5

Основные объекты Солнечной системы

Это короткое видео о нашей солнечной системе. Оно показывает самые основные объекты в нашей системе и их основные физические характеристики.

Список объектов:

1. Солнце.

2. Меркурий.

3. Венера.

4. Земля.

5. Марс.

6. Юпитер.

7. Сатурн.

8. Уран.

9. Нептун.

Дубликаты не найдены

0

ваши доказательства устарели, открыли новую планету Зейдан.

раскрыть ветку 5
+1

Зинедин который?

раскрыть ветку 1
0

совершенно верно

0

Пруфы, пожалуйста. Там только математически рассчитали ее существование. Прямых доказательств нет, во всяком случае пока что.

раскрыть ветку 2
0

блин, вчера только опубликовали фотоснимки.

раскрыть ветку 1
0
Верните мой Плутон!!!!
раскрыть ветку 2
+1

Как хитро ты Плутон прихватизировать решил))

раскрыть ветку 1
0

ТАК НЕ ДОСТАНЬСЯ ЖЕ ТЫ НИКОМУ!!!

0
Плутон вроде реабилитировали и снова признали планетой?
раскрыть ветку 5
-1

Плутон не считается полноценной планетой, его называют карликовой планетой, а на вид он даже не круглый, а больше похож на метеорит

раскрыть ветку 4
0

это плутон-то не круглый? радиус 1187+/-4 км, полярное сжатие <1%

0
https://lenta.ru/news/2018/09/10/pluto/ говорят о пересмотре приговора.
раскрыть ветку 2
Похожие посты
65

NASA выбрало SpaceX для запуска миссии по изучению защитного барьера Солнечной системы

Миссия IMAP поможет исследователям лучше понять границу гелиосферы, своего рода магнитного пузыря, окружающего и защищающего Солнечную систему. В этой области постоянный поток частиц от Солнца, называемый солнечным ветром, сталкивается с материалом из остальной части Млечного Пути. Это столкновение ограничивает количество вредного космического излучения, входящего в гелиосферу. IMAP займется сбором и анализом частиц, которые преодолевают защитный рубеж.

«Солнце много делает для нашей защиты. IMAP имеет решающее значение для расширения нашего понимания того, как работает этот «космический фильтр», – сказал Деннис Андручик, заместитель помощника директора NASA по научным миссиям.

NASA выбрало SpaceX для запуска миссии по изучению защитного барьера Солнечной системы SpaceX, Космонавтика, Космос, Falcon 9, Ракета-Носитель, Технологии, США, Зонд, Исследования, Наука, Солнечная система, Астрономия, Длиннопост, NASA

Другая цель миссии – больше узнать о генерации космических лучей в гелиосфере. Местные космические лучи, а также поступившие из Галактики и из-за ее пределов воздействуют на космонавтов, могут нанести ущерб технологическим системам и кроме этого играют свою роль в существовании самой жизни во Вселенной.


Космический аппарат будет располагаться на расстоянии около 1,5 миллиона километров от Земли в первой точке Лагранжа (L1). Это позволит зонду максимально использовать инструменты для мониторинга взаимодействия солнечного ветра и межзвездной среды во внешней Солнечной системе.

NASA выбрало SpaceX для запуска миссии по изучению защитного барьера Солнечной системы SpaceX, Космонавтика, Космос, Falcon 9, Ракета-Носитель, Технологии, США, Зонд, Исследования, Наука, Солнечная система, Астрономия, Длиннопост, NASA

На зонде будут размещены 10 научных инструментов, предоставляемых международными исследовательскими организациями и университетами. Полетит он на Falcon 9 в октябре 2024 года. Общая сумма запуска составила примерно $109,4 млн., включая обслуживание запуска и другие связанные с миссией расходы."

Показать полностью 1
5403

Колонизация солнечной системы

Часть 1

Колонизация солнечной системы Планета, Колонизация, Космос, Марс, Солнечная система, Космический корабль, Длиннопост

Кадр из фильма «Марсианин»

В первую очередь необходимо определить куда можно лететь человеку, и где можно разворачивать колонию.

