18 декабря 2018 г. спутник НАСА Terra зафиксировал второй по мощности в 21-м веке взрыв болида - в 26 км над прохладными водами Берингова пролива небесное тело сдетонировало с силой в 173 килотонны - это примерно в 10 раз превосходит мощность атомной бомбы, сброшенной на Хиросиму. Событие было задокументировано двумя инструментами: Multi-angle Imaging SpectroRadiometer (MISR) использовался при создании анимации, а Moderate Resolution Imaging SpectroRadiometer (MODIS) сделал более масштабный снимок метеорита и тени от его следа на фоне густых облаков. Диаметр объекта - около 10 м., вес - не менее 1 360 тонн, скорость вхождения в атмосферу - более 115 000 км/ч.
Несколько важных терминов из науки космических полетов простым языком
Орбита
Орбиту можно обозначить как путь небесного тела в гравитационном поле другого тела. Притяжение небесного тела не позволяет спутнику улететь, а центробежная сила не дает ему упасть. Орбиты есть у искусственных спутников Земли, и у спутников планет. Земля движется по орбите вокруг Солнца. Но и само наше светило движется по орбите вокруг центра Галактики. Один оборот Солнце делает за 225–250 миллионов лет, двигаясь по своей орбите со скоростью 217 км/с. Движется и Галактика. Ее скорость относительно фонового реликтового излучения составляет 552 км/с. Но, вероятнее всего, это не орбитальная скорость. Как полагают ученые, Млечный Путь и соседние галактики движутся в сторону Великого Аттрактора, являющегося центром тяжести Ланиакеи, сверхскопления галактик, которое, конечно, уже сложно назвать нашим домом, но нашим районом можно.
Для того чтобы спутник мог находиться на орбите достаточно долго, его скорость должна быть равна или превышать первую космическую, но не быть больше второй космической скорости. Если скорость спутника Земли будет меньше, он упадет на поверхность планеты, если больше, то он уже станет спутником Солнца.
Первые полеты в космос зачастую не были орбитальными полетами. То есть космический корабль пересекал линию Кармана – условную границу атмосферы и космического пространства, – но искусственным спутником Земли так и не становился. Так, например, первый американец в космосе Алан Шепард совершил именно суборбитальный полет.
Спустя три недели после полета Юрия Гагарина 5 мая 1961 года ракета-носитель «Редстоун» вывела космический корабль «Меркурий-Редстоун-3» с Аланом Шепардом на борту в космос. Космический корабль достиг высоты 186,5 километра, после чего совершил посадку в океане. Всего полет продлился около 15,5 минут. Из них примерно 5 минут Шепард находился в состоянии невесомости. Гагарин же находился в космосе 1 час 48 минут. И, в отличие от американского корабля, «Восток-1» совершил один виток вокруг планеты, после чего совершил управляемый спуск на Землю.
Суборбитальные полеты весьма перспективны с точки зрения туризма. По сравнению с полноценными полетами в космос, они представляются более дешевыми. Американская компания Blue Origin как раз и делает ставку именно на них. Многоразовый корабль и ракета для суборбитальных полетов, создаваемые компанией, названы именно в честь Шепарда – New Shepard. Согласно устоявшемуся определению, суборбитальный полет – это космический полет летательного аппарата по баллистической траектории со скоростью, меньшей первой космической. То есть такой скоростью, которой недостаточно для вывода на орбиту искусственного спутника Земли.
Космическая скорость
Так почему же освоение космоса для некоторых стран началось с суборбитальных полетов? Просто для вывода спутника на орбиту требуется достичь большей скорости на старте, а следовательно, требуется ракета большей мощности, чем для «простого» полета в космос. Сравните хотя бы ракеты New Shepard и Falcon 9. Первая космическая скорость для нашей планеты равна 7,9 км/с. А вот чтобы преодолеть тяготение Земли, например для запуска автоматических межпланетных станций, требуется достичь скорости 11,2 км/с.
Для каждого небесного тела имеются свои значения космических скоростей. Луна намного менее массивная, чем Земля, и поэтому и первая, и вторая космические скорости здесь меньше. Для того чтобы выйти на окололунную орбиту (например для того чтобы вернуться с поверхности Луны на корабль, оставшийся на окололунной орбите), требуется скорость 1,7 км/с. Чтобы начать полет к Земле, – уже 2,4 км/с.
