1

Continuing education

К сожалению этот пост не имеет смысла для тех, кто не воспринимает английский на слух хотя бы на базовом уровне, простите.


Многие считают современную физику тайным знанием, в которое лучше даже не пытаться проникнуть.

Не реже люди хотели бы понять, но не могут найти источник знаний не замутненный ошибочными упрощениями.


Все же мы понимаем, что материалы по физике делятся на 2 типа:

- зубодробительные заумные учебники вроде Ландавшица ( вот стандартная его характеристика: #comment_132578246 )

- научпоп, пестрящий упрощениями и приносящий смысл в жертву доступности


Не может же быть такого, чтоб какой-нибудь корифей современной физики потратил сотни часов на адаптацию физики и чтение лекций для людей от физики далеких.

Или может?


Оказывается не просто может, но уже настолько давно сделано, что погребено в истории.


Леонард Сасскинд - один из основателей теории струн - в Стэнфордском университете прочитал серию курсов лекций по программе continuing education.

Continuing education - это образование для тех, кто не занимается темой профессионально, но никогда не перестает учиться.


Идем на youtube канал Стэнфордского университета, открываем плейлисты и мотаем в самый низ. https://www.youtube.com/user/StanfordUniversity/playlists


Или пользуемся этим списком:
Course | Quantum Entanglements: Part 1 (Fall 2006)
Course | Modern Physics: Classical Mechanics
Course | Modern Physics: Quantum Mechanics
Lecture Collection | Modern Physics: Special Relativity
Lecture Collection | Quantum Entanglements: Part 3 (Spring 2007)
Lecture Collection | Classical Mechanics (Fall 2011)

Lecture Collection | Modern Physics: Einstein's Theory
Lecture Collection | Modern Physics: Cosmology
Lecture Collection | Particle Physics: Basic Concepts
Lecture Collection | String Theory and M-Theory
Lecture Collection | Modern Physics: Statistical Mechanics
Lecture Collection | Particle Physics: Standard Model
Lecture Collection | Topics in String Theory (Winter 2011)
Course | Statistical Mechanics
Lecture Collection | The Theoretical Minimum: Quantum Mechanics
Lecture Collection | General Relativity
Lecture Collection | Cosmology
Lecture Collection | Special Relativity
Lecture Collection | Advanced Quantum Mechanics

Дубликаты не найдены

+1

У Пенроуза несколько книжек с наукоёмким научпопом. Переведённых.

0

Фейнман "ниочём", да?

раскрыть ветку 1
0
Фуйнман хорош, но слегка хардкорен. Он скорее для студентов.
-2

Сеня, во первых,это копипаста, во вторых - реклама.....

Тебе это надо?....

раскрыть ветку 14
+3
Нуууу, эта реклама конкретно ТСу не несёт никаких материальных благ, а для студентов будет полезна
раскрыть ветку 9
+1

Добрый человек, поделись, будь ласков, рекламу каких товаров или услуг можно углядеть в данном посте.


Стэнфордскому университету глубоко безразличны зрители из бСНГ. Сасскинд уже давно заработал свое имя. Ютюб не заметит жалкой сотни переходов.
Я тут физику рекламирую?

раскрыть ветку 5
-3

Ютюбчик не смущает? А ведь даже просмотры дают баблосы, если не в курсе......

Так что материальные - налицо

@moderator, рассуди

раскрыть ветку 2
0

Копипаста, простите, чего? Ссылки из адресной строки браузера?

Реклама чего? Стэнфордского университета? Сасскинда? Физики? Ютюба?


Или подборка ссылок на познавательные материалы - оффтоп на сайте, на половину состоящему из перепостов реддита и смешных картинок из интернета?


Я специально не вставлял ссылок на Теоретический минимум от Сасскинда, чтоб параноики в рекламе книги не обвинили. Но увидеть тут рекламу - такого уровня паранойи я не ожидал даже от пикабу.

раскрыть ветку 3
-2

Иманно  пробелы между абзацами указывают на копипасту

Ютуб - не место для информации на  Пикабу

раскрыть ветку 2
Похожие посты
423

Принцип Паули: один из важнейших принципов в понимании природы вещества

Порой кажется странным, почему атомы и молекулы ведут себя определенным образом. Например, почему мы не можем проходить сквозь стены, но инфракрасное излучение через них проходит. Все может объяснить один принцип — принцип исключения Паули.

Принцип Паули: один из важнейших принципов в понимании природы вещества Физика, Квантовая физика, Наука, Длиннопост

©Wikipedia

Принцип исключения Паули утверждает, что два электрона (или два любых других фермиона) не могут иметь одинаковое квантово-механическое состояние в одном атоме или одной молекуле. Другими словами, ни одна пара электронов в атоме не может иметь одинаковые электронные квантовые числа.


Этот принцип был предложен австрийским физиком Вольфгангом Паули в 1925 году для описания поведения электронов. В 1940-м он расширил принцип до всех фермионов в своей теореме о связи спина со статистикой. Бозоны — частицы с целым числом спинов — не следуют принципу исключения. Таким образом, идентичные бозоны могут занимать одно и то же квантовое состояние (как, например, фотоны в лазерах). Принцип исключения Паули применим только к частицам с полуцелым спином.


О спине проще всего думать как о вращении частицы вокруг собственной оси. Конечно, это сильное упрощение — и в реальности невозможно сказать наверняка, вращается ли на самом деле нечто столь малого размера вроде электрона. В общем говоря, спин подчиняется тем же математическим законам момента импульса, что и все вращающиеся объекты в классической физике. Здесь есть два важных момента, о которых стоит помнить: скорость вращения и направление оси, вокруг которой частица вращается (верхний или нижний спин).

Принцип Паули: один из важнейших принципов в понимании природы вещества Физика, Квантовая физика, Наука, Длиннопост

Вольфганг Паули во время лекции / © W. Dieckvoss

Когда в 1922 году Отто Штерн и Уолтер Герлах открыли спин, их эксперименты показали, что присущий момент импульса, или спин, частицы вроде электрона квантовался, то есть мог принимать только определенные дискретные значения. Спин композитных частиц, таких как протоны, нейтроны и атомные ядра, — просто сумма спинов и орбитального момента импульса частиц, из которых они состоят, а значит, они подчиняются тем же условиям квантования. Таким образом, спин — это абсолютно квантово-механическое свойство частицы и оно не может быть объяснено классической физикой.


Позже выяснилось, что есть две подкатегории частиц: частицы с целым спином, известные сегодня как бозоны — среди которых фотоны, глюоны, W- и Z-бозоны, — а также гипотетические гравитоны и частицы с полуцелым спином: фермионы, включающие в себя электроны, нейтрино, мюоны и кварки, из которых состоят композитные частицы типа протонов и нейтронов. Различие между бозонами и фермионами можно описать тем, что у первых есть симметричные волновые функции, а у фермионов волновые функции асимметричны. Концепция частицы с полуцелым спином — очередной пример парадоксальной природы субатомных частиц: грубо говоря, фермиону нужно обернуться вокруг своей оси дважды, прежде чем он примет прежнее положение.


Важность этого различия для квантовой теории состоит в том, что волны вероятности бозонов «переворачиваются» — или инвертируются, — прежде чем успевают интерферировать друг с другом, что, по сути, и ведет к их «стадному» характеру и коллективному поведению в лазерах, сверхтекучих жидкостях и сверхпроводниках. Фермионы, однако, не переворачивают свои волны вероятности, что, помимо прочего, приводит к «асоциальному» характеру. Так и получается, что в квантовой механике складывать спины частиц нужно очень аккуратно и при помощи специальных правил вдобавок к моменту импульса.

Принцип Паули: один из важнейших принципов в понимании природы вещества Физика, Квантовая физика, Наука, Длиннопост

Атом углерода. На первом энергетическом уровне (оболочке первого уровня) расположено два электрона. На втором — уже четыре / © AWS

Все вышеописанное и подводит нас к одному из важнейших принципов в квантовой механике — принципу исключения Паули. Как было сказано выше, он гласит, что два идентичных фермиона не могут занимать одно и то же квантовое состояние одновременно (хотя два электрона, например, могут приобрести противоположные спины, чтобы дифференцировать свои квантовые состояния). Этот принцип можно описать так: никакие два фермиона в квантовой системе не могут обладать одинаковыми значениями всех четырех квантовых чисел в любой момент времени. Принцип исключения Паули эффективно объясняет продолжительное существование очень высокоплотных белых карликов, а также существование разных типов атомов во Вселенной, крупномасштабную стабильность вещества и ее основную массу.


