответ.


Наказывается баном

- Оскорбления, выраженные лично пользователю или категории пользователей.

- Попытки использовать сообщество для рекламы.

- Фальсификация фактов.

- Многократные попытки публикации материалов, не удовлетворяющих правилам.

- Троллинг, флейм.

- Нарушение правил сайта в целом.


Окончательное решение по соответствию поста или комментария правилам принимается модерацией сообщества. Просьбы о разбане и жалобы на модерацию принимает администратор сообщества. Жалобы на администратора принимает @SupportComunity и общество Пикабу.

Темы

Политика

Теги

Популярные авторы

Сообщества

18+

Теги

Популярные авторы

Сообщества

Игры

Теги

Популярные авторы

Сообщества

Юмор

Теги

Популярные авторы

Сообщества

Отношения

Теги

Популярные авторы

Сообщества

Здоровье

Теги

Популярные авторы

Сообщества

Путешествия

Теги

Популярные авторы

Сообщества

Спорт

Теги

Популярные авторы

Сообщества

Хобби

Теги

Популярные авторы

Сообщества

Сервис

Теги

Популярные авторы

Сообщества

Природа

Теги

Популярные авторы

Сообщества

Бизнес

Теги

Популярные авторы

Сообщества

Транспорт

Теги

Популярные авторы

Сообщества

Общение

Теги

Популярные авторы

Сообщества

Юриспруденция

Теги

Популярные авторы

Сообщества

Наука

Теги

Популярные авторы

Сообщества

IT

Теги

Популярные авторы

Сообщества

Животные

Теги

Популярные авторы

Сообщества

Кино и сериалы

Теги

Популярные авторы

Сообщества

Экономика

Теги

Популярные авторы

Сообщества

Кулинария

Теги

Популярные авторы

Сообщества

История

Теги

Популярные авторы

Сообщества