12

Физики нашли объяснение парадокса Мпембы

Испанские физики предложили объяснение «парадоксу Мпембы», известному еще со времен Аристотеля — что иногда горячая жидкость может замерзать быстрее холодной.

В последние десятки лет эффект Мпембы исследовался и наблюдался в различных физических системах помимо воды, в том числе — в углеродных нанотрубках и клатратных гидратах, однако до сих пор феномен не понят до конца. Было выдвинуто несколько объяснений, и даже поставлен под сомнение сам факт наличия этого явления.

Физики нашли объяснение парадокса Мпембы Наука, Парадокс, Эффект Мпембы

В новейшем исследовании Антонио Ласанта и его соавторы теоретически продемонстрировали и изучили эффект Мпембы на примере сыпучих тел, состоящих, как песок, из мелких частиц. При помощи моделирования и кинетики они установили, что основополагающим фактором проявления эффекта Мпембы являются начальные условия, и смогли определить, какими они должны быть.

«Наша работа показывает, что существование эффекта Мпембы весьма чувствительно к изначальному состоянию жидкости или, другими словами, ее истории, — говорит коллега Ласанты Андрес Сантос. — По моему мнению, это может объяснить неуловимость и противоречивость эффекта Мпембы в воде, поскольку сложно подготовить образец должным образом». Но использование вместо воды сыпучих тел упрощает задачу.

Ученые установили, что эффект Мпембы — универсальный неравновесный феномен, который появляется, если эволюция температуры зависит от других физических величин, характеризующих изначальное состояние системы, объяснил Сантос. На практике, такое изначальное состояние может быть достигнуто, если система в значительной степени выводится из равновесия (например, путем внезапного нагревания перед охлаждением).

Теперь испанские физики могут установить диапазон начальных температур, в котором возникает этот эффект, и определить, насколько должны отличаться значения, чтобы он проявился. Также их работа подтверждает существование обратного эффекта Мпембы: при нагревании более холодный образец может достичь высокой температуры быстрее, чем теплый. Ученые намерены продолжить исследование этого парадокса, пишет Phys.org.

Год назад ученые впервые записали на видео квантовый эксперимент, иллюстрирующий парадокс Шредингера. Такая технология может в дальнейшем помочь проиллюстрировать другие молекулярные системы и явления, к примеру, фотосинтез.

Найдены дубликаты

+4

Хуита и говновысер.


Парадокс ЧУКЧИ 6лять: кирпич квадратный, а круги на воде от него - круглые.

+1
Блин. Нафига я это прочитал. Все равно ведь ничо не понял.
0

Все просто, физика обычная.скорость, время и инерция.

Допустим, если вода 100° это машина движущая со скоростью 100 км в час по автобаму, где с обоих сторон отбойник, а вода 4° -машина движущаяся 4 км в час. И в один момент они переворачиваются, и начинают бится... Вопрос, кто получит больше повреждений за одну минуту?

Также и с атомами воды, разогнанные высокой температурой они сталкиваются с холодными стенками сосуда, охлаждаются, но из-за высокой начальной скорости продолжают движение и сталкиваются еще раз...

раскрыть ветку 1
0
Что ты несёшь? Какие атомы воды??? Атомы есть у химических элементов. Вода - это соединение. Хер с ним, ты имел в виду молекулы, ок.
Что значит молекулы охлаждаются? При охлаждении ТЕЛ замедляется скорость движения молекул. К отдельно взятой молекуле понятие «температура» неприменимо!
В общем, твоя аналогия ни в какие ворота не лезет, и физику ты, видимо, знаешь слабенько)
+1

@49.5NaMOROZE пост не соответствует правилам Науки, поэтому вынесен из сообщества. вам предупреждение за неоднократное нарушение правил сообщества на протяжении многих месяцев.

раскрыть ветку 2
0

Какое правило Науки пост нарушил,если этот эффект Мпембы физики изучают?