Чтобы понять важность этого принципа, необходимо знать, что, согласно боровской модели атома, электроны в атоме (существующие в том же количестве, что и протоны в ядре конкретного атома, чтобы общий заряд равнялся нулю) могут занимать только конкретные дискретные орбитальные позиции вокруг ядра, что также называют оболочкой атома. Чем ближе электроны к ядру, тем сильнее электрическая сила притягивает электрон внутрь и тем больше энергии понадобится, чтобы «вырвать» его из лап ядра. На самых близких к ядру орбиталях могут поместиться всего два электрона — один с верхним спином, а один — с нижним, чтобы иметь разные квантовые состояния. Оболочка энергетическим уровнем выше может вместить уже восемь, на уровень выше — 18, на следующем уровне — 32.


Принцип исключения Паули диктует, как электроны могут расположиться внутри атома по его орбиталям. Тот факт, что два электрона не могут одновременно занимать одно и то же квантовое состояние, не дает им «нагромождаться» друг на друга, тем самым объясняя, почему материя занимает исключительно свое место и не позволяет другим материальным объектам проходить через себя, но в то же время позволяет проходить через себя свету и излучению.

Принцип Паули: один из важнейших принципов в понимании природы вещества Физика, Квантовая физика, Наука, Длиннопост

Два атома формируют ковалентную связь. У каждого из атомов есть всего один электрон на самой дальней орбитали. Для получения более низкого энергетического состояния атомы объединяют свои электроны и образуют общую орбиталь, содержащую два электрона / © The Physics Mill

Этот принцип также объясняет существование разных атомов в периодической таблице и разнообразие мира, окружающего нас. Например, когда атом получает новый электрон, он всегда попадает на самый низкий из доступных энергетических уровней (наиболее отдаленную от ядра орбиталь). Два атома с «закрытыми» оболочками не могут осуществить химическую связь друг с другом из-за того, что электроны одного атома не находят доступных квантовых состояний, которые они могли бы занять в другом атоме. Итак, порядок электронов, а именно — электронов на самой отдаленной орбитали, также влияет на химические свойства элемента и способность атомов ко взаимодействию с другими атомами, а значит, и на то, как взаимодействуют молекулы при формировании газов, жидкостей или твердых тел, и на то, как они объединяются в живых организмах.


Принцип исключения Паули — один и самых важных принципов в квантовой физике, по большей части из-за того, что все три типа частиц, из которых состоит вся обычная материя (электроны, протоны и нейтроны), подчиняются ему. Однако интересно, что этот принцип не поддерживается никакими физическими силами, известными науке. Когда электрон входит в ион, он каким-то образом уже «знает» квантовые числа электронов, находящихся там, то есть знает, какие атомные орбитали он может занять, а какие — нет.


Источник: Naked Science.

Вам будет интересно:

10 природных явлений на Земле, которые мы не понимаем

Добро пожаловать в войд Волопаса — самое страшное место во Вселенной

Поедатели человеческой плоти: от ушных червей до цитотоксических пауков

Показать полностью 3
205

Физики рассказали о новом квантовом парадоксе

Как минимум одно из трех фундаментальных предположений о нашем мире — неверно.

Физики рассказали о новом квантовом парадоксе Физика, Квантовая физика, Наука, Парадокс, Длиннопост

Принципы квантовой физики практически идеально подходят для предсказания и описания поведения атомов и субатомных частиц. Но применение квантовой теории к объектам куда большим, чем атомы к наблюдателям — например, к наблюдателям, производящим измерения, — вызывает много сложных концептуальных вопросов. В новой статье, опубликованной в Nature Physics, группа австралийских исследователей описывает парадокс, связанный с подобным масштабированием.

Физики рассказали о новом квантовом парадоксе Физика, Квантовая физика, Наука, Парадокс, Длиннопост

«Этот парадокс означает, что если квантовая теория работает для описания [поведения] наблюдателей, то ученым придется отказаться от одного из трех устоявшихся предположений», — объясняет один из авторов работы Эрик Кавальканти. Первое из этих предположений заключается в том, что наблюдаемый результат измерения является единственным реальным событием, и не существует никаких иных вариантов данного события в «альтернативных вселенных».


Второе предположение состоит в том, что экспериментальные установки могут быть выбраны свободно и без каких-либо ограничений, что позволяет ученым проводить рандомизированные испытания. А последнее предположение — в том, что, как только такой свободный выбор установки сделан, его влияние не может распространяться во Вселенную быстрее скорости света. «Каждое из этих фундаментальных предположений кажется вполне разумным. Но мы показали, что как минимум одно из этих распространенных убеждений должно быть неправильным, — заключает Кавальканти. — Отказ от любого из них имеет далеко идущие последствия для нашего понимания мира».


Исследователи пришли к этому парадоксу, проанализировав сценарий со вполне разделенными квантово запутанными частицами в сочетании с «квантовым наблюдателем» — системой, которую можно модифицировать и измерять извне, но которая при этом сама может производить измерения квантовых частиц. Основываясь на трех фундаментальных предположениях, ученые математически определили пределы того, какие экспериментальные результаты возможны в этом сценарии. Но, будучи примененной к наблюдателям, квантовая теория предсказывает результаты, которые нарушают эти самые пределы.

Физики рассказали о новом квантовом парадоксе Физика, Квантовая физика, Наука, Парадокс, Длиннопост

Схема экспериментальной установки, использованной в ходе экспериментов / Wiseman, Cavalcanti, Tischler et al., Nature Physics, 2020

В дальнейшем ученые планируют модифицировать свой экспериментальный сценарий для окончательного подтверждения парадокса. «У нашего «наблюдателя» был, так сказать, очень маленький мозг. У него всего два состояния памяти, которые реализуются как два разных пути для фотона», — говорит соавтор работы Нора Тишлер.


«Эксперимент нашей мечты — это опыт, в котором квантовый наблюдатель представляет собой программу искусственного интеллекта уровня, сравнимого с человеком, работающую на мощном квантовом компьютере, — добавляет руководитель исследований Говард Вайзман. — Уже давно ясно, что квантовые компьютеры революционизируют нашу способность решать сложные вычислительные задачи. Чего мы не осознавали, пока не начали это исследование, так это того, что они могут помочь в решении сложных философских проблем: природы физического и ментального мира, а также их взаимодействий».


Источник: naked-science.ru

Показать полностью 2
2032

Что будет, если упасть в чёрную дыру?

UPD: в комментариях имеется много критики в адрес поста

---

Наверняка вы полагаете, что если упадете в чёрную дыру, то вас ждет мгновенная смерть. Но в действительности, как полагают физики, ваша судьба будет куда более странной. В будущем такое может произойти с кем угодно. Может, вы пытаетесь найти новую обитаемую планету для человеческой расы или просто уснули в долгом пути. Что будет, если вы упадете в чёрную дыру? Можно было бы ожидать, что вас перемелет или разорвёт. Но всё не так просто.

В момент, когда вы войдёте в чёрную дыру, реальность будет разделена на две части. В одной вы будете немедленно уничтожены, а в другой погрузитесь в чёрную дыру совершенно невредимым.

Что будет, если упасть в чёрную дыру? Черная дыра, Космос, Вселенная, Наука, Длиннопост, Теория относительности, Квантовая механика

Чёрная дыра — это место, в котором известные нам законы физики не работают. Эйнштейн учил нас, что гравитация искривляет само пространство, деформирует его. Поэтому если взять достаточно плотный объект, пространство-время может стать настолько кривым, что завернется само в себя, проделав отверстие в самой ткани реальности.

