0

Деление на ноль: это возможно

Но это бессмысленно.
Извиняюсь перед всякими академиками и профессорами математики за свою некомпетентность и наглость, но вот что я понял:

Деление- это на самом деле два разных действия. То есть есть два варианта деления.

Вариант первый: последовательное вычитание до образования остатка.
Например: есть веревка. Надо ее разделить на 10- сантиметровые отрезки. Последовательно отрезаем кусочки по 10 см. И в конце получаем некий остаток, который меньше 10 сантиметров или равен нулю.


В случае такого деления на ноль мы отрезаем от веревки беско00000000000000нечное количество отрезков размерностью ноль и делаем это бесконечн00000000000000ое количество времени (ну или пока не надоест)
То есть занимаемся бессмысленной деятельностью с нулевым результатом.

Вариант второй : дробление на равные части. Для примера раздробим веревку на десять частей. Проще всего это сделать свернув веревку в 10 колец равного размера. Ну типа веревку наматываем на цилиндр, а потом потихоньку меняем диаметр этого цилиндра. В какой-то момент диаметр станет таковым, что на нем будет ровно 10 оборотов веревки . Всё, задача выполнена.

В случае дробления на ноль надо свернуть веревку, образовав при этом ровно ноль колец . То есть не делать ничего.


Ну а как помножить на ноль? Да запросто!!!! Сейчас разъясню... Стоп...

А где моя веревочка?

А вот как ноль в факториал возводить- этого я ещё не понял. :(

2
Автор поста оценил этот комментарий

*открываем окно*
в известном смысле деление на нуль невозможно, почитайте про кольца целостности и поля.

Вы верно заметили, что существует несколько способов делить, первый, который вы описываете соответствует делению с остатком в Евклидовом кольце.
Второй способ — более классический, соответствует поиску обратного элемента по умножению. Для нуля в любом поля такого элемента не существует.

переход к бесконечности в подобных рассуждениях почти всегда некорректен, так как в классическом анализе, такого понятия, как "бесконечность" — нет, есть только значок, означающий, что значение чего-либо может быть сколь угодно большим, но даже в таком случае, оно может быть меньше другого выражения
*закрываем окно*

раскрыть ветку (1)
Автор поста оценил этот комментарий

Спасибо за комментарий.
В школе мне как-то не озаботились объяснить почему на ноль делить нельзя. Ну вот я самому десятилетнему себе и постарался разъяснить ситуацию с нулем . Даже как-то без зубодробительных формул получилось :))
Еще меня как-то озадачивало общепринятое выражение мнимое число . Типа это какое-то нереальное, придуманное число. Чисто филологически с толку сбивает. Хотя например даже в электротехнике без него никуда. Я бы его назвал скрытое дополняющее число. Ибо это число вне числовой оси, но на числовой плоскости. Ну вот как-то так.

Темы

Политика

Теги

Популярные авторы

Сообщества

18+

Теги

Популярные авторы

Сообщества

Игры

Теги

Популярные авторы

Сообщества

Юмор

Теги

Популярные авторы

Сообщества

Отношения

Теги

Популярные авторы

Сообщества

Здоровье

Теги

Популярные авторы

Сообщества

Путешествия

Теги

Популярные авторы

Сообщества

Спорт

Теги

Популярные авторы

Сообщества

Хобби

Теги

Популярные авторы

Сообщества

Сервис

Теги

Популярные авторы

Сообщества

Природа

Теги

Популярные авторы

Сообщества

Бизнес

Теги

Популярные авторы

Сообщества

Транспорт

Теги

Популярные авторы

Сообщества

Общение

Теги

Популярные авторы

Сообщества

Юриспруденция

Теги

Популярные авторы

Сообщества

Наука

Теги

Популярные авторы

Сообщества

IT

Теги

Популярные авторы

Сообщества

Животные

Теги

Популярные авторы

Сообщества

Кино и сериалы

Теги

Популярные авторы

Сообщества

Экономика

Теги

Популярные авторы

Сообщества

Кулинария

Теги

Популярные авторы

Сообщества

История

Теги

Популярные авторы

Сообщества