Капля Руперта!
(Подсмотрено в "Мемофил")
Затвердевая, такое стекло приобретает особую устойчивость к механическим воздействиям. Но если чуть надломить хвостик, оно сразу рассыпется в пыль.
Попадая в холодную воду, капля расплавленного стекла начинает быстро охлаждаться. Охлаждаясь, стекло переходит в твёрдое состояние и начинает сжиматься. С одной стороны, остывшие внешние слои сжимают каплю, с другой стороны раскалённое, ещё не успевшее остыть ядро её наоборот расширяют, занимая больший объём. В этот момент образуются очень тесные межмолекулярные связи и увеличивается плотность сжатых слоёв. Когда внутренняя температура капли снижается и ядро начинает остывать, оно тоже начинает сжиматься и застывать, но теперь ему оказывает сопротивление внешний уже застывший слой. В итоге между слоями образуется огромное механическое напряжение.
Проводя исследования, учёным удалось выяснить, что сила сжатия внешней оболочки превышает атмосферное давление в 7000 раз, при том, что верхний слой очень тонкий и составляет всего 10% от всего тела капли.
Застывшие капли закалённого стекла, обладающие чрезвычайно высокими внутренними механическими напряжениями.
Все мы знаем, что стекло хрупкое, но в тоже время при специальной обработке может быть и прочнее металла. Но оно никогда не сочетает в себе прочность и хрупкость одновременно. Кроме феномена стеклянной капли Руперта которая может выдержать давление в десятки тонн и попадание пистолетной пули – но одновременно с этим она очень хрупкая.
Видеоверсия, для тех кто предпочитает смотреть\слушать:
Когда они появились?
Вероятнее всего, подобные стеклянные капли были известны стеклодувам с незапамятных времён, однако внимание учёных они привлекли довольно поздно: где-то в середине 17 века, когда Принц Руперт вернулся после долгого изгнания в Англию и привез с собой необычные стеклянные капли, которые преподнес Карлу II. Король передал их для исследований в Лондонское королевское общество, чтобы разгадать их тайну, но ученые так и не нашли ответа. Что же так будоражило всех, кто видел этот стеклянный феномен, и продолжает удивлять до сих пор?
Принц Руперт и Карл II (слева на право):
«Батавские слёзки»:
В 17-м веке, прежде чем появилось название "капли принца Руперта", они были известны как "Батавские слёзки" (Батавия — старое название Нидерландов), потому что впервые они начали массово изготовляться именно там.
Технология изготовления капли принца Руперта чрезвычайно проста: нужно лишь взять ведро холодной воды и капнуть туда расплавленным стеклом. После того, как стекло остынет, получится изделие в виде капельки. Казалось бы, вся эта процедура крайне проста. Тем не менее, "Батавские слёзки" обладают очень интересным свойством.
Пример производства капли Руперта:
Они сочетают в себе парадоксальные, на первый взгляд, качества. Капля Руперта является одновременно невероятно прочной и невероятно хрупкой. "Головка" получившегося головастика на удивление крепкая: ее практически невозможно разбить молотком или другим подручным инструментом, а под гидравлическим прессом она может выдержать десятки тонн, в зависимости от размера. Но если хоть чуть-чуть поцарапать хвостик или надломить его, вся капля взорвется на крохотные осколки.
Капля Руперта vs..38 Smith & Wesson Special:
Как это работает?
Чтобы объяснить это явление, исследователи изучили распределение напряжения внутри капли.
Когда капля расплавленного стекла попадает в воду, то её внешний слой охлаждается так быстро, что структура стекла не успевает перестроиться, и соответствующее изменение объёма мало́. Во время остывания внутреннее стекло сильно сжимается, приводя в конечном итоге к огромному накоплению механического напряжения внутри капли.
В результате сердцевина оказывается растянута, а внешний слой — сжат. Иначе говоря, во внутренней части остывшей капли действуют механические напряжения растяжения, а во внешней части — напряжения сжатия.
Посмотрев на каплю через поляризатор, можно "увидеть" все это накопленное напряжение:
Для разрушения капли необходимо, чтобы трещины проникли в ее сердцевину. Обычно они распространяются вдоль поверхности «слезы» и не могут попасть в зону растяжения, что объясняет прочность стекла. Однако в том случае, если трещина образуется при разрушении «хвоста», то она доходит до центра капли и провоцирует эффектный взрыв.
Пример с расчётами скорости взрыва капли Руперта:
Спасибо, что уделили время.
P.S. Если, кто-то делал сам капли принца Руперта, будьте добры, расскажите об этом в комментарии или постом
"Батавские слёзки" - это застывшие в воде капли закалённого стекла. Также их называют "капли принца Руперта" (в честь Руперта Пфальцкого герцога Камерлендского - нечуждого наукам германо-английского аристократа, любителя наук) или "болонские склянки" (в честь болоневых курток города Болоньи, надо полагать).
"Слёзки" имеют причудливую форму, напоминающую сперматозоид выхухоли головастика. Они очень прочны - головку не разбить молотком, но если надломить хвостик, то взорвется вся капля. Это происходит из-за наличия появившихся во время резкого охлаждения разнонаправленных напряжений во внутренней части и внешней поверхности. Интересующиеся - отправляются читать сопромат 😉
Фронт взрыва движется со скоростью 1,2 км/сек, осколки стекла летят во все стороны как микро-снаряды. Аналогичный процесс происходит и в других закалённых стёклах при их разрушении, даже в автомобильных. Водителей и пассажиров спасает, что из-за другой технологии охлаждения осколки получаются безопасными. Ну, и хвостика, который легко обломить, у автостёкол нет.
Капля принца Руперта — стеклянный артефакт, обладающий двумя противоположными друг другу свойствами: он чрезвычайно прочный и чрезвычайно хрупкий одновременно.
Капля похожа на головастика с луковицеобразной головкой и длинным, тонким хвостом. Головка настолько прочная, что способна выдержать удар молотка, а пули, выпущенные в неё в упор, разрушаются при ударе — да, именно пули, а не стекло. Тем не менее, если вы щёлкните пальцем по хвосту капли, это превратит всю каплю, включая прочную стеклянную головку, в порошок.
Капли принца Руперта (также известные как «батавские слёзки» и «болонские склянки») образуются путём попадания жидкого стекла в холодную воду, в результате чего внешняя поверхность капли затвердевает немедленно, а стекло внутри неё по-прежнему остаётся расплавленным. Охлаждённый внешний слой пытается сократиться, в то время как расплавленный внутренний слой пытается расшириться. В процессе кристаллизации противоположные силы, действующие на головку капли, делают её необычайно прочной и хрупкой одновременно. Она похожа на каменную арку — конструкция находится под чрезвычайным напряжением, которое является именно тем, что не позволяет ей развалиться на части. Но если вы уберёте краеугольный камень, арка рухнет.
Капли принца Руперта впервые были обнаружены в Германии в 1640-х годах. Первоначально они были созданы стеклоделами из Мекленбурга (Северная Германия) и продавались в качестве игрушек и диковинок по всей Европе, где их называли по-разному: например, «прусскими слёзками» или «голландскими слёзками». Стеклоделы тщательно охраняли свой секрет, что привело к возникновению целого ряда теорий относительно того, как производились капли.
Учёный-любитель из Англии, герцогиня Маргарет Кавендиш, после нескольких недель экспериментов с десятками образцов в своей лаборатории, пришла к выводу, что в головку капли вводили небольшое количество летучего материала, который бурно реагировал на контакт с воздухом.
В 1660 году принц Руперт Пфальцский, герцог Камберлендский и один из основателей Королевского общества, привёз с собой несколько стеклянных капель, чтобы продемонстрировать их учёным и королю Карлу II. Как вы, наверное, уже догадались, они были названы в его честь.
Роберт Гук, который отвечал за проведение экспериментов перед членами общества, сделал важный прорыв, предположив, что именно охлаждение стекла после погружения в воду вызывало странное свойство капель, хотя более полное понимание механики стало доступным лишь спустя три столетия.
Лишь в 1994 году учёные из Университета Пердью и Кембриджского университета, используя высокоскоростную кадрирующую съёмку, чтобы пронаблюдать процесс разрушения капли, пришли к выводу, что поверхность каждой капли испытывает высокую компрессионную нагрузку, в то время как внутренняя часть находится под влиянием сил высокого напряжения — в состоянии неравномерного равновесия, которое можно легко нарушить, сломав хвост. Эксперименты показывают, что луковичная головка способна выдержать силу сжатия до 7000 килограмм на сантиметр квадратный. Также было подсчитано, что разрушительные трещины распространяются по хвосту и головке с поразительной скоростью — 6500 километров в час.
В дальнейшем, сотрудничая с Таллинским технологическим университетом в Эстонии, исследователи обнаружили, что для того чтобы разбить каплю, нужно создать трещину, способную проникнуть в зону её внутреннего напряжения. Наружный компрессионный слой очень тонкий: он составляет всего около 10 процентов диаметра головки капли, однако обладает невероятно высокой прочностью. Поскольку трещины на поверхности, как правило, разрастаются параллельно поверхности, они не могут попасть в зону напряжения. Но если хвост треснет, трещины попадут в зону напряжения и высвободят всю накопленную энергию, заставив каплю разрушиться.
Закалённое стекло, которое, как правило, используют при производстве автомобилей и мобильных телефонов, делают по такому же принципу. Его быстро охлаждают в расплавленном виде при помощи холодного воздуха, создавая внутреннее напряжение, которое позволяет поверхности оставаться сжатой всё время. Сжатие предотвращает разрастание трещин, но когда стекло окончательно разбивается, оно рассыпается на тысячи мелких кусочков. Вот почему лобовые стёкла автомобилей при ударе разбиваются на мелкие кусочки, однако они покрыты специальным слоем клея, который предотвращает попадание частиц в салон автомобиля и нанесение травм пассажирам.
«Растягивающее напряжение — это то, что обычно приводит к разрушению материалов способом, аналогичным разрыву листа бумаги пополам, — говорит Коушик Вишванатан из Университета Пердью. — Но если вы измените растягивающее напряжение на сжимающее, тогда вы затрудните разрастание трещин, и это именно то, что происходит в головке капли принца Руперта».