Схема нашей системы, простая, но понятная (по спутникам не очень точно)

Колонизация солнечной системы Планета, Колонизация, Космос, Марс, Солнечная система, Космический корабль, Длиннопост

Итого в нашей системе имеем:
- 8 планет (+ Плутон);
- 15 крупных спутников (не считая Луны и считая Харон);
- Церера в поясе астероидов.

Малые спутники колонизировать особого смысла нет. На них будет очень слабая гравитация, что очень не удобно для человека. Например, с Деймоса, спутника Марса, можно буквально «выпрыгнуть» на орбиту, а если разбежаться, то можно достичь второй космической (5.6 м/с).

Крупные спутники планет:
- Юпитер - Ио, Европа, Ганимед, Каллисто;
- Сатурн - Титан, Рея, Япет, Диона, Тефия;
- Уран - Ариэль, Умбриэль, Титания и Оберон;
- Нептун - Тритон;
- Плутон - Харон (хоть теперь Плутон не полноценная планета).

Из 17 потенциальных целей для высадки не все одинаково полезны для человека, даже в скафандре.

Напомню, основные проблемы для человека - это высокая температура, большая радиация и ускорение свободного падения больше 1.5 g. С остальным в скафандре / жилом модуле жить можно.

Краткая справка по условиям на планетах и спутниках:
- Меркурий: можно высадится на полюса х для «галочки», создавать постоянную базу нет смысла, там очень жарко и радиоактивно;
- Венера: на высоте 50 км самые комфортные условия после Земли, в облаках можно ходить в акваланге с гидрокостюмом, соответсвенно можно создать летающую базу в научных целях по типу дирижабль, которую будет мотать ветром по планете.
- Луна: первый кандидат для постоянной базы.
- Марс: второй кандидат для постоянной базы.
- Церера: условия почти как на Луне, можно добывать ракетное топливо, колонизировать можно;
- Юпитер: на химии взлететь не возможно, уйти с орбиты можно только на ионниках, сесть нельзя, но радиация убьёт быстрее, лететь не надо.
- Каллисто: условия почти как на Луне, только воды как на земле, можно добывать ракетное топливо, колонизировать можно.
- Ио, Ганимед, Европа: радиация, лететь не надо.
- Сатурн: уход с орбиты на грани возможностей химических двигателей, сесть нельзя, лететь не надо.
- Титан: ракетного топлива (метан) там, в буквальном смысле, океан (это прям мечта Газпрома), ходить можно в подогреваемых легких негерметичных скафандрах, колонизировать можно.
- Япет, Рея, Тефия, Диона: лёд, радиация и ничего интересного, лететь не надо.
- Уран: сесть нельзя, а атмосфера очень холодная и лёгкая (на дирижабле не полететь) и радиация.
- Ариэль, Умбриэль, Титания и Оберон: лед, холод, предпочтительнее Оберон, там меньше радиация, лететь долго, высадится можно для «галочки».
- Нептун: сесть нельзя, в атмосфера очень холодная и лёгкая (на дирижабле не полететь) и радиация.
- Тритон: будет тяжело сесть, на поверхности замёрзший азот ( будет испарятся от двигателей), очень холодно, лететь долго, можно высадится для «галочки».
- Плутон и Харон: на спутник проще сесть, на Плутоне на поверхности замёрзший азот, лететь долго, можно высадится для «галочки».

Для наглядности орбиты в масштабе. Как видно, до Сатурна почти в 10 раз дальше от солнца, чем Земля, а Уран уже в 2 раза дальше Сатурна.