Массивная звезда, которая исчерпала топливо, может обеспечить чрезвычайную плотность, необходимую для создания этого деформированного участка пространства. Прогибаясь под собственным весом и коллапсируя, массивный объект затягивает с собой и пространство-время. Гравитационное поле становится настолько мощным, что его не может покинуть даже свет, чем обрекает область, в котором находится эта звезда, на мрачную судьбу: чёрная дыра.


Внешней границей чёрной дыры является её горизонт событий, точка, в которой сила гравитации противодействует попыткам света покинуть ее. Подойдите слишком близко и возврата уже не будет.

Горизонт событий пылает энергией. Квантовые эффекты на этой границе создают потоки горячих частиц, утекающих обратно во Вселенную. Это так называемое излучение Хокинга, названное в честь физика Стивена Хокинга, который предсказал его существование. По истечении достаточного времени чёрная дыра испарит свою массу полностью и исчезнет.

Погружаясь в чёрную дыру, вы обнаружите, что пространство становится все более искривлённым, пока в самом центре не станет изогнутым бесконечно. Это сингулярность. Пространство и время перестают иметь хоть какой-нибудь смысл, и законы физики, известные нам, которые нуждаются в пространстве и времени, больше не работают.

Что будет, если упасть в чёрную дыру? Черная дыра, Космос, Вселенная, Наука, Длиннопост, Теория относительности, Квантовая механика

Что происходит в сингулярности? Никто не знает. Другая вселенная? Забвение? Мэтью Макконахи плавает по ту сторону книжных полок? Загадка.

Что же произойдет, если вы случайно упадете в одну из этих космических аберраций? Сначала спросим вашего космического напарника — назовем её Анна — которая с ужасом смотрит, как вы плывёте по направлению к чёрной дыре, в то время как она остаётся на безопасном расстоянии. Она наблюдает странные вещи.


Если вы ускоряетесь по направлению к горизонту событий, Анна видит, как вы растягиваетесь и искажаетесь, словно она смотрит на вас через гигантскую лупу. Кроме того, чем ближе вы подходите к горизонту, тем больше ваши движения замедляются.

Вы не можете крикнуть, поскольку воздуха в космосе нет, но можете попытаться сигнализировать Анне сообщение Морзе светом своего iPhone (даже приложение есть для этого). Однако ваши слова будут достигать ее все медленнее и медленнее, поскольку световые волны растягиваются до все более низких и красных частот: «Хорошо, х о р о ш о, х о р о…».


Когда вы достигнете горизонта, Анна увидит, что вы замёрзли, словно кто-то нажал кнопку паузы. Вы отпечатаетесь там, обездвиженный и вытянутый по всей поверхности горизонта, когда нарастающее тепло начнёт вас поглощать.


По мнению Анны, вас медленно стирает растяжение пространства, остановка времени и тепло излучения Хокинга. Перед тем как погрузиться в темноту чёрной дыры, вы превратитесь в пепел.


Но прежде чем начинать планировать похороны, давайте забудем об Анне и посмотрим на эту жуткую сцену с вашей точки зрения. И знаете, что тут происходит? Ничего.

Что будет, если упасть в чёрную дыру? Черная дыра, Космос, Вселенная, Наука, Длиннопост, Теория относительности, Квантовая механика

Вы плывете прямиком в самое зловещее проявление природы и не получаете ни шишки, ни синяка — и уж точно не растягиваетесь, не замедляетесь и не поджариваетесь на излучении. Потому что находитесь в свободном падении и не испытываете гравитации: Эйнштейн назвал это «самой счастливой мыслью».


В конце концов, горизонт событий — это не кирпичная стена, плавающая в пространстве. Это артефакт перспективы. Наблюдатель, который остается вне чёрной дыры, не может видеть сквозь него, но это не ваша проблема. Для вас горизонта не существует.


Если бы чёрная дыра была меньше, у вас были бы проблемы. Сила гравитации была бы гораздо сильнее у ваших ног, чем у вашей головы, и растянула бы вас как спагетти. Но к счастью для вас это большая черная дыра, в миллионы раз массивнее Солнца, так что силы, которые могли бы вас спагеттифицировать, достаточно слабы, чтобы их можно было проигнорировать.


Более того, в достаточно большой чёрной дыре вы могли бы прожить остаток своей жизни, а после умереть в сингулярности.

Что будет, если упасть в чёрную дыру? Черная дыра, Космос, Вселенная, Наука, Длиннопост, Теория относительности, Квантовая механика

Насколько нормальной эта жизнь будет, большой вопрос, учитывая что вас засосало против вашей воли в разрыв в пространственно-временном континууме и обратного пути нет.

Но если задуматься, нам всем знакомо это чувство, по опыту общения не с пространством, но со временем. Время идет только вперед, никогда назад, и засасывает нас против нашей воли, не оставляя шанса на отступление.


Это не просто аналогия. Чёрные дыры искажают пространство и время до такого экстремального состояния, что внутри горизонта событий чёрной дыры пространство и время на самом деле меняются ролями. В действительности, именно время засасывает вас в сингулярность. Вы не можете развернуться и уйти из черной дыры точно так же, как не можете развернуться и уйти обратно в прошлое.

В этот момент вы спросите себя: что не так с Анной? Если вы прохлаждаетесь внутри черной дыры, будучи окруженным пустым пространством, почему ваш напарник видит, как вы сгораете в излучении на горизонте событий? Галлюцинации?

Что будет, если упасть в чёрную дыру? Черная дыра, Космос, Вселенная, Наука, Длиннопост, Теория относительности, Квантовая механика

На самом деле, Анна пребывает в полном здравии. С её точки зрения вы действительно сгорели на горизонте. Это не иллюзия. Она даже могла бы собрать ваш пепел и отправить его домой.

На самом деле, законы природы требуют, чтобы вы оставались за пределами чёрной дыры, как это видно с точки зрения Анны. Это потому что квантовая физика требует, чтобы информация не пропадала, не терялась. Каждый бит информации, который говорит о вашем существовании, должен оставаться за пределами горизонта, чтобы законы физики Анны не нарушались.


С другой стороны, законы физики также требуют, чтобы вы плыли через горизонт, не сталкиваясь с горячими частицами или чем-то из ряда вон выходящего. В противном случае, вы будете нарушать «самую счастливую мысль» Эйнштейна и его общую теорию относительности.

Итак, законы физики требуют, чтобы вы одновременно были снаружи чёрной дыры в виде горстки пепла и внутри чёрной дыры, живы и здоровы. И есть также третий законы физики, который говорит, что информация не может быть клонирована. Вы должны быть в двух местах, но может быть только одна копия вас.

Так или иначе, законы физики приводят нас к выводу, который кажется довольно бессмысленным. Физики называют эту головоломку информационным парадоксом чёрной дыры. К счастью, в 1990-х они нашли способ её разрешить.

Что будет, если упасть в чёрную дыру? Черная дыра, Космос, Вселенная, Наука, Длиннопост, Теория относительности, Квантовая механика

Леонард Сасскинд пришёл к выводу, что парадокса нет, поскольку никто не видит вашу копию. Анна видит только одну копию вас. Вы видите только одну свою копию. Вы и Анна никогда не сможете их сопоставить (и свои наблюдения тоже). И нет третьего наблюдателя, который мог бы одновременно наблюдать чёрную дыру изнутри и снаружи. Так что никакие законы физики не нарушаются.

Но вы наверняка хотели бы узнать, чья же история правдива. Мёртвы вы или живы? На самом деле правды здесь нет. Тот вы, который смотрит на мир от первого лица, жив. Вы, который остался на горизонте чёрной дыры и превратился в пепел, мёртв. Происходит расщепление реальности, где в одной вас уже нет.

Есть такие явления, где нет истины; каждый воспринимает её по-своему.

Например, вы можете полететь в параллельный мир, где проживёте всего пару дней, а потом обратно вернётесь на Землю. Вернувшись, обнаружите, что все ваши близкие и знакомые уже давно ушли из жизни, и привычный вам мир в той или иной степени изменился. Вы отправились в параллельную вселенную, когда на Земле был 2024 год, а вернулись в 2088 году, хотя, казалось бы, прошло всего несколько дней.