Геостационарная орбита
Геостационарная орбита (ГСО), наверное, самая «дорогая» орбита из всех, находящихся в околоземном пространстве. Количество мест на ней ограничено объективными причинами. Ее длина – 264 924 км, и находиться на ней могут только определенное количество спутников, чтобы не мешать друг другу. Неслучайно некоторые экваториальные страны в разное время предъявляли свои «территориальные» претензии на ГСО. Взять под свой суверенитет орбиту пытались Бразилия, Колумбия, Индонезия, Конго, Кения и другие страны.
Уникальность орбиты обусловлена тем, что она проходит строго над экватором и только на одной высоте – 35 786 км над уровнем моря. Только на этой высоте спутник, обращающийся в направлении вращения Земли, имеет период обращения, равный периоду вращения Земли. Это позволяет спутнику как бы зависать над одной точкой. Для наблюдателя с Земли он будет все время находиться в одной точке неба – точке стояния. А если так, то это позволяет для приема сигнала, и в первую очередь телевизионного, использовать сравнительно простую и недорогую аппаратуру – спутниковые тарелки. К слову, точка стояния спутника Eutelsat 36B, с которого осуществляется вещание на европейскую часть России «Триколор ТВ» – 36° в. д. Это непосредственно над территорией Кении.
Высокая эллиптическая орбита
Конечно, геостационарная орбита имеет много преимуществ. Но все же спутниковое телевещание в нашей стране началось не с нее. Первый советский спутник связи «Молния-1» был выведен на высокую эллиптическую орбиту. Ее апогей (максимальная высота) достигал 40 000 километров и на каждом втором витке находился над территорией СССР. Наклонение орбиты составляло 63,4°. Благодаря этому спутник хорошо был виден принимающими станциями практически на всей территории страны.
Конечно, о приеме сигнала на антенны, подобные современным спутниковым тарелкам, и речи быть не могло. В отличие от геостационарных спутников, «зависших» в одной точке, «Молния-1» постоянно перемещался по небу. Траекторию спутника в небе непрерывно отслеживали большие параболические антенны, поворачиваясь вслед его движению.
Такая орбита была выбрана по двум причинам. На тот момент, а это начало 60-х годов, СССР просто не располагал ракетами-носителями, способными выводить спутники на геостационарную орбиту. Другая причина была в том, что геостационарная орбита не позволяет обеспечить телевещание и связь в высоких широтах и в районах Крайнего Севера.
Наклонение орбиты
Как уже было сказано, наклонение орбиты «Молния» составляло 63,4°. Наклонение геостационарной орбиты – 0°. Как видно из этого сравнения, наклонение орбиты искусственного спутника Земли – это угол между плоскостью его орбиты и плоскостью экватора планеты. Геостационарные спутники расположены прямо над экватором, поэтому и наклонение их орбиты нулевое. Как и в случае с орбитой «Молния», наклонение орбиты имеет важное практическое значение.
Российская Национальная орбитальная космическая станция, которая, возможно, придет на смену МКС после 2024 года, как предполагается, будет использовать орбиту с наклонением примерно как у первых спутников связи (64,8 градуса). Это, в частности, позволит с большей эффективностью доставлять грузы с космодромов, расположенных на российской территории.
Искусственный спутник Земли и автоматическая межпланетная станция
Как правило, понятия «спутник» и «космический аппарат» отождествляются. Но, строго говоря, это не совсем одно и то же. Под спутником мы понимаем в первую очередь искусственный спутник Земли (ИСЗ) – космический летательный аппарат, вращающийся вокруг Земли по геоцентрической орбите. Космический аппарат – более широкое понятие, оно применяется в качестве общего названия технических устройств, используемых для выполнения разнообразных задач в космическом пространстве.
Космический аппарат, летящий к Юпитеру, конечно, тоже можно назвать спутником – спутником Солнца, его траектория движения принимает вид орбиты вокруг Солнца. Но, как правило, такие аппараты называют зондами, или автоматическими межпланетными станциями. Автоматическая межпланетная станция (АМС) – это космический аппарат, предназначенный для полета в межпланетном космическом пространстве (не по геоцентрической орбите).
Гравитационный маневр
Автоматическая межпланетная станция – это практически единственный на сегодня способ добраться до планет Солнечной системы. АМС «Луна-1», первая покинувшая зону притяжения Земли в 1959 году, и АМС «Юнона», достигшая орбиты Юпитера в этом году, – тому пример. Но мало кто задумывается, что к своим целям межпланетные зонды летают совсем не по прямой, а для полета используют не только двигатели, но и гравитацию планет посредством гравитационных маневров.