Колонизация солнечной системы Планета, Колонизация, Космос, Марс, Солнечная система, Космический корабль, Длиннопост

Итого получаем следующие точки для создания баз (разовые высадки не учитываем) с указанными соответсвенно минимальным запасом характеристической скорости (с НОО на НОО) - запасом скорости для взлета с поверхности на НОО в- среднего удаления от Земли в млн км - минимального (в оптимальное окно запуска) временем полёта от Земли по гиперболической траектории (без учета разгона):
1. Луна - 3.94 км/с - 1.73 км/с - 0.385 млн км - часы;
2. Венера (в облака) - 6.79 км/с - 9.0 км/с - 150 млн км - 40 дней;
3. Марс - 5.71 км/с - 3.8 км/с - 225 млн км - 70 дней;
4. Церера - 8.67 км/с (из них 3.12 на изменение наклона орбиты) - 0.36 км/с - 415 млн км - около 400 дней;
5. Каллисто - 12.41 км/с - 1.76 км/с - 777 млн км- 405 дней;
6. Титан - 11.43 км/с - 7.6 км/с - 1425 млн км - 560 дней.

Для справки: старт на НОО с Земли требует 9.4 км/с (с учётом атмосферы).

На Венере, Марсе, Титане можно тормозить об атмосферу - таким образом запас скорости на посадку нужен менее 1 км/с.

В ближайшей перспективе (на земле все дано реализовано, осталось это вывести в космос) технология освоения следующая:
- для взлетов/посадок с планет использование кораблей типа «Starship» на химической тяге (запас по характеристической скорости около 9 км/с при полной заправке позволяет произвести посадку и взлёт на все точки колонизации);
- для межпланетных перелетов используются ядерные буксиры типа «Нуклон» с разгоном выше гиперболических скоростей (запас по характеристической скорости от 50 км/с).

В посте Немного про ядерный буксир
разобраны скоростные возможности ядерных буксиров.

Таким образом для колонизации необходимы следующие минимальные запасы (как минимум для первых кораблей пока не будет обеспечена дозаправка местным топливом):
- 5 км/с на химические двигатели для посадки/взлёта (для редких полетов на Венеру 10 км/с), а это топлива в 1.3 раза больше чем масса самого корабля).
- 12.5 км/с для ядерных буксиров (если мы хотим лететь на Титан 6.5 лет, на Марс около 300 дней) либо больше 25 км/с (чтобы долететь до Титана быстрее, чем за 3 года, а до Марса, быстрее 150 дней).

Для тех, кто ещё не видел - время полёта по эллиптическим траекториям (минимальный запас скорости) и минимальной гиперболической (разгон от земли до 16.65 км/с).

Колонизация солнечной системы Планета, Колонизация, Космос, Марс, Солнечная система, Космический корабль, Длиннопост

Использование гравитационных манёвров при массовой колонизации исключено - никто не будет ждать пару лет окно запуска, если надо доставить через полгода необходимый груз для поддержания жизни колонистов.

Получаем, что даже до Титана лететь уже под 3 года, при существующих сегодня технологиях. Очень далеко, но жить там человеку достаточно удобно (про это в части 2 будет).

Вывод этой части:
- Не там много мест в солнечной системе, которые можно колонизировать.
- Дальше Сатурна что-то осваивать смысла нет вообще, по крайней мере пока не достигнем запаса по характеристической скорости на 2 порядка.
- Современные технологии, связка ядерного буксира многоразовых кораблей с химическими двигателями, позволяют летать к другим планетам


Для подписчиков:
В части 2 будет про условия обитания в колониях.
В части 3 - про оснащение колоний, объём перелетов и возможная промышленность на других небесных телах.

Показать полностью 2
1021

Лесная дорога в соседнюю галактику

Фото в масштабе

Лесная дорога в соседнюю галактику Астрофото, Галактика, Туманность Андромеды, Космос, Звёзды, Вселенная, Лес

Галактики больше, чем можно себе вообразить. Даже на расстоянии 2.52 миллионов световых лет от нас галактика Андромеды всё равно занимает огромную область на небе. Чтобы было понятно, насколько она огромна, я решил сделать такой снимок, но тут приходится идти на хитрость: снимать отдельно небо с компенсацией вращения Земли, обрабатывать, а потом совмещать с неподвижной Землёй. Здесь и галактика, и Земля, сняты с одинаковым фокусным расстоянием 100 мм именно для того, чтобы сохранить пропорции. Сейчас галактика поднимается достаточно высоко, поэтому пришлось искать то самое место, где галактика бывала еще месяц назад и снимать как можно раньше.