Да, для вас действительно прошло всего пару дней, но на Земле этот самый промежуток времени протекал иначе, у вас он протекал значительно медленнее, но от этого суть не меняется: время у всех одно, но протекает везде по разному. В вашей вселенной это время воспринималось как многие года, а вы в параллельной вселенной воспринимали это время как какие-то там три-четыре денька, и в отличии от ваших тогдашних знакомых ваш организм состарился на эти самые три или четыре дня, но не на больше. Вернувшись обратно, вы можете посчитать, что оказались в будущем, и отчасти это действительно так. Вы вернётесь молодым и здоровым, и эти 64 года на Земле для вас были несколькими днями в параллельном мире.

Летом 2012 года физики Ахмед Альмейри, Дональд Марольф, Джо Полчински и Джеймс Салли, коллективно известные как AMPS, задумали мысленный эксперимент, который грозил перевернуть все, что мы насобирали о чёрных дырах. Они предположили, что решение Сасскинда основано на том, что любое несоответствие между вами и Анной опосредовано горизонтом событий. Не имеет значения, увидела ли Анна неудачную версию вас, растерзанных излучением Хокинга, поскольку горизонт не позволяет ей увидеть другую версию вас, плавающую в чёрной дыре.

Но что, если бы у нее был способ узнать, что было по ту сторону горизонта, не пересекая его?

Обычная относительность скажет «ни-ни», но квантовая механика немного размывает правила. Анна могла бы заглянуть за горизонт, используя небольшой трюк, который Эйнштейн называл «жутким действием на расстоянии».

Это происходит, когда два набора частиц, разделенных в пространстве, загадочным образом «запутаны». Они являются частью единого невидимого целого, поэтому информация, которая их описывает, загадочным образом связывается между ними.
Что будет, если упасть в чёрную дыру? Черная дыра, Космос, Вселенная, Наука, Длиннопост, Теория относительности, Квантовая механика

Идея AMPS основана на этом явлении. Скажем, Анна зачерпывает немного информации у горизонта — назовём ее А.

Если её история верна, и вы уже отправились в мир получше, тогда А, зачерпнутая в излучении Хокинга за пределами чёрной дыры, должна быть запутана с другой частицей информации B, которая также является частью горячего облака излучения. С другой стороны, если верна ваша история и вы живы и здоровы по другую сторону горизонта событий, то А должна быть запутана с другой частицей информации C, которая находится где-то внутри чёрной дыры. Но вот момент: каждый бит информации можно запутать лишь единожды. Из этого следует, что А может быть запутана либо с B, либо с C, но не одновременно с обеими.

Итак, Анна берёт свою частицу A и помещает ее в ручную машину декодирования запутанности, которая выдает ей ответ: B или C.

Если ответ C, побеждает ваша история, но законы квантовой механики нарушаются. Если A запутана с C, которая глубоко внутри в чёрной дыре, тогда эта частица информации потеряна для Анны навсегда. Это нарушает квантовый закон невозможности потери информации.


Остается B. Если декодирующая машина Анны обнаруживает, что А запутана с B, Анна побеждает и общая теория относительности проигрывает. Если А запутана с B, история Анны будет единственной верной историей, из чего следует, что вы на самом деле сгорели дотла. Вместо того, чтобы плыть прямо через горизонт, как подсказывает относительность, вы столкнетесь с пылающей стеной огня. Таким образом, мы возвращаемся к тому, с чего начали: что происходит, когда вы падаете в черную дыру? Вы скользите через нее и живете нормальной жизнью, благодаря реальности, которая странным образом зависит от наблюдателя? Или вы подходите к горизонту чёрной дыры только чтобы столкнуться со смертельной стеной огня?

Никто не знает ответ, и поэтому этот вопрос стал одним из самых спорных в области фундаментальной физики.

Более ста лет физики пытаются примирить общую теорию относительности с квантовой механикой, полагая, что одной из них придётся в конечном счёте уступить. Решение парадокса вышеупомянутой стены огня должно указать на победителя, а также привести нас к еще более глубокой теории Вселенной.


Одна из подсказок может лежать в машине декодирования Анны. Выяснить, какой из других битов информации запутан с A, является чрезвычайно сложной задачей. Поэтому физики Даниэль Харлоу из Принстонского университета в Нью-Джерси и Патрик Хейден, работающий в Стэнфордском университете в Калифорнии, решили разобраться, сколько времени потребуется на декодирование. В 2013 году они подсчитали, что даже при самом быстром компьютере, который только может существовать, Анне потребуется невероятно много времени, чтобы расшифровать запутанность. К моменту, когда она найдёт ответ, чёрная дыра уже давно испарится, исчезнет из Вселенной и заберёт с собой загадку смертельной стены огня.

Если это так, то одна только сложность этой проблемы может помешать Анне выяснить, чья же история верна. Обе истории останутся в равной степени верными, законы физики — нетронутыми, реальность — зависящей от наблюдателя, и никто не подвергнется опасности быть поглощенным стеной огня. Это также дает физикам новую пищу для размышлений: дрязнящие связи между сложными вычислениями (вроде тех, которые не может провести Анна) и пространством-временем. Возможно, где-то здесь скрывается нечто большее.

Таковы черные дыры. Они не только являются досадными препятствиями для космических путешественников. Они также являются теоретическими лабораториями, которые доводят законы физики до белого каления, а тонкие нюансы нашей Вселенной выводят на такой уровень, что проигнорировать их уже нельзя.

Что будет, если упасть в чёрную дыру? Черная дыра, Космос, Вселенная, Наука, Длиннопост, Теория относительности, Квантовая механика

Благодарю всех за прочтение данного поста🌌

Основная информация взята отсюда:

https://hi-news.ru/eto-interesno/chto-budet-esli-upast-v-che...

Показать полностью 7
30

"Нарушение реальности" - непонятно, но страшновато за реальность

"Физики поставили рекорд по нарушению реальности


Швейцарские физики впервые продемонстрировали парадокс Эйнштейна — Подольского — Розена (ЭПР-парадокс) на квантовой системе, состоящей из 600 атомов рубидия. Ученым удалось нарушить локальный реализм, осуществив запутывание между двумя частями облака сверхохлажденного газа и доказав возможность управления (англ. steering), когда состояние одной части квантовой системы можно предсказать по состоянию второй. Статья ученых опубликована в журнале Science, сообщает Science Alert."




https://texnomaniya.ru/fiziki-postavili-rekord-po-narusheniy...

57

Ученые обнаружили квантовые флуктуации в вакууме"Виртуальные частицы"

Ученые из университета Констанц (Германия) под руководством профессора Альфреда Ляйтенсторфера впервые непосредственно зарегистрировали явление квантовой флуктуации (колебаний электромагнитного поля) в вакууме. С помощью новейшей оптической установки с использованием особых световых импульсов в заданном диапазоне физики смогли пронаблюдать это явление. Полученные выводы позволяют вплотную подойти к пониманию свойств «абсолютного ничто» и, безусловно, являются важным шагом в развитии квантовой физики. Результаты исследования опубликованы в журнале Science.

О существовании вакуумных флуктуаций теоретически было известно достаточно давно, однако никому еще не удавалось увидеть это явление непосредственно. Говоря простым языком, существование вакуумных флуктуаций означает, что даже в абсолютной темноте и тишине все же происходят некоторые колебания электромагнитного поля. До сих пор считалось, что это явление проявляется себя лишь косвенно: например, в спонтанном свечении, издаваемом атомами газа в люминесцентной лампе.

Международная группа физиков, в которую входили и российские исследователи Денис Селетский и Андрей Москаленко, сконструировала экспериментальную установку, которая может проводить измерение электрических полей со сверхвысоким временным разрешением и чувствительностью. Ученые использовали опыт передовых достижений в области оптических технологий. Установка включает новейшую лазерную установку, способную производить сверхкороткие лучи очень высокой стабильности.

Благодаря своему изобретению исследователям удалось измерить колебания поля в абсолютной пустоте, происходящие за миллионные доли одной миллиардной секунды (фемтосекунду). Важно, что время наблюдения было короче периода колебаний световых волн. Естественным ограничением в ходе эксперимента выступала лишь квантовая природа поля. Ученые составили теоретическое описание своего эксперимента на основе квантовой теории.