раскрыть ветку 1
0

пункт 2 и пункт 5 по публикациям(https://hightech.fm/2017/10/24/mpemba-effect)
пункт 5 по банам, тк это уже не в первый раз.

https://pikabu.ru/community/science

-1

Если двинуть в морду, просто выбросив кулак, то будет нагрев морды. Если двинуть в морду, предварительно отведя руку назад, то будет более сильный нагрев и более быстрое движение кулака на конце траектории.

Похожие посты
207

Физики рассказали о новом квантовом парадоксе

Как минимум одно из трех фундаментальных предположений о нашем мире — неверно.

Физики рассказали о новом квантовом парадоксе Физика, Квантовая физика, Наука, Парадокс, Длиннопост

Принципы квантовой физики практически идеально подходят для предсказания и описания поведения атомов и субатомных частиц. Но применение квантовой теории к объектам куда большим, чем атомы к наблюдателям — например, к наблюдателям, производящим измерения, — вызывает много сложных концептуальных вопросов. В новой статье, опубликованной в Nature Physics, группа австралийских исследователей описывает парадокс, связанный с подобным масштабированием.

Физики рассказали о новом квантовом парадоксе Физика, Квантовая физика, Наука, Парадокс, Длиннопост

«Этот парадокс означает, что если квантовая теория работает для описания [поведения] наблюдателей, то ученым придется отказаться от одного из трех устоявшихся предположений», — объясняет один из авторов работы Эрик Кавальканти. Первое из этих предположений заключается в том, что наблюдаемый результат измерения является единственным реальным событием, и не существует никаких иных вариантов данного события в «альтернативных вселенных».


Второе предположение состоит в том, что экспериментальные установки могут быть выбраны свободно и без каких-либо ограничений, что позволяет ученым проводить рандомизированные испытания. А последнее предположение — в том, что, как только такой свободный выбор установки сделан, его влияние не может распространяться во Вселенную быстрее скорости света. «Каждое из этих фундаментальных предположений кажется вполне разумным. Но мы показали, что как минимум одно из этих распространенных убеждений должно быть неправильным, — заключает Кавальканти. — Отказ от любого из них имеет далеко идущие последствия для нашего понимания мира».


Исследователи пришли к этому парадоксу, проанализировав сценарий со вполне разделенными квантово запутанными частицами в сочетании с «квантовым наблюдателем» — системой, которую можно модифицировать и измерять извне, но которая при этом сама может производить измерения квантовых частиц. Основываясь на трех фундаментальных предположениях, ученые математически определили пределы того, какие экспериментальные результаты возможны в этом сценарии. Но, будучи примененной к наблюдателям, квантовая теория предсказывает результаты, которые нарушают эти самые пределы.

Физики рассказали о новом квантовом парадоксе Физика, Квантовая физика, Наука, Парадокс, Длиннопост

Схема экспериментальной установки, использованной в ходе экспериментов / Wiseman, Cavalcanti, Tischler et al., Nature Physics, 2020

В дальнейшем ученые планируют модифицировать свой экспериментальный сценарий для окончательного подтверждения парадокса. «У нашего «наблюдателя» был, так сказать, очень маленький мозг. У него всего два состояния памяти, которые реализуются как два разных пути для фотона», — говорит соавтор работы Нора Тишлер.


«Эксперимент нашей мечты — это опыт, в котором квантовый наблюдатель представляет собой программу искусственного интеллекта уровня, сравнимого с человеком, работающую на мощном квантовом компьютере, — добавляет руководитель исследований Говард Вайзман. — Уже давно ясно, что квантовые компьютеры революционизируют нашу способность решать сложные вычислительные задачи. Чего мы не осознавали, пока не начали это исследование, так это того, что они могут помочь в решении сложных философских проблем: природы физического и ментального мира, а также их взаимодействий».


Источник: naked-science.ru

Показать полностью 2
421

Парадокс Мпембы. Горячая вода замерзает быстрее холодной

Многие из нас в детстве, а также в юношестве, часто экспериментировали с физическими явлениями, в том числе с замерзанием воды. Как ни странно, но многие из нас знают, что почему-то катки принято заливать горячей водой, а не холодной, потому что она быстрее замерзает.