Вообще я планирую сделать целую серию подобных снимков (галактики, туманности и т.п.) вместе с Землёй с одинаковым фокусным расстоянием, просто для понимания масштабов. Дождусь только правильного объектива...


Снято 20 сентября 2020 года где-то в дебрях Рязанской области.

Камера Canon 600D, объектив Canon 55-250mm (здесь 100 мм), компенсация вращения Земли с помощью астротрекера Sky-Watcher Star Adventurer.


Фото в высоком разрешении (для желающих найти пару косяков на снимке или просто рассмотреть галактику поближе) как всегда по ссылке на диске.

Больше ночных фотографий и астрофотографий в моём инстаграме.

Показать полностью
308

Ио и Юпитер, 17 сентября 2020 года, 21:02

Ио и Юпитер, 17 сентября 2020 года, 21:02 Юпитер, Ио, Астрофото, Астрономия, Космос, Планета, Starhunter, Анапа, Анападвор, Гифка

Оборудование:

-телескоп Celestron NexStar 8 SE

-длинная линза Барлоу 2х

-корректор атмосферной дисперсии ZWO ADC

-фильтр ZWO IR-cut

-астрокамера ASI ZWO 183MC (50 fps).

Сложение 1000 кадров из 4488 в Autostakkert, деротация 6 стэков в WinJUPOS.

Место съемки: Анапа, двор.


Ниже — анимация вращения Юпитера (20:53-21:07).
Ио и Юпитер, 17 сентября 2020 года, 21:02 Юпитер, Ио, Астрофото, Астрономия, Космос, Планета, Starhunter, Анапа, Анападвор, Гифка

Мой космический Instagram: star.hunter

Показать полностью 1
619

Сатурн, 17 сентября 2020 года, 21:11

Сатурн, 17 сентября 2020 года, 21:11 Сатурн, Планета, Астрофото, Астрономия, Космос, Starhunter, Анапа, Анападвор

Оборудование:

-телескоп Celestron NexStar 8 SE

-длинная линза Барлоу 2х

-корректор атмосферной дисперсии ZWO ADC

-фильтр ZWO IR-cut

-астрокамера ASI ZWO 183MC.

Сложение 5000 кадров из 29916 в Autostakkert, вейвлеты в Registax 6.

Место съемки: Анапа, двор.

Мой космический Instagram: star.hunter
651

Изображения галактики Андромеды в различных длинах волн электромагнитного спектра

Изображения галактики Андромеды в различных длинах волн электромагнитного спектра Андромеда, Космос, Галактика, Радиоволны, Ультрафиолет, Черная дыра, Инфракрасная съемка

Рентген покажет излучение дисков аккреции черных дыр (в частности, на фото галактики Андромеды в ренгене отчётливо выделяется центральная область, содержащая сверхмассивную черную дыру). Ультрафиолет покажет излучение молодых и горячих звёзд. Средний и дальний инфракрасный диапазон отразит области активного звездообразования. Радиоволны позволят понять распределение водорода внутри галактики.

239

Марс, 7 сентября 2020 года, 00:47

Марс, 7 сентября 2020 года, 00:47 Марс, Планета, Астрофото, Астрономия, Космос, Starhunter, Анапа, Анападвор

Оборудование:

-телескоп Celestron NexStar 8 SE

-длинная линза Барлоу 2х

-корректор атмосферной дисперсии ZWO ADC

-фильтр ZWO IR-cut

-астрокамера ASI ZWO 183MC.

Сложение 500 кадров из 17718 в Autostakkert, вейвлеты в Registax 6.

Место съемки: Анапа, двор.

Мой космический Instagram: star.hunter

916

Остаток сверхновой

Остаток сверхновой Астрофизика, Астрономия, Наука, Космос, Большое Магелланово облако, Сверхновая, Галактика, Физика

На снимке изображены остатки сверхновой, вспыхнувшей около 400 лет назад в карликовой галактике Большое Магелланово Облако. Диаметр сверхновой составляет около 23 световых лет. Скорость расширения оболочки 18 миллионов км/ч.