Гравитационный маневр – это разгон, замедление или изменение направления полета космического аппарата под действием гравитации небесных тел. Как правило, используется для экономии топлива и дополнительного разгона. Так, АМС «Юнона» в ходе полета к Юпитеру возвращалась к Земле и в результате гравитационного маневра в 2013 году увеличила свою скорость почти в три раза. И только после этого отправилась к своей цели.
Срок службы спутников на орбите составляет несколько лет. Некоторые из них, расположенные на низких орбитах, после завершения своей миссии входят в атмосферу Земли и сгорают. Хотя в некоторых случаях обломки долетают до поверхности Земли. Как это было, например, со станцией «Мир». Но космические аппараты, расположенные на более высоких орбитах, могут находиться на них тысячелетиями. Что, естественно, мешает следующим космическим полетам. Особенно это актуально для геостационарной орбиты, которая, как известно, не безразмерная. Поэтому перед окончанием срока службы космические аппараты на остатках топлива уводят на так называемую орбиту захоронения. Это уменьшает вероятность столкновения с другими спутниками и освобождает место на орбите. Для геостационарных спутников такая орбита расположена на высоте на 200 км выше ГСО.
Эффект Кесслера
С момента вывода первого спутника в космос на орбите осталось огромное количество искусственных объектов: отслужившие свой срок спутники, отработанные ступени ракет, разгонные блоки, обломки взорвавшихся космических аппаратов и фрагменты, образовавшиеся в результате столкновения спутников. Рано или поздно засорение околоземной орбиты космическим мусором приведет к тому, что ближний космос станет полностью непригоден для практического использования. Такой сценарий неблагоприятного развития ситуации (впоследствии названный его именем) впервые детально описал консультант NASA Дональд Кесслер.
Коварство синдрома Кесслера еще и в том, что чем больше объектов на орбите, тем больше вероятность их столкновения. Если произойдет столкновение двух достаточно больших объектов, то это приведет к появлению большого количества осколков. И каждый из них способен, в свою очередь, столкнуться с другими. Цепная реакция вызовет появление все новых и новых обломков, а следовательно, появление все большего количества космического мусора.
Астроном-любитель смог обнаружить излучение от взрыва массивной звезды в далекой галактике всего через несколько десятков минут после вспышки. Это позволило другим астрономам в дальнейшем проследить за эволюцией сверхновой и построить модель звезды-прародителя и механизма взрыва.
Это затмение называют "Великим Американским Затмением". Можно догадаться почему. Зона его видимости — североамериканский континент. За незначительным исключением, нигде на суше, кроме США, Канады, Мексики и нескольких стран центральной Америки, затмение не видно.
Да — в зоне видимости будет еще акватория Тихого и Атлантического океанов, ряд островов расположенных в них, Гренландия и самый краешек северной Европы — совсем уже на излете (во время захода Солнца и в очень малых фазах). Но если говорить о полосе полной фазы, в которой для наблюдателей Солнце затмится Луною совершенно, наступят густые сумерки, и на небе вспыхнут самые яркие звезды и планеты, то она коснется лишь трех стран: Мексики, США и Канады.
Прохождение полосы полной фазы полного солнечного затмения 8 апреля 2024 года по территории Мексики, США и Канады
Одно то, что это затмение полное, делает его уникальным явлением. Дело в том, что в среднем угловой размер Луны несколько меньше углового размера Солнца. Поэтому, чаще случаются кольцеобразные солнечные затмения — когда Луна проходит на фоне Солнца, оставляя неприкрытым тонкий, но очень яркий ободок дневного светила. При этом темнота не наступает, звезды в небе не появляются. Если не смотреть в небо и не щуриться на все еще очень яркое Солнце, можно подумать, что — просто облачко налетело.
Как можно заметить из карты видимости ближайших к настоящему моменту солнечных затмений, не всем странам везет на них одинаково. До 2040 года на территории России, например, будет хорошо наблюдаться только кольцеобразное затмение, а Австралии каким-то образом выпало 5 полных затмений, из которых одно относится к редкому типу гибридных затмений (они начинаются где-то на Земле как кольцеобразное, но в какой-то момент становятся полными, а заканчиваются опять кольцеобразными фазами).
Солнечные затмения (полосы их максимальных фаз) в период с 2021 по 2024 год
Обнаруженная несправедливость связана в первую очередь с довольно сложным движением Луны. Это только в первом приближении Луна вращается вокруг Земли по замкнутой круговой орбите — как это иной раз рисуют в книжках или на страницах сайтов сети Интернет. Первое, что разрушает примитивное представление о возможных взаимных положениях Земли и Луны, так это то, что орбита Луны не лежит с орбитой Земли в одной плоскости. Угол наклона лунной орбиты к плоскости эклиптики непрерывно меняется, но в среднем составляет около 5 с небольшим градусов. Этого вполне достаточно, чтобы Луна во время новолуния проходила на 5 градусов севернее или южнее Солнца. При видимом размере Луны в 1/2 градуса, этого вполне хватает, чтобы затмения не случалось — на подавляющем большинстве возможных положений Луны на её орбите.
Если две плоскости не совпадают, и не параллельны друг другу, обязательно должна быть линия их пересечения. Эта линия называется линия узлов. Она соединяет два лунных узла — две абстрактные точки на лунной орбите (а лунная орбита — это тоже абстракция, но с ней понимание дается проще), в которых Луна пересекает плоскость земной орбиты. Вблизи этих точек затмения возможны. И если новолуние случается вблизи лунного узла, то случается и затмение — полное, кольцеобразное или же просто частное солнечное затмение, если новолуние случилось чуть дальше от узлов, чем это требуется для полного или кольцеобразного затмений.
Луна делает оборот по своей орбите за 27,5 суток, а орбита её как будто стоит на месте — в первом приближении. Поэтому, если одна пара затмений (солнечное и лунное) случаются, например, весной (как в этом году, например: 25 марта — лунное полутеневое, 8 апреля — солнечное полное), то следующая пара затмений будет осенью (18 сентября 2024 — лунное частное теневое, 2 октября 2024 — солнечное кольцеобразное). Это — довольно жесткое расписание. Отменить/изменить его ничто не способно.
Но мы же знаем, что затмения случаются и летом, и зимой. Оказывается, хоть и медленно, линия узлов совершает вращательное движение, делая один оборот по всей эклиптике за 18 с небольшим лет. По завершении этого цикла, который еще античные греки называли "Сарос", взаимное расположение Солнца, Земли и Луны в довольно высокой степени точности повторяется, что давало возможность предсказания солнечных и лунных затмений еще в Древнем Египте и Китае — за 5 тысяч лет до нас, без глубоких знаний в области небесной механики.
Астрономы и сейчас используют это понятие, нанизывая на него целые секвенции затмений, в рамках которых предстоящее солнечное затмение 8 апреля 2024 года является повторением полного солнечного затмения от 29 марта 2006 года (которое, возможно, кто-то из вас хорошо помнит, потому что полоса его видимости проходила по территории России и даже идеально накрыла вершину Эльбруса, что дало возможность провести совершенно уникальные наблюдения). А следующее затмение этого же 139 сароса (вот так астрономы называют цепочки условно "связанных" затмений) случится 20 апреля 2042 года.
Как можно заметить, даже в рамках повторения через сарос, затмения не случаются в те же даты точно. Есть сдвижка на несколько дней (10, 11 или 12), потому что сарос не равен целому количеству лет. Более того, в нем еще и не целое количество суток, поэтому следующее в саросе затмение обязательно произойдет на другом континенте со смещением по долготе примерно на 120 градусов (может и просто в океане случиться).
Но и это — не все отличия
Например, предыдущее в этом саросе затмение имело максимальную продолжительность полной фазы 4 минуты 7 секунд, что вообще-то довольно много для полных затмений. Но данное затмение его по продолжительности превзойдет — 4 минуты 28 секунд. А следующее затмение 139-го сароса будет еще продолжительнее — 4 минуты 51 секунда.
Как можно заметить, пока в этом саросе продолжительности полных фаз идут по нарастающей.
До какого предела такое возможно?
Пика продолжительности достигнет далекое от нас солнечное затмение 16 июля 2186 года, когда длительность полной фазы составит 7 минут 29 секунд. И это станет самым продолжительным солнечным затмением — не только в этом саросе, но и во всех письменной истории человечества, насчитывающей несколько тысяч лет.
После него продолжительность затмений в 139 саросе начнет сокращаться, и 26 марта 2601 года случится последнее полное затмение в этом саросе — с продолжительностью полной фазы всего в 35 секунд. Следующие 9 затмений окажутся частными. Затем цепочка прерывается. Всего 139-й сарос насчитывает 71 затмение, и охватывает временной промежуток 1262 года. На смену этому саросу приходит новый, тоже начинающийся с незначительных частных затмений, но к концу первого их десятка затмения становятся уже полными или кольцеобразными, хоть и не очень продолжительными. К середине сароса продолжительность полной фазы достигает максимума, а потом все повторяется зеркальным образом, и сходит на нет.
Все солнечные затмения 139 Сароса за несколько секунд
Откуда берутся такие волны?
Одна из причин в том, что помимо лунных узлов на лунной орбите есть еще пара важных точек. Это точки перигея и апогея — ближайшая к Земле точка лунной орбиты, и наиболее от Земли удаленная. Вместе они образуют так называемую “Линию апсид”. И она - о ужас - тоже вращается (прецессирует), но со своим отдельным периодом 8 лет и 10 месяцев. И за один сарос линия апсид успевает совершить два оборота.
Но это не точно
Прецессия лунной орбиты
И стоит добавить, что сами по себе перигейное и апогейной расстояние тоже с течением времени несколько меняются. Но это “дыхание” Лунной - еще более сложноучитываемый фактор.
Примерно 60% возможных положений Луны на своей орбите (в контексте удаленности от Земли и следующих из этого видимых размеров нашего естественного спутника) могли бы дать кольцеобразные затмения. И лишь 40% потенциально соответствуют полным. Для достижения максимальной продолжительности полной фазы затмения, Луне во момент новолуния требуется оказаться не только вблизи узла своей орбиты, но и вблизи перигея.
И, о чудо! Это почти произошло
Луна прошла перигей орбиты всего за сутки до затмения. И это обстоятельство делает затмение 8 апреля 2024 года очень продолжительным. 4 с половиной минуты — это для полного солнечного затмения очень много.
Наблюдатели порой отправляются на другой континент ради гораздо более скоротечных затмений — всего в 1 или 2 минуты длительностью. А тут вдруг более 4 минут, да еще так удобно пролегающих — по одной из самых цивилизованных территорий Земного шара, с отличной транспортной доступностью всех локаций, и с хорошим астроклиматом.
Вот поэтому, данное затмение и называют "Великим"
На этом его достоинства не заканчиваются.
Это затмение попало буквально в максимум текущего цикла солнечной активности. А когда солнце активно, его корона творит чудеса — она протяженна и очень структурна, что наверняка будет отражено на астрофотоснимках полной фазы. Между максимумами корона не представляет такого феерического зрелища, хотя тоже интересна для ученых. Но любителям подавай нечто восхитительное. И оно ожидается в этот раз именно таковым.
Отдельным бонусом к этому затмению прилагается комета Понса-Брукса, которая окажется всего в 25 градусах от затмившегося Солнца, и вероятнее всего будет на пике своей яркости. Буквально накануне комета вновь претерпела вспышку — поярчала на целую звездную величину. Кто знает, вдруг она будет видна невооруженным глазом во время полной фазы затмения? Это, хоть и вряд ли будет доступно всем наблюдателям (скорее всего — только самым глазастым), но и не исключено. И наверняка это удастся заснять.
Кроме того, в небе затмения будут сиять довольно яркие планеты — Венера и Юпитер. Глазом они видны без труда. С некоторым трудом, возможно, удастся увидеть в пике темноты полной фазы Сатурн и Марс. Меркурий, который неизменно сопутствует Солнцу, в этот раз очень слаб — около 5-й звездной величины. Увидеть его во время затмения глазом, увы, не представляется возможным.
И конечно, такие яркие звезды зимнего неба, как Капелла, Альдебаран, Сириус, Ригель, Бетельгейзе, Беллатрикс, Процион, Кастор, Поллукс и даже Фомальгаут (!) полным своим ансамблем украсят небо затмения. Ни в какой другой сезон небо затмения не может быть столь звездным, как весной.
В завершении сообщу, что ближайшие полные солнечные затмения, видимые с территории России окажутся труднонаблюдаемым. 12 августа 2026 года, 30 марта 2033 года и 9 апреля 2043 года лунная тень затронет лишь северо-восточный регион — Камчатку, Чукотку и что-то в этом направлении. Их продолжительность едва ли превысит 2 минуты, и наблюдаться все три затмения будут очень низко над горизонтом. Рассматривать их как цель астротуризма нет никакого смысла. А ближайшее полное солнечное затмение с благоприятными условиями наблюдения с территории России (либо — в непосредственной близости от её границ) случится лишь 30 апреля 2060 года.