Об этом факте было известно очень давно, еще со времен Аристотеля, а также Декарта. Однако каких-то научных подтверждений не было. Только в 1963 году начались существенные работы, основная задача которых выяснить, почему так происходит.

Парадокс Мпембы. Горячая вода замерзает быстрее холодной Наука, Вода, Замерзание, Парадокс, Горячая вода, Эффект Мпембы

Согласно физике, это противоречит первому закону термодинамики, согласно которому одна энергия перетекает в другую. По первому началу термодинамики нагретая жидкость, перед тем как отвердеть, должна пройти температуру охлаждения, соответственно и время отвердения должно быть гораздо больше.

Однако на практике происходит иначе. Об этом задумался школьник Эрасто Б. Мпемба (Erasto B. Mpemba), который задал своему учителю физики соответствующий вопрос. Мальчик готовил дома мороженое, и заметил, что стакан с теплой жидкостью замерз гораздо быстрее, нежели с прохладной, при одинаковом составе субстанции.

Тогда учитель лишь посмеялся над парнем, сказав, что это противоречит первому закону термодинамики, поэтому невозможно. После визита в школу известного физика Осборна, мальчик задал ему тот же вопрос, чем заинтересовал ученого.

Именно с 1963 года Осборн, вместе с мальчиком, начали заниматься этим вопросом, в результате чего была опубликована статья, в журнале educacion. При этом точного ответа, почему же нагретая жидкость отвердевает быстрее холодной, не было получено.

По мнению некоторых ученых, теплый раствор в холодильнике с термостатом переходит в твердое состояние гораздо быстрее лишь по той причине, что холодильник начинает сильнее морозить, при поступлении сигнала о повышении температуры в камере. Этого не происходит с охлажденной жидкостью, так как ее температура гораздо ниже, и термостат работает в обычном режиме, без снижения температуры хладагента. Однако эта версия не получила подтверждение по той причине, что нагретая жидкость в обычных условиях на воздухе, также отвердевает гораздо быстрее, чем холодная. Соответственно термостата в обычных уличных условиях нет, поэтому и усиления холода не происходит.

Однако удалось выяснить, что нагретая жидкость, из-за наличия над поверхностью большого количества испарений, отвердевает гораздо быстрее по причине того, что на поверхности образуются пары, объем жидкости в контейнере уменьшается. Тем самым удается заморозить меньшее количество жидкости, что гораздо проще, чем большее. Однако на практике потеря объема незначительная, поэтому и процесс затвердения нельзя считать оправданным.

Многие ученые сходятся во мнении, что нагретая жидкость, из-за наличия испарений, начинает превращаться в лед быстрее. Ледяные капельки над поверхностью, попадают в воду, что способствует образованию корки льда, из-за чего происходит быстрый процесс превращения в лед.

Научные работники выяснили, что, если поставить емкость с теплой жидкостью на снег, или ледяную корку в холодильнике, она начинает плавиться, в результате чего контакт между емкостью, водой в ней, а также холодильником, увеличивается, тем самым увеличивается площадь соприкосновения, в результате чего происходит быстрое замерзание теплой воды. Охлажденная вода не оказывает такого эффекта из-за того, что под ней снежная подушка не плавится, и процесс превращения в лед происходит гораздо медленнее. Кроме того, удалось выяснить, что холодная жидкость, при снижении температуры, начинается отвердевать в верхней части. В результате этого ухудшаются процессы смешения воды внутри, поэтому и процесс затягивается. Нагретая жидкость начинает замерзать снизу, тем самым усиливая процессы конвекции, теплоизлучения.

В 2017 году была опубликована гипотеза, согласно которой эффект Мпембы, который касается нагрева охлажденной системы, не соответствует равновесию. Поэтому под этот парадокс не подходят все основные законы физики и термодинамики.

Однозначного ответа на вопрос, какие эксперименты обеспечивают стопроцентное воспроизведение эффекта Мпембы, так и не было получено.

Показать полностью
432

Разгадан