Профессор Ляйтенсторфер рассказал, что проведение эксперимента и проверка полученных выводов стоили команде пары лет бессонных ночей — ученым нужно было исключить все возможные факторы проникновения паразитных сигналов.

Значимо, что этот эксперимент открывает доступ к основному состоянию квантовой системы в его естественном состоянии, без использования специальных усилений и других видоизменений. Теперь у исследователей появился ключ к миру сверхкоротких событий, происходящих в квантовом мире.

Чтоб понять что такое виртуальные частицы, и причём здесь квантовый вакуум. Советую посмотреть мой видеоролик, где я всё в простой форме объяснил, что же такое пустое пространство
P. S : Удачного просмотра

651

Легко понять, когда учитель умеет объяснять

Легко понять, когда учитель умеет объяснять Комментарии на Пикабу, Квантовая запутанность, Квантовая физика, Юмор, Носки

#comment_87710283

Легко понять, когда учитель умеет объяснять Комментарии на Пикабу, Квантовая запутанность, Квантовая физика, Юмор, Носки

Баянометр ругается на картинку - не обращайте внимания, картинка как предыстория.

Основное содержание поста в скриншоте комментариев.

1276

Почему замедляется время вблизи массивных планет?

Всем привет, это шестая часть обзора книги Стивена Хокинга «Кратчайшая история времени».

И сегодня мы будем пытаться понять, что же такое общая теория относительности и почему вблизи планет стрелки часов замедляются. Если тыкнуть на хокинга повыше, ещё и мультик покажут.

Общая теория относительности основана на революционном предположении что гравитация – это не обычная сила, а лишь следствие того что пространство-время не является плоским. В этой теории пространство-время искривляется любым помещённым в него предметом имеющим массу или энергию. И тела помещённые в такое пространство следуют не по круговым орбитам. Они следуют по особым линиям, которые называются геодезические. Это аналог прямых в искривлённых пространствах. Не пытайтесь сейчас это представить. Ибо мы вообразить такое не можем, наш разум ограничен тремя измерениями.

Почему замедляется время вблизи массивных планет? Теория относительности, Физика, Стивен Хокинг, Альберт Эйнштейн, Мультфильмы, Научпоп, Видео, Длиннопост

Мы можем лишь провести аналогию с двумерным искривлённым пространством. Обычная плоскость – это пример двумерного пространства. А поверхность земли – это двумерное искривлённое пространство. Примером геодезической линии на поверхности земли – является, например, экватор. Вообще в искривлённых пространствах, геодезическая линия – это такая линия, которая определяется как кратчайшее (или наоборот самое длинное) расстояние между двумя точками. Допустим, вы решили отправиться из Москвы в Магадан. Вы можете двинуться по компасу почти строго на восток и пройти расстояние примерно 6088 км, либо двинуться по искривлённому пути и пройти всего 5921 км. На плоской карте, как вы можете видеть, геодезическая линия практически соответствует полуокружности. Т.е. если представлять поверхность земли как плоскость, то нужно двигаться по сектору, но если посмотреть на этот же путь со сторону третьего измерения, то полуокружность превращается в линию.

Почему замедляется время вблизи массивных планет? Теория относительности, Физика, Стивен Хокинг, Альберт Эйнштейн, Мультфильмы, Научпоп, Видео, Длиннопост

В общей теории относительности тела всегда следуют по геодезическим линиям в четырехмерном пространстве-времени. В отсутствие материи эти прямые линии в четырехмерном пространстве-времени соответствуют прямым линиям в трехмерном пространстве. В присутствии материи четырехмерное пространство-время искажается, вызывая искривление траекторий тел в трехмерном пространстве.


Нечто подобное можно представить, если вообразить траекторию движения спутника пролетающего мимо планеты по прямой. Несмотря на то, что спутник двигается прямо, его проекция на поверхности планеты, будет двигаться по искривлённой траектории, напоминающей окружность.

Почему замедляется время вблизи массивных планет? Теория относительности, Физика, Стивен Хокинг, Альберт Эйнштейн, Мультфильмы, Научпоп, Видео, Длиннопост

Расхождения общей теории относительности с законами Ньютона хоть и очень малы, но всё же есть. Особенно они заметны для планет ближе всего расположенных к солнцу. В частности для меркурия. Практическое подтверждение этих расхождений, было одним из первых доказательств общей теории относительности, для Меркурия расхождения были замечены ещё в 1915 году.


Второе волшебное свойство, вытекающее из общей теории относительности – это отклонение траектории света от прямой линии, под действием гравитации. Лучи света, тоже вынуждены двигаться по геодезическим линиям.


Ну и самое невероятное предположение – замедление течения времени около массивных тел, например нашей планеты. Вспомним что Эйнштейн в 1905 году выдвинул постулат что все законы физики протекают одинаково, для всех свободно-движущихся наблюдателей. Грубо говоря, принцип эквивалентности, общей теории распространяет это правило и на тех наблюдателей, которые движутся не свободно, а под действием гравитационного поля. В рамках нашего ролика, отбросив сложности, можно сказать так: в достаточно малых областях пространства невозможно судить о том, пребываете ли вы в состоянии покоя в гравитационном поле или движетесь с постоянным ускорением в пустом пространстве.


Что это означает простыми словами. Представьте, что вы находитесь в лифте посреди пустоты. Лифт неподвижный, нет ни верха ни низа. Он просто висит в пустоте. И вот он начинает двигаться с постоянным ускорением. Вы ощущаете вес, одна из стенок лифта превращается в пол. И если вы уроните яблоко – оно упадёт на пол ровно так же, как если бы вы находились на земле. Эйнштейн понял, что, подобно тому как, находясь в вагоне поезда, вы не можете сказать, стоит он или равномерно движется, так и, пребывая внутри лифта, вы не в состоянии определить, перемещается ли он с постоянным ускорением или находится в однородном гравитационном поле. Результатом этого понимания и стал принцип эквивалентности.


Теперь мы готовы перейти к другому мысленному опыту. Представьте что мы находимся на борту огромной, летящей в космосе, ракеты. Для простоты вообразим, что ракета настолько большая, что свету требуется целая секунда, чтобы пересечь её сверху донизу. Ну и в ракете у нас будут два наблюдателя. Один в носу ракеты, другой в самом низу, у двигателей. У обоих наблюдателей есть совершенно одинаковые часы, ведущие отсчёт секунд.

Почему замедляется время вблизи массивных планет? Теория относительности, Физика, Стивен Хокинг, Альберт Эйнштейн, Мультфильмы, Научпоп, Видео, Длиннопост

Верхний наблюдатель, дождавшись тиканья часов часов, даёт сигнал нижнему наблюдателю, а спустя ровно секунду, ещё один. Нижний наблюдатель зарегистрирует эти сигналы с таким же интервалов времени, какой был у верхнего – одна секунда.


А теперь предположим, что наша ракета ускоряется. Поскольку корпус ракеты двигается вверх, то свету требуется пройти меньшее расстояние до низа ракеты, и второй наблюдатель получит сигнал раньше чем через секунду. Если бы ракета двигалась с постоянной скоростью, то и второй сигнал прибыл бы ровно настолько же раньше. Так что интервал между двумя сигналами остался бы равным одной секунде. Но в момент отправки второго сигнала благодаря ускорению ракета движется быстрее, чем в момент отправки первого, так что второй сигнал пройдет меньшее расстояние, чем первый, и затратит еще меньше времени. Наблюдатель внизу, сверившись со своими часами, зафиксирует, что интервал между сигналами меньше одной секунды, и не согласится с верхним наблюдателем, который утверждает, что посылал сигналы точно через секунду.


Именно этот принцип и лежит в основе изменения хода часов у разных наблюдателей при ускоренном движении.


В случае с ускоряющейся ракетой этот эффект, вероятно, не должен особенно удивлять. В конце концов, мы только что его объяснили! Но вспомните: принцип эквивалентности говорит, что то же самое имеет место, когда ракета покоится в гравитационном поле. Следовательно, даже если ракета не ускоряется, а, например, стоит на стартовой площадке на поверхности Земли, сигналы, посланные верхним наблюдателем с интервалом в секунду (согласно его часам), будут приходить к нижнему наблюдателю с меньшим интервалом (по его часам). Вот это действительно удивительно!