418

Марс, 30 августа 2020 года, 01:53

Марс, 30 августа 2020 года, 01:53 Марс, Астрофото, Астрономия, Космос, Планета, Starhunter, Анапа, Анападвор

Оборудование:

-телескоп Celestron NexStar 8 SE

-длинная линза Барлоу 2х

-корректор атмосферной дисперсии ZWO ADC

-фильтр ZWO IR-cut

-астрокамера ASI ZWO 183MC.

Сложение 2500 кадров из 17677 в Autostakkert, вейвлеты в Registax 6.

Место съемки: Анапа, двор.

Мой космический Instagram: star.hunter
74

ДТП космических масштабов всё ближе: газовый ореол Млечного Пути уже столкнулся с ореолом галактики Андромеды

ДТП космических масштабов всё ближе: газовый ореол Млечного Пути уже столкнулся с ореолом галактики Андромеды

28.08.2020

https://ru.wikipedia.org/wiki/Квазар


В кинематографе часто встречается «киноштамп», когда перед столкновением лицо водителя на миг ярко освещается светом фар идущей на таран встречной машины. Нечто подобное сейчас происходит с нашей галактикой. И хотя в космических масштабах всё происходит несоизмеримо медленнее, «свет фар» от идущей на столкновение с Млечным Путём галактики Андромеда уже начинает бить нам в лицо.


Если бы гало вокруг галактики Андромеда было бы видно обычным глазом, то это было бы так, как на картинке (NASA)


Каждую галактику окружает облако газа и плазмы, известное как газовое гало. Это облако в разы больше галактических дисков. Но оно не видно невооружённым глазом, поскольку молекулы газов сильно рассеяны в пространстве и обладают малой энергией, чтобы самостоятельно себя обнаруживать. Выявить гало и изучить его структуру можно с помощью постороннего сильного фонового излучения.


Такими фонариками подсветки являются квазары ― одни из самых ярких объектов во вселенной. Проходя сквозь гало галактик, ультрафиолетовый свет квазаров поглощается газовой оболочкой в той или иной степени в зависимости от содержания оболочки и её плотности. Подробно изучить гало далёких галактик нельзя ― они подсвечены одним, реже двумя квазарами. То ли дело наша соседка галактика Андромеда. Она красуется в небе на фоне 43 квазаров. Только бери и картографируй.


Более-менее подробную карту гало галактики Андромеда помог создать спектрограф COS космического телескопа Хаббл. Внезапно выяснилось, что газовое гало соседней галактики распространилось настолько, что уже находится на полпути по направлению к нашей галактике Млечный Путь. Фактически гало Млечного Пути уже входит в столкновение с ореолом Андромеда. Через четыре миллиарда лет обе галактики начнут сливаться в единое звёздное образование с явно нехорошими последствиями для наших потомков (если человечество не убьёт себя раньше).


Картография гало галактики Андромеда показала, что ореол отходит от звёзд галактики на удаление от 1,3 до 2 млн световых лет. Также выяснилось, что гало представляет собой двухслойное образование с динамичным ядром и спокойным, но более горячим внешним слоем. Динамика внутреннего слоя, как считают учёные, зависит от деятельности сверхновых в диске галактики. Они, как предполагается, загрязняют внутренний слой своими выбросами во время взрывов. Эта оболочка меньше и простирается на полмиллиона световых лет от галактики.


Газовое гало галактики Андромеда на фоне квазаров (NASA)


Изучение гало галактики Андромеда позволяет нам понять поведение ореола нашей галактики Млечный Путь. «Большое видится на расстоянии», как сказал поэт. Сидя внутри газового ореола мы не можем его изучать, тогда как на примере соседней и самой близкой к нам галактики Андромеда это доступно и удобно.

Источники:

NewAtlas https://newatlas.com/

nasa.gov http://nasa.gov/

ДТП космических масштабов всё ближе: газовый ореол Млечного Пути уже столкнулся с ореолом галактики Андромеды Космос, Андромеда, Млечный Путь, Квазар, Галактика, NASA, Длиннопост, Столкновение
ДТП космических масштабов всё ближе: газовый ореол Млечного Пути уже столкнулся с ореолом галактики Андромеды Космос, Андромеда, Млечный Путь, Квазар, Галактика, NASA, Длиннопост, Столкновение
Показать полностью 2
143

Прикрытие витилиго с помощью татуировки!

Прикрытие витилиго с помощью татуировки! Ноги, Витилиго, Тату, Оригинально, Космос, Планета, Было-Стало, Фотография

Витили́го (лат. vitiligo «накожная болезнь» от vitium «порок»); арх. песь — нарушение пигментации, выражающееся в исчезновении пигмента меланина на отдельных участках кожи. Возникает на коже, предположительно, в результате действия некоторых лекарственных и химических веществ, нервно-трофических, нейроэндокринных и аутоиммунных факторов меланогенеза, а также после воспалительных и некротических процессов на коже. Предрасположенность к витилиго может наследоваться. Природа заболевания до конца не изучена.


Отсюда - https://redd.it/igs5ns

167

Моделирование указало на две звезды в прошлом Солнечной системы

Моделирование указало на две звезды в прошлом Солнечной системы Космос, Вселенная, Солнечная система, Двойная звезда, Облако Оорта, Планета X, Длиннопост

С помощью моделирования астрофизики показали, что Солнце в прошлом могло находиться в двойной системе со звездой той же массы на расстоянии около полутора тысяч астрономических единиц. Это помогает объяснить большое количество комет во внешнем облаке Оорта и аномалии движения обособленных транснептуновых объектов. Статья опубликована в журнале The Astrophysical Journal Letters.

Предполагается, что на окраине Солнечной системы находится огромная сферическая область, состоящая из ледяных тел — внешнее облако Оорта. Мы не можем наблюдать его напрямую, но видим оттуда долгопериодические кометы, когда они приближаются к Солнцу. По оценкам ученых в облаке Оорта находятся миллионы или даже триллионы комет.

Другой далекий объект Солнечной системы, который долгое время волнует астрофизиков — гипотетическая девятая планета. Предполагается, что массивный объект движется по сильно вытянутой орбите и влияет на движение сразу нескольких транснептуновых объектов в рассеянном диске. 

При этом до сих пор нет единой теории, которая могла бы объяснить и большое количество объектов в облаке Оорта, и существование девятой планеты. Существующие результаты моделирования эволюции Солнечной системы показывают значительно меньшее количество объектов в ее внешней области.

Амир Сирадж (Amir Siraj) с коллегами из Гарвардского университета предположили, что объяснить существование столь массивного облака Оорта и девятой планеты можно, если допустить, что изначально Солнце сформировалось не в одиночку, а вместе со звездой такой же массы. Это не так удивительно, ведь не менее трети звезд в нашей галактике образуют двойные и тройные системы, а внутри облака молекулярного водорода, в котором родилось Солнце, помимо него могло родиться множество и других звезд. Они образовали скопление, которое со временем покинула наша звезда. Однако перед этим Солнце было гравитационно связано с другой звездой, пока не потеряло своего спутника.

В паре с Солнцем могла соседствовать звезда той же массы на расстоянии всего 1500 астрономических единиц. Моделирование процесса формирования Солнечной системы показало, что радиус гравитационного влияния двойной системы в 20 раз больше, чем у одного Солнца, поэтому она эффективнее захватывает объекты из окружающего пространства. Это неплохо объясняет большое количество комет в облаке Оорта и вытянутую орбиту гипотетической девятой планеты. При этом ученым пока не удается точно оценить как много из захваченных объектов «потерялось» вместе со звездой-соседом, когда она покинула Солнечную систему. Авторы предполагают, что это могло произойти из-за его взаимодействия с другими членами звездного скопления, в котором находилась двойная система.

Моделирование указало на две звезды в прошлом Солнечной системы Космос, Вселенная, Солнечная система, Двойная звезда, Облако Оорта, Планета X, Длиннопост

Также исследователи предполагают, что если Солнце в прошлом действительно было двойной звездой, то за орбитой Нептуна может скрываться еще множество неоткрытых карликовых планет. Они надеются обнаружить их, как и девятую планету, с помощью широкоугольного обзорного телескопа-рефлектора в Обсерватории Веры Рубин.

https://nplus1.ru/news/2020/08/24/two-stars

Показать полностью 1
88

Число обитаемых планет в нашей галактике может быть больше 10 тысяч

Число обитаемых планет в нашей галактике может быть больше 10 тысяч Космос, Наука, Планета, Солнечная система, Млечный путь

Ученые проанализировали свойства уже открытых планет вне Солнечной системы и пришли к выводу, что количество обитаемых миров в Млечном Пути будет составлять несколько десятков тысяч, если в ближайшие десятилетия астрономы откроют хотя бы одну такую планету. Итоги их расчетов опубликовал научный журнал Proceedings of the National Academy of Sciences.


"Одна из главных задач астрономии в ближайшие десятилетия – открыть следы существования жизни на поверхности экзопланет. Наши расчеты показывают, что если мы откроем даже одну планету с возможными следами жизни, это будет означать, что с вероятностью в 95% в Млечном Пути существуют десятки тысяч обитаемых миров", – пишут исследователи.

Полвека назад американский астроном Фрэнк Дрейк придумал формулу, с помощью которой можно подсчитать, сколько в нашей Галактике внеземных цивилизаций, с которыми возможен контакт, а также оценить шансы на это. Расчеты Дрейка показали, что таких планет должно быть очень много и что человечество обязательно должно встретиться с их обитателями.


Космические тайны: как открывали планеты Солнечной системы

Однако в ближайшие годы после публикации уравнения ни одного контакта с инопланетянами не произошло. Ученые того времени, в том числе Энрико Ферми, начали сомневаться в истинности допущений Дрейка. В результате итальянец сформулировал так называемый "парадокс Ферми": если разумные инопланетяне существуют, почему человечество до их пор не открыло никаких их следов?


Ученые до сих пор не могут разрешить этот парадокс. Раньше они предполагали, что человечество еще не встретилось с внеземными цивилизациями из-за того, что на нашей планете сложились уникальные условия, которые нужны для формирования разумной жизни. Сейчас эта гипотеза кажется маловероятной, ведь астрономы открыли тысячи землеподобных планет у ближайших к нам звезд.


Перспективы поисков внеземной жизни


Профессор Римского университета Тор Вергата (Италия) Амедео Бальби и научный сотрудник Федеральной политехнической школы Швейцарии Клаудио Гримальди попытались решить более простую задачу – подсчитать количество потенциально обитаемых планет.


В своих расчетах ученые учитывали, что мы сейчас знаем об условиях на других планетах и как прогресс в астрономии и постройка новых телескопов повлияет на "кругозор" человечества в ближайшие десятилетия. Вдобавок их интересовало не общее число цивилизаций, которые когда-либо существовали в Млечном Пути, а то их количество, которое мы могли бы обнаружить прямо сейчас.


Опираясь на эти принципы, исследователи подготовили несколько сценариев, по которым могут развиваться события в будущем, и оценили максимальное и типичное число обитаемых планет, которые человечество сможет открыть в ближайшие два-три десятилетия.


Подробно на ТАСС

Показать полностью
128

Астрохобби #3

Итак, с нетерпением ждали с братом, что все прогнозы по погоде единогласно скажут, что будет ясно, надо ехать. В ночь с 15 на 16 августа это случилось, дали безоблачное небо. По коням, на привычное место в поле. В этот раз объектом съемки стала галактика Треугольника (М33).

Астрохобби #3 Астрономия, Космос, Астрофото, Галактика

Это третья по размеру галактика Местной группы после туманности Андромеды и Млечного пути. По размеру примерно в 2 раза меньше нашей галактики, по массе - примервно в 5-10 раз.

В идеальньных условиях наблюдения при идеальном зрении - это самый удалённый объект, который можно увидеть невооружённым глазом. Не так, конечно будет выглядеть, а как слабое еле различимое туманное пятно. Расстояние до неё оценивается в 3 млн световых лет.


Тут сложено 43 фотографии по 3 минуты каждая и калибровочные снимки. (о процессе съёмки и калибровочных кадрах будут отдельные посты, наверное, когда будет перерыв в ясных ночах)


Продолжая рассказ о хобби, постараюсь обрисовать основные проблемы, которые мешают им заниматься постоянно.

- Луна. Да, наш естестественный спутник очень сильно мешает, если освещено больше половины видимой стороны, если меньше - то уже как то можно жить. Если больше - засветка неба от такого яркого "фонаря" становится ощутимо сильной, топит под собой слабые детали объектов глубокого космоса. Поэтому при полной или почти полной Луне стараюсь не выезжать, только на технические выезды, попробовать новое оборудование, например, или софтину. Получается, половина всех ночей в году непригодна из-за Луны. Пытаться можно, но результат будет хуже чем в безлунную ночь.

- Погода. Разумеется, в облачную погоду наблюдать или фотографировать невозможно. То же в переменную облачность, ловить объект в просветах муторно, и результат получится тоже неочень. Остаются безлунные ночи с идеально чистым небом. Сколько таких в средней полосе России? Уже остаётся не так уж и много.

- Ветер. Его, правда, можно было бы упомянуть вместе с погодой, но оставлю его отдельно. Поскольку сам по себе телескоп немаленький, он обладает парусностью, ветер, особенно порывистый, создаёт дрожания телескопа, звёзды получаются размазанные, гидирование с такими отклонениями не справляется.


По всем этим причинам, стараюсь ловить каждую ночь, которая по прогнозу похожа на подходящую, часто бывает, что прогноз говорит одно, приезжаешь на место, облачно, ждёшь неба, собрав и настроив телескоп, а неба нет. Собираешь его обратно, едешь домой. Приведу свою статистику за зиму 19/20 - выезжал всего 5 раз, реально результативных ночей было 2.


Wiki: https://ru.wikipedia.org/wiki/Галактика_Треугольника
Оригинал и техническая информация: https://deepskyhosting.com/OVWSTbS

Показать полностью
967

Наглядное вращение планет Солнечной системы относительно друг друга!

Видео без звука.

Отсюда - https://redd.it/iaorv8

Наглядное вращение планет Солнечной системы относительно друг друга! Планета, Солнечная система, Вращение, Вращение земли, Наглядно, Цикл, Без звука, Космос, Видео, Гифка

Благодарность @iVolos за предоставленную гифку #comment_177513367

Показать полностью 1
92

Слияние 14 галактик воедино

Слияние 14 галактик воедино Космос, Галактика

Представьте себе группу из 14 галактик, сталкивающихся вместе, чтобы создать одну массивную структуру! Это происходит на расстоянии 12,4 миллиарда световых лет, также это массивное творение будет состоять из примерно 20 триллионов звезд

171

Млечный Путь в конце лета

Млечный Путь в конце лета Фотография, Астрофото, Млечный путь, Космос, Звёзды, Астрономия, Галактика

В кадре засветились ещё и Сатурн с Юпитером, а также какой-то неопознанный пролетающий объект.


Canon 5DmkII, совеццкий ширик Мир-47М. На самом деле я в каком-то смысле нищеброд фанат старой мануальной оптики, поэтому часто таскаю с собой подобные стекла. Снято одним кадром.

Другие мои картинки можно посмотреть в инстаграм

75

Под пропастью во ржи

Под пропастью во ржи Фотография, Ночь, Млечный путь, Космос, Звёзды, Галактика, Астрономия, Астрофото

Вчера была на редкость офигенная ночь. Тепло, безветренно, и НЕТ СРАНЫХ КОМАРОВ - прямо комбо. А, еще и Луна показалась относительно поздно - поэтому удалось немного поснимать Млечку. В зените он не такой яркий как на юге, но этот кадр почему-то зацепил больше остальных.

Лежишь в этих колосьях, смотришь на всю эту бездну - и ничего перед тобой больше нет. Как букашка в траве. Непередаваемые ощущения.


Canon 5DmkII, Мир-47М, один кадр

Другие мои картинки можно посмотреть в инстаграм

Похожие посты закончились. Возможно, вас заинтересуют другие посты по тегам: