Качество техподдержки падает из-за нейросетей
Помните, был такой лайфхак, когда для связи с оператором Сбера просили бота ответить на вопрос «период полураспада радия/плутония» и бот в панике сразу переводил на оператора? Потом это пофиксили, но я этот случай запомнил.
На днях увидел, что ребята на Reddit обсуждают такую же проблему: корпоративная техподдержка вендоров стала хуже. Ответы операторов шаблонные, реального понимания проблемы нет, решение растягивается на недели, а виной тому дешевые сотрудники и нейросети.
Честно говоря, это не только про вендоров. Та же тенденция есть в любой IT-техподдержке — от SaaS-сервисов до внутренних helpdesk, ну и Сбер тоже не исключение. На мой взгляд, причин несколько:
Сокращение расходов и оптимизация штата. А это уже следствие подключения к техподдержке нейросетей. Руководство видит возможность сократить затраты (считай, заработать).
Ставка на «среднего» специалиста, а не эксперта. Задумка хорошая, что средний спец + нейросеть = эксперт, но вот на практике это почти всегда не так.
Увлечение автоматизацией и «ботизацией» без продуманной логики. Нейросети поумнели, и почему бы их не использовать на полную катушку?
После появления в техподдержке LLM многое поменялось. В теории отличная штука: нейросеть может за секунды найти ответ в базе знаний. На практике мы получаем красивый текст (или голос), который звучит как решение, но не решает проблему, а заставляет обратившегося клиента уточнять какие-то вопросы, повторять одно и тоже, как попугай, и каждый раз начинать диалог заново. Так происходит потому что:
Модель не понимает контекст, если вопрос нестандартный.
Она «галлюцинирует» там, где не знает ответа.
Клиент тратит время на проверку, а не на решение.
Я думаю, что ситуация будет усугубляться: всё больше компаний будут пытаться экономить, заменяя первую линию поддержки на чат-бота с LLM. Это общий тренд. И вместо того, чтобы решить проблему за 10 минут с инженером, клиент будет три раза «объяснять заново», прежде чем добьётся связи с человеком.
Отказаться от LLM нельзя — они действительно ускоряют работу, особенно в рутинных и повторяющихся задачах. Но и пускать их в продакшн без правил — самоубийство для репутации техподдержки.
Я думаю вот о чем:
LLM как ассистент, а не как фронт. Модель подсказывает оператору варианты решения, а не отвечает напрямую клиенту.
Вопросы с высокой ценой ошибки — только через человека. Автоматизация — да, но с триггерами для эскалации.
Контекст — главное. Не подсовывать LLM голый вопрос, а давать историю обращений, конфигурацию системы, логи.
Метрики качества. Замерять не скорость ответа, а количество обращений, которые закрыты «с первого раза».
Вопрос в том, когда и как компании это будут делать правильно? Потому что гонка «а сэкономим-ка ещё бюджет» легко превратит службу поддержки в чат, от которого клиент убегает к конкурентам.
Это даже хуже, чем общаться с ИИ напрямую — ведь ты тратишь время на человека, который просто пересказывает твой вопрос ИИ. Задача для ИТ — не дать клиенту испытать это чувство. Хорошая техподдержка — это про доверие. И если клиент почувствует, что его время тратят впустую, вернуть его будет невозможно.
Было бы интересно обсудить с теми, кто из ИТ, как это организовано у Вас с техподдержкой? Да и вообще, кто что думает по этому поводу?

Искусственный интеллект
5.2K постов11.5K подписчиков
Правила сообщества
ВНИМАНИЕ! В сообществе запрещена публикация генеративного контента без детального описания промтов и процесса получения публикуемого результата.
Разрешено:
- Делиться вопросами, мыслями, гипотезами, юмором на эту тему.
- Делиться статьями, понятными большинству аудитории Пикабу.
- Делиться опытом создания моделей машинного обучения.
- Рассказывать, как работает та или иная фиговина в анализе данных.
- Век жить, век учиться.
Запрещено:
I) Невостребованный контент
I.1) Создавать контент, сложный для понимания. Такие посты уйдут в минуса лишь потому, что большинству неинтересно пробрасывать градиенты в каждом тензоре реккурентной сетки с AdaGrad оптимизатором.
I.2) Создавать контент на "олбанском языке" / нарочно игнорируя правила РЯ даже в шутку. Это ведет к нечитаемости контента.
I.3) Добавлять посты, которые содержат лишь генеративный контент или нейросетевой Арт без какой-то дополнительной полезной или интересной информации по теме, без промтов или описания методик создания и т.д.
II) Нетематический контент
II.1) Создавать контент, несвязанный с Data Science, математикой, программированием.
II.2) Создавать контент, входящий в противоречие существующей базе теорем математики. Например, "Земля плоская" или "Любое действительное число представимо в виде дроби двух целых".
II.3) Создавать контент, входящий в противоречие с правилами Пикабу.
III) Непотребный контент
III.1) Эротика, порнография (даже с NSFW).
III.2) Жесть.
За нарушение I - предупреждение
За нарушение II - предупреждение и перемещение поста в общую ленту
За нарушение III - бан