Горячее
Лучшее
Свежее
Подписки
Сообщества
Блоги
Эксперты
Войти
Забыли пароль?
или продолжите с
Создать аккаунт
Регистрируясь, я даю согласие на обработку данных и условия почтовых рассылок.
или
Восстановление пароля
Восстановление пароля
Получить код в Telegram
Войти с Яндекс ID Войти через VK ID
ПромокодыРаботаКурсыРекламаИгрыПополнение Steam
Пикабу Игры +1000 бесплатных онлайн игр Ищите дары леса и готовьте изысканные блюда на лесной ферме с ресторанчиками!

Грибники: дары леса

Фермы, Симуляторы, 2D

Играть

Топ прошлой недели

  • Carson013 Carson013 23 поста
  • Animalrescueed Animalrescueed 32 поста
  • Webstrannik1 Webstrannik1 52 поста
Посмотреть весь топ

Лучшие посты недели

Рассылка Пикабу: отправляем самые рейтинговые материалы за 7 дней 🔥

Нажимая «Подписаться», я даю согласие на обработку данных и условия почтовых рассылок.

Спасибо, что подписались!
Пожалуйста, проверьте почту 😊

Помощь Кодекс Пикабу Команда Пикабу Моб. приложение
Правила соцсети О рекомендациях О компании
Промокоды Биг Гик Промокоды Lamoda Промокоды МВидео Промокоды Яндекс Маркет Промокоды Пятерочка Промокоды Aroma Butik Промокоды Яндекс Путешествия Постила Футбол сегодня
0 просмотренных постов скрыто
251
Obninsk
Obninsk
6 лет назад
Наука | Научпоп

Нетранзитивность в играх, психологии, биологии, математике и физике⁠⁠

Наткнулся на относительно свежую (9 апреля) статью "От нетранзитивности спермы к нетранзитивным композитам" в "Троицком варианте" и был настолько ею очарован, что решил кратко пересказать своими словами здесь. Кратко - это в том числе преднамеренно без ответов на встречающиеся в ней парадоксальные задачи. Кому будут интересны ответы, а не просто поспорить, для тех ссылка на первоисточник в начале поста.

Парадоксы в статье начинаются прямо с автора - Александра Поддьякова, доктора психологических наук и главного научного сотрудника Института психологии РАН. С подачи Александра Маркова и других популяризаторов мы уже привыкли к постоянным "вторжениям" биологов в область психологии человека, но для некоторых окажется неожиданностью, что и психолог может писать интересные статьи, затрагивающие не только биологию, но и физику, и математику.

Начну с несколько переделанной мной относительно оригинала математической задачи:

Представьте себе, что я - продвинутый лохотронщик, предлагающий вам сыграть в игру: вы выбираете цвет (допустим, вы выбрали красный) одной из 3 групп по 3 гвоздя каждая, гвозди вставлены в дырки так, что наружу торчат только их шляпки, затем я скрытно от вас перетасовываю вашу (красную) группу гвоздей, а вы, также скрытно от меня, тасуете остальные (синие и зелёные) гвозди. После чего мы делаем одинаковые ставки и тянем жребий: вы вытягиваете гвоздь выбранного вами цвета, а я тяну гвоздь любого другого цвета. У кого длиннее, того и деньги.

Как вариант, позволяющий не допустить подмены во время перетасовок, можно размещать гвозди в 3 вращающихся слотах по 3 дырки каждый и быстро крутить слоты, не отворачиваясь.

Проиграв за десяток-другой ходов некоторую сумму на красных гвоздях, вы подмечаете, что я всегда тянул синий гвоздь и никогда не зелёный. "Ага!" - говорите вы себе. - "Синие гвозди в среднем длиннее". И выбираете синий цвет. И снова постепенно проигрываете, отмечая, что теперь я всегда тяну зелёные гвозди.

Поскольку в том, что красные в среднем короче синих, вы уже убедились в первом туре, вы делаете вывод, что самые длинные гвозди - в зелёном наборе, а мой предыдущий выбор синих был хитрым разводом. Поэтому теперь вы выбираете зелёный цвет, и...

Ответ на вопрос "что будет, если выбрать зелёный цвет?" я предлагаю вам найти самостоятельно либо подсмотреть в исходной статье. Для желающих подумать-посчитать, над гвоздями надписаны их длины в сантиметрах.


Это была математика, а вот вам задачка, "атакующая" один из законов физики, закон сохранения энергии:

(рисунок автора исходной статьи, но я убрал подсказки, поясняющие, в чём тут дело, хотя и поленился исправлять несогласованность проекций грузиков и шестерёнок)

Как легко заметить, при одинаковом весе грузиков (показаны шариками) в левой части рисунка красный будет, разматываясь с оси красной шестерни, опускаться вниз, поднимая,  в силу разницы передаточных чисел шестерней,  наверх зелёный. Если же отсоединить зелёную шестерню от красной и присоединить к синей (центр рисунка), то зелёный грузик перетянет синий, подняв его вверх. А синий грузик (правая часть рисунка) перетянет красный.

Вечный двигатель? Разумеется, нет. Объяснение, почему нет - опять же, в исходной статье.


Но для понимания предыдущей задачи (про гвозди) важен не "вечный двигатель", а сам факт того, что красный блок "сильнее" зелёного, зелёный "сильнее" синего, а синий "сильнее" красного.  Дочитавшие до этого места уже должны догадаться, что выбрав зелёные гвозди, они также проиграют, поскольку я в этом случае стану тянуть исключительно красные. Которые, казалось бы, "в среднем короче" синих, а те, в свою очередь, "в среднем короче" зелёных. Голландец Оскар ван Девентер даже сконструировал механическую игру, в которой какую бы из трёх шестерёнок вы ни выбрали, оппонент может выбрать после вас одну из двух оставшихся так, чтобы вас победить.


Это парадоксальное свойство специально подобранных групп и правил их сравнения называется нетранзитивностью:

A>B и B>C, но C>A.

Детская игра "камень-ножницы-бумага" отлично его иллюстрирует: камень сильнее ножниц, ножницы сильнее бумаги, бумага сильнее камня (последнее неочевидно и не факт, что верно, но для детишек сойдёт).


А вот игра совершенно на первый взгляд недетская, хотя детишек среди зрителей у неё всегда в достатке. Как, впрочем, и взрослых, включая опытных конструкторов-робототехников. Знакомьтесь: настоящие боевые роботы-гладиаторы в серии игр BattleBots:

Так получилось, что я сам на отдыхе люблю поглазеть на ютюбе, как мочат друг друга и разносят на куски эти механизмы, сконструированные ради одной-единственной цели - уничтожения себе подобных. И я своими глазами наблюдал, что "косильщики" (сверху) как правило быстренько разбирают на запчасти "давильщиков" (снизу и справа), те чаще всего успешно перекусывают "кидал" (слева), а "кидалы" подбрасывают "косильщиков" так, что те трескаются своими рубящими лопастями об пол и стены, несколько раз подпрыгивают и отдают робогу душу.


Как показывает в своей статье Александр Поддьяков, то же самое наблюдается и в живой природе: иначе, существуй некий универсальный принцип "лучшей приспособленности", довольно быстро выявится некий супер-пупер-победитель, который вытеснит всех остальных, после чего ему останется либо подыхать с голоду, либо фотосинтезировать в гордом одиночестве (отравляя воздух кислородом и в конечном итоге также склеивая ласты или что там у него вместо ласт будет). Этого не произошло исключительно благодаря нетранзитивности приспособленности: виды, выигрывающие в чём-то одном, проигрывают в чём-то другом и универсального критерия их сравнения не существует. Более того, виды, выигрывающие против одних по совокупности, сливают по совокупности же другим, которые, опять-таки по совокупности, проигрывают третьим - как раз тем самым, что всегда побеждаются первыми. Ну, на самом деле, там всё гораздо сложнее, конечно, но принцип именно такой.


И даже в хоккее:

И вот теперь мы переходим к тому, ради чего, собственно, автор-психолог свою статью и затеял. К отсутствию единых универсальных критериев сравнения во многих случаях.


Когда некий эксперт сравнивает два предложенных ему решения проблемы, назовём их (1) и (2), он может выбрать из них лучший - допустим, это вариант (2). И абсолютно логично обосновать свой выбор - на то он и эксперт. Но довольно часто бывает так, что другой эксперт, ничуть не менее квалифицированный, сравнит вариант (2) с неким вариантом (3) и столь же убедительно докажет, что (3) лучше, а третий будет сравнивать (3) с уже отброшенным нами вариантом (1) и придёт к выводу, что он-то, (1), и является самым лучшим вариантом.


И это - реальная проблема, какие бы эксперты какой бы выбор ни делали. Выборы президента (во избежание срача не буду уточнять, какой именно страны). Выбор спутницы жизни. Выбор своего пути в этой самой жизни. И так далее.

Показать полностью 4
Транзитивность Задача Головоломка Психология Занимательная математика Длиннопост
78
16
meverlin
9 лет назад

Нетранзитивность на примере ЧМ 2016 по хоккею⁠⁠

Нетранзитивность на примере ЧМ 2016 по хоккею
[моё] Чм 2016 Хоккей ЧМ 2016 Транзитивность Сборная России по хоккею Тег
8
DELETED
11 лет назад

Ай нид помощь, математики!⁠⁠

Зачет, препод бухает, поэтому лекции которые она нам диктовала говорит что не правильные:) просит в теории алгоритмов доказать транзитивность равенства) если кто напишет, найдет ссылку либо еще как то сможет помочь, буду премного благодарен!)
Логика Алгоритм Транзитивность Текст
6
Посты не найдены
О нас
О Пикабу Контакты Реклама Сообщить об ошибке Сообщить о нарушении законодательства Отзывы и предложения Новости Пикабу Мобильное приложение RSS
Информация
Помощь Кодекс Пикабу Команда Пикабу Конфиденциальность Правила соцсети О рекомендациях О компании
Наши проекты
Блоги Работа Промокоды Игры Курсы
Партнёры
Промокоды Биг Гик Промокоды Lamoda Промокоды Мвидео Промокоды Яндекс Маркет Промокоды Пятерочка Промокоды Aroma Butik Промокоды Яндекс Путешествия Постила Футбол сегодня
На информационном ресурсе Pikabu.ru применяются рекомендательные технологии