Подобно тому как специальная теория относительности говорит нам, что время идет по-разному для наблюдателей, движущихся друг относительно друга (об этом можешь почитать в предыдущем посте/посту), общая теория относительности объявляет, что ход времени различен для наблюдателей, находящихся в разных гравитационных полях. Согласно общей теории относительности нижний наблюдатель регистрирует более короткий интервал между сигналами, потому что у поверхности Земли время течет медленнее, поскольку здесь сильнее гравитация. Чем сильнее гравитационное поле, тем больше этот эффект. Законы движения Ньютона положили конец идее абсолютного положения в пространстве. Теория относительности, как мы видим, поставила крест на абсолютном времени.


Кстати для нас - людей тоже верен данный принцип. Он известен как парадокс близнецов. Если один из близнецов живёт на вершине горы, а второй у подножия, то первый будет стареть немного быстрее второго. Потому что для второго близнеца, гравитационное поле немного сильнее, а следовательно время течёт медленнее. На нашей планете, это расхождение ничтожно мало, но оно существенно увеличится, если один из близнецов отправится в долгое путешествие на космическом корабле, который разгоняется до скорости, близкой к световой. Когда странник возвратится, он будет намного моложе брата, оставшегося на Земле.

Почему замедляется время вблизи массивных планет? Теория относительности, Физика, Стивен Хокинг, Альберт Эйнштейн, Мультфильмы, Научпоп, Видео, Длиннопост

До 1915 года, люди воспринимали время как нечто абсолютное и не изменяемое, но Эйнштейн перевернул всё с ног на голову. Время стало вдруг динамической переменной, которое может меняться в зависимости от наших действий. Пространство и время не только влияют на все, что случается во Вселенной, но и сами от всего этого зависят. За сто лет прошедших со времени открытия общей теории относительности человечество радикальным образом пересмотрело свои взгляды на картину мироздания. Как именно ты узнаешь в следующих роликах.

Показать полностью 4
970

В Google в ответ на критику подтвердили, что компания достигла квантового превосходства

Google опубликовала заявление, согласно которому квантовый компьютер компании смог выполнить задачу, которую не может выполнить ни один классический компьютер. Таким образом в корпорации подтвердили факт достижения квантового превосходства.

В Google в ответ на критику подтвердили, что компания достигла квантового превосходства Физика, Квантовая физика, Новости, Квантовый компьютер, Копипаста, Видео, Длиннопост

В Google сообщили, что Sycamore действительно удалось выполнить вычисление за 200 секунд. Аналогичная процедура заняла бы у самого быстрого суперкомпьютера в мире 10 тысяч лет.


«Это достижение является результатом многолетних исследований и самоотверженности многих людей. Это также начало нового путешествия: выяснение того, как заставить эту технологию работать. Мы работаем с исследовательским сообществом и имеем инструменты с открытым исходным кодом, позволяющие другим работать вместе с нами», — отметили в компании.


Там сослались в качестве подтверждения на публикацию в научном журнале Nature, который разместил отчет о результатах работы Google по созданию квантового компьютера. «Насколько нам известно, этот эксперимент знаменует собой первое вычисление, которое может быть выполнено только на квантовом процессоре. Квантовые процессоры, таким образом, достигли режима квантового превосходства. Мы ожидаем, что их вычислительная мощность будет продолжать расти с двойной экспоненциальной скоростью», — говорится в материале.


Информацию подтвердило и НАСА. Ранее на сайте агентства появились первые выкладки о достижении квантового превосходства, однако затем материал удалили. «Квантовые вычисления все еще находятся в зачаточном состоянии, но это преобразующее достижение продвигает нас вперед. Наши миссии в ближайшие десятилетия на Луну, Марс и другие подпитываются такими инновациями, как эта», — отметил Юджин Ту, директор исследовательского центра NASA Ames Research Center.


Чтобы убедиться, что квантовое превосходство действительно было достигнуто, НАСА и Google обратились в Национальную лабораторию в Ок–Ридже, штат Теннесси, где находится Summit —самый мощный суперкомпьютер в мире. Там проверили, совпадают ли результаты квантового компьютера с результатами суперкомпьютера вплоть до предела квантового превосходства — выяснилось, что оно было достигнуто.

В Google в ответ на критику подтвердили, что компания достигла квантового превосходства Физика, Квантовая физика, Новости, Квантовый компьютер, Копипаста, Видео, Длиннопост

Глава Google Сундар Пичаи заявил, что для более широкой демонстрации квантового превосходства нужно построить отказоустойчивый квантовый компьютер с большим количеством кубитов, а это может занять несколько лет. Однако, по его словам, уже совершен прорыв: «Если брать аналогию — братья Райт. Первый самолет летел только 12 секунд, и в этом тоже не было практической пользы. Но это доказало возможность того, что самолет может летать».


Пичаи ответил на претензии со стороны IBM. По его словам, в данном случае достижение квантового превосходства — это веха, и не стоит придираться к терминам.


В сентябре на сайте НАСА появился доклад специалистов Google, которые заявили, что при помощи квантового компьютера «Sycamore» (Платан) с 53-кубитовым процессором удалось выполнить очень сложный программный расчет всего за 200 секунд. При этом самый современный мощный суперкомпьютер Summit смог бы произвести подобный результат лишь за 10 тысяч лет. Также, по оценкам специалистов компании, выполнение того же эксперимента на сервере Google Cloud заняло бы 50 трлн часов (5,7 млрд лет). Тогда же специалисты подчеркнули, что их новая система может выполнять только один расчет, а использование квантовых компьютеров для решения практических задач предстоит в далеком будущем. В эксперименте были использованы случайные числа, сгенерированные по специальному сценарию, связанному с квантовыми явлениями.


Позднее сотрудники отдела квантовых вычислений компании IBM заявили, что Google ложно сообщила о достижении квантового превосходства. В компании утверждают, что обычный вычислитель справится с этой задачей в худшем случае за 2,5 дня, и при этом полученный ответ будет точнее, чем у квантового компьютера. Такой вывод был сделан по итогам проведенного теоретического анализа нескольких способов оптимизации. Однако авторы статьи отметили, что выкладки Google представляют определенный интерес. Они также обратили внимание на то, что применение термина «квантовое превосходство» может запутать любого человека, не специализирующегося на исследованиях в данной области.

В Google в ответ на критику подтвердили, что компания достигла квантового превосходства Физика, Квантовая физика, Новости, Квантовый компьютер, Копипаста, Видео, Длиннопост

Источник

Показать полностью 2 1
432

Разгадан величайший парадокс квантовой механики

Разгадан величайший парадокс квантовой механики Физика, Квантовая физика, Парадокс, Наука, Ученые, Китай, Квантовая механика, Открытие

Китайские ученые успешно проверили гипотезу, называемую квантовым дарвинизмом, которая объясняет трудноразрешимые противоречия между квантовой механикой и классической физикой, в том числе парадокс кота Шредингера. Исследователи протестировали одно из основных положений концепции, согласно которому одно из состояний квантовой системы многократно «отпечатывается» в окружающей среде, с которой эта система взаимодействует. Об этом сообщает издание Science Alert.


Для объяснения, как возникает классическая физика, исследователи предположили существование особенно устойчивых к декогеренции состояний, называемых состоянием указателя (pointer states). Конкретное местоположение частицы или ее скорость, значение ее спина или поляризация могут быть зафиксированы как устойчивое положение стрелки на измерительном устройстве. Иными словами, взаимодействие с окружением разрушает одни состояния, а другие оставляет, например, положение частицы. Это называется суперселекцией, индуцированной средой.

Согласно второму условию квантового дарвинизма, способность человека наблюдать какое-либо свойство зависит от того, насколько хорошо оно «отпечатано» в окружающей среде. Ученые подсчитали, что частица пыли в один микрометр за одну микросекунду «отпечатается» в фотонах около ста миллионов раз, что и обуславливает ее классические свойства. Разные наблюдатели видят пылинку в одном и том же месте благодаря «копированию» информации о наиболее устойчивом состоянии (в данном случае местоположении).


Ученые создали квантовую систему (фотон) в искусственной среде, состоящей всего из нескольких частиц (других фотонов). Согласно предсказанию квантового дарвинизма, наблюдая только за средой, можно получить всю информацию о классическом поведении частицы. Результаты проверки этого положения показали совместимость наблюдаемых свойств с теорией. Однако для доказательства последней необходимы дальнейшие исследования.


Декогеренцией называют процесс, когда квантовая система, которая находится в состоянии суперпозиции (ее альтернативные состояния наложены друг на друга), начинает проявлять классические свойства. Именно поэтому кот Шредингера, который, согласно мысленному эксперименту, является одновременно живым и мертвым, при открытии коробки оказывается лишь в одном из двух альтернативных состояний. Квантовая система запутывается с окружающей средой, взаимодействуя с огромным числом атомов, в результате чего ее состояния прекращают быть наложенными друг на друга. Если окружающая среда состоит из миллиарда атомов, то декогеренция происходит почти мгновенно, а кот не может быть одновременно живым и мертвым на отрезке времени, который поддается измерению.

Так себе источник: https://m.lenta.ru/news/2019/07/25/quantum/amp/

Показать полностью
1722

Опубликован первый в истории снимок квантовой запутанности

Ученые из Университета Глазго (Шотландия) сообщили об уникальном эксперименте, во время которого им удалось запечатлеть на снимке квантовую запутанность. Их работа опубликована в журнале Science Advances.

Опубликован первый в истории снимок квантовой запутанности Квантовая физика, Квантовая запутанность, Ученые, Наука
Опубликован первый в истории снимок квантовой запутанности Квантовая физика, Квантовая запутанность, Ученые, Наука

Квантовая запутанность возникает в тот момент, когда две частицы становятся неразрывно связанными, — и то, что происходит с одной, сразу же влияет на другую, несмотря на расстояние между ними. Это явление столь странное, что еще великий физик-теоретик XX века Альберт Эйнштейн называл его «жутким действием на расстоянии».

В ходе эксперимента команда физиков создала систему, которая взорвала поток запутанных фотонов — элементарных частиц света. При создании фото ученые расщепили запутанные фотоны и пропустили один луч через кристалл бета-борат бария, вызывая четыре фазовых перехода.

Камера запечатлела момент, когда обе частицы сместились одинаково, хотя были разделены, тем самым наглядно подтвердив существование квантовой запутанности и нарушив неравенство Бэлла. Строго говоря, снимок составлен из нескольких изображений фотонов, переживающих серию фазовых переходов.


«Наш результат открывает путь к новым методам квантовой визуализации», — написали ученые.

Источник: https://advances.sciencemag.org/content/5/7/eaaw2563

Показать полностью
993

Лженаука в СПб!

18-19 мая, в культурной столице России - Санкт-Петербурге, состоится "выступление" лжефизика Катющика В.Г. Он "опроверг" Ньютона, Хокинга, Эйнштейна, Ландау и многих других! Уровень идиотизма на квадратный метр будет зашкаливать. Приходите, не пожалеете!

https://www.sci-tribunal.org/  И все это мракобесие будет проводится от имени Хакасского Технического Института.


А если серьезно, вопрос: нельзя ли этому как то законно воспрепятствовать?

112

Чёрные дыры и краш-тест общей теории относительности

Чёрные дыры и краш-тест общей теории относительности Yes Future, Теория относительности, Альберт Эйнштейн, Черная дыра, Физика, Длиннопост

Сегодня астрономы Европейской Южной Обсерватории собираются представить миру первую в истории фотографию горизонта событий (проще говоря границы) черной дыры Стрелец А. Этот объект хоть и находится в самом центре нашей галактики Млечный путь, но от Земли до него целых 25 000 световых лет.

Событие достаточно громкое — вероятно, теория относительности на массивных объектах будет подтверждена или опровергнута.

В каком-то смысле чёрные дыры всё ещё объекты гипотетические. Но астрономы практически не сомневаются в их реальности — получено огромное количество косвенных доказательств их существования. Сфотографировать чёрную дыру (да и вообще увидеть) невозможно — эти объекты поглощают всё электромагнитное излучение. А это значит, что ни радиотелескоп, ни оптический не могут её увидеть.

Но чёрные дыры “выдаёт” их окружение. Их гравитация притягивает пыль и газ, поэтому на границе черной дыры материя образует аккреционный диск. Атомы там двигаются с невероятной скоростью. На таких скоростях материя настолько раскаляется, что начинает излучать рентгеновское и другие мощные излучения.

Учёные из Европейской южной обсерватории обещают нам показать тень чёрной дыры. По форме тени чёрной дыры, можно будет определить расходится ли теория гравитации с реальным положением дел.

Если тень будет иметь заранее смоделированную форму, то это будет означать, что общая теория относительности вблизи чёрной дыры сохраняется. А вот самые небольшие отклонения покажут, что теория гравитации Эйнштейна имеет определённые оговорки.
Это создаёт огромный простор для физиков теоретиков для создания новых теорий, в которые впишется поведение чёрных дыр.

Можно сказать происходит самый сумасшедший краш-тест во Вселенной. На кон поставлено будущее современной физики.

Официальный доклад учёных начнётся сегодня в 17:00 по московскому времени.
Ссылка на трансляцию:
https://www.youtube.com/watch?v=Dr20f19czeE&feature=youtu.be

Как думаешь, мы на пороге новых открытий?

Чёрные дыры и краш-тест общей теории относительности Yes Future, Теория относительности, Альберт Эйнштейн, Черная дыра, Физика, Длиннопост
Показать полностью 1
608

Теория относительности. Классические ошибки понимания классической физики.

Этот пост мотивирован к написанию большей частью благодаря твёрдой уверенности отдельных продвинутых физик-кунов из числа пикабушников в … теории относительности. Если точнее не в самой теории, а её роли в современной физике. Итак, о священных коровах.

Теория относительности. Классические ошибки понимания классической физики. Физика, Длиннопост, Теория относительности

Большинство из нас в общих чертах представляет теорию относительности как достаточно заумную фигню, в которой лучше не разбираться, дабы не сломать мозг. При этом основные положения теории про скорость света, релятивистские эффекты и прочие плюшки принимаются как данное, то есть то, с чем лучше не спорить или до чего лучше не докапываться. Ибо понабегут, докопаются и засмеют, если не зачмырят. Тем не менее, суть самой теории, её центральная идея остаётся непонятой в той же степени, в какой непонятым остаётся оператор дивергенции из высшей математики. А ведь по сути и то и другое – не нечто сверхсложное. Я бы сказала даже наоборот – весьма и весьма простые вещи заложены в основу «великих» теорий.


Итак, кратенько, суть теорий относительности.


Хотя в одном из пердыдущих постов уже писала, повторюсь. Откуда ноги растут: электромагнитные волны. Все. Радио, микроволновки, радары, видимый свет, рентгеновское излучение и гамма-лучи. Всё, что имеет электромагнитную природу и поддаётся описанию волновой природы. Мы знаем, что волна – это колебание. Колебание чего-то, колебание какой-либо среды. Звук – колебание молекул воздуха, морские волны – колебания воды, а электромагнитные… А кстати, что колеблется в электромагнитной волне? Какая среда получает изменяющиеся мгновенные значения электрического и магнитного поля, чтобы получилась волна? «А вот хрен знает, но это очень интересный вопрос!», подумали в своё время учёные и стали искать ответ.


Сначала придумали эфир. Некую субстанцию, пронизывающую всё, и способную передавать электромагнитные волны. Придумать-то придумали, а ведь его ещё найти надо. Искали. Не нашли. Ну нет эфира. Мало того, что его нет, так у электромагнитных волн ещё одну фишку нашли: они распространяются с одной и той же скоростью. Всегда. Независимо от того, двигается ли источник или нет. Как бы мы не мерили скорость. Как бы не двигались при этом сами и как бы быстро не двигался источник, скорость света всегда будет одна и та же. Нет сложения скоростей! Ньютоновская механика идёт в жопу, заставляя физиков не по детски охреневать плакать от бессилия.

Теория относительности. Классические ошибки понимания классической физики. Физика, Длиннопост, Теория относительности

Вот тут то на сцену выходит знаменитый еврей и рассказывает всем правду со своими догадками. Оказывается, на самом деле всё выглядит так, будто время в разных системах отсчёта идёт по-разному. Если система отсчёта движется, то время в ней замедляет течение. И как бы мы в этой системе не пытались измерить скорость света, замедление времени даст нам результат, равный той же константе с, которую мы получили бы, не двигаясь никуда. (Маленькое уточнение: с – максимальная скорость любых взаимодействий, в том числе электромагнитных)


Первая главная идея – идея специальной теории относительности: нет никакой общей системы отсчёта. У каждого – своя. Системы отсчёта не равны. Именно в этом суть идеи: всё относительно. События, движение, процессы, взаимодействия - всё что угодно происходит и измеряется относительно чего-то. Относительно того, кто измеряет, например. Да, системы отсчёта равнозначны, в них действуют одни и те же законы, действуют одинаково, но сами системы не равны друг другу.


Вторая главная идея – идея общей теории относительности: нет никакой гравитации, это всё искривление пространства. Все гравитационные взаимодействия – следствия влияния инерционной массы на пространство рядом с ней. Нет воздействия одного тела на другое посредством гравитации, это пространство искривляется так, что одно тело "притягивает" другое (и наоборот). Наличие массы даёт геометрическое искажение пространства. Прямая линия нихрена не прямая, нам только кажется.


Это самая суть, если в двух абзацах. Теперь к ошибкам.

Теория относительности. Классические ошибки понимания классической физики. Физика, Длиннопост, Теория относительности

Первая, самая распространённая ошибка. Теория относительности (и общая и специальная) – это не теория, объясняющая причины наблюдаемых явлений. По сути – это математическая модель, набор уравнений, позволяющих просчитать то или иное наблюдаемое явление. Например, релятивистское изменение массы или времени. Уравнения основаны на наблюдениях за явлениями и лишь описывают их. Сама по себе механика явлений для ТО не доступна. Когда я спрашиваю, почему время в движущейся системе отсчета замедляется, мне в ответ приводят формулу релятивистского замедления времени. Но разве время смотрит на эту формулу, говорит «О! Чуть помедленнее, кони!» и затем изменяет свой бег? Что именно заставляет процессы замедляться? Почему это происходит?

Теория относительности. Классические ошибки понимания классической физики. Физика, Длиннопост, Теория относительности

Теория относительности на этот вопрос ответа не даст.


Вторая по распространённости, но первая по важности ошибка. Теория описывает наблюдаемые процессы. Все эффекты, которые ей предсказываются/наблюдаются в действительности можно описать фразой «выглядит так, как будто…» и дальше соответствующее математическое выражение. Однако «выглядит как будто» и «на самом деле так» - это две большие разницы. В случае с теорией относительности данный момент вообще принципиален. Например, из уравнения релятивистского замедления времени следует, что на скорости света время просто останавливается. Для света времени нет. Фотон не знает о времени, которое затратил на свой полёт. Так утверждает теория. Но так ли это на самом деле? Если бы для фотона время не существовало само по себе, мы бы его не наблюдали. Действительно, остановка времени означает запрет на все процессы взаимодействия, ибо они происходят во времени. Фотон не поглощался бы веществом и не замедлял свою скорость в среде – ведь для него не существует времени, он «не знает» где распространяется.


Повторюсь на всякий: теория относительности отлично описывает эффекты, но не стоит распространять её дальше положенного.


Третья ошибка, связанная со второй: постулаты теории относительности справедливы для неё.

Любой постулат нужен для того, чтобы на него можно было опираться при построении теории. Как правила в игре: используя их, мы можем посмотреть, до какого итога доиграемся. В любой теории постулаты используются для того же – на основе их посмотреть, что получится в итоге. Какие математические модели, какие уравнения.

Однако как только мы меняем саму игру, глупо следовать в ней правилам старой игры. Кое-что можно, конечно, заимствовать, но тогда это будет не новая игра, а обновлённая старая. Если мы хотим новую теорию, тогда постулаты старой надо рассматривать не как незыблемые правила для новой.

Теория относительности. Классические ошибки понимания классической физики. Физика, Длиннопост, Теория относительности

В качестве ярчайшего примера могу привести непреодолимость скорости света как следствие постулата одинаковости её в разных системах отсчёта. Мы знаем, что двигаться со скоростью выше скорости света нельзя. «Нельзя и всё тут». А иначе энергия+масса движущегося тела становится мнимой (из уравнения коэффициента Лоренца), время вообще ведёт себя хрен знает как и вся математика разваливается. Цимес кроется как раз в двух последних словах: математика разваливается. Но математика – это следствие наблюдения, закон, имитирующий явления. Это не причина для физического процесса. С другой стороны, природа даёт нам прозрачнейшие подсказки существования движения на сверхсветовых скоростях, пусть и в слегка необычном варианте.


Смотрите на звёзды. На самые дальние структуры типа квазаров, протогалактик и так далее. Всё, что мы наблюдаем, находится в радиусе примерно 13,2 млрд. св. лет от нас. Дальше мы не видим, просто не можем. Но то, что мы видим – история развития вселенной – показывает нам далёкое прошлое. То, что происходило как раз те самые 13,2 млрд. лет назад. Возникает вопрос: свет шёл к нам 13,2 млрд. лет, значит уже тогда, давным-давно, где-то там, далеко-далеко уже что-то было. Но как же большой взрыв? Он ведь произошёл в достаточно ограниченной области. Как вещество успело преодолеть за очень-очень короткое время колоссальное расстояние в 13,2 млрд. св. лет, чтобы потом начать нам светить? Значит, скорость движения этого вещества была выше скорости света?

Была. Во много-много раз больше. И для некоторого вещества она по сей день остаётся гораздо большей, чем скорость света. Мы ни за что не увидим это вещество, если не научимся перемещаться быстрее света сами. В чём секрет? Вещество перемещается вместе с расширением пространства.

Теория относительности. Классические ошибки понимания классической физики. Физика, Длиннопост, Теория относительности

На скорость расширения пространства нет ограничения в виде максимальной скорости взаимодействий. Оценочные размеры вселенной не 13,2 млрд. св. лет, а все 49,5 (нет, уважаемые пикабушники, с вашими 49,5 см. это не связано).

Можно сказать, что сверхсветовое перемещение как вариант классического варпа был реализован нашей вселенной на самом раннем этапе развития и продолжает существовать до сих пор. Причём, чем дальше (и во времени и в пространстве) – тем быстрее будет этот варп.


Четвёртая ошибка: теория относительности небезгрешна.


Здесь имеется в виду внутренняя непротиворечивость, которая просто таки положена любой хорошей физической теории. В ТО внутренних противоречий достаточно, чтобы не воспринимать её как абсолютно верную даже в собственных рамках.

Один из примеров я уже приводила в предыдущем посте: так называемая гравитационная сингулярность. По сути, это такое явление, которое должно наблюдаться при очень-очень больших массах (но в действительности не наблюдается, хотя массы есть). Если мы берём ну очень большую массу, она искажает пространство настолько, что кривизна его по расчётам становится бесконечной. А что такое бесконечная кривизна в ТО? Бесконечное ускорение. Это значит, что любое тело за любой сколь угодно малый промежуток времени приобретает скорость выше скорости света.

Теория относительности. Классические ошибки понимания классической физики. Физика, Длиннопост, Теория относительности

В целом обе теории относительности оказались весьма важны для развития физики и построения уже более глубоких теорий всего, так что заслуги их я ни в коей мере не умаляю. Просто будьте аккуратнее в суждениях.


Ну а напоследок предлагаю выбрать тему для следующего поста:


Почему скорость света такая, какая есть.


В чём суть теории струн (М-теории) и каково её место в физике.


Непустое «пустое» пространство – вакуум.


Применение ландшафта теории струн при проектировке гиперсветовых двигателей.


Спасибо, мы не нуждаемся в ваших услугах.


зы: баянометр поворчал на картинки, но не сильно.

Показать полностью 6
Похожие посты закончились. Возможно, вас заинтересуют другие посты по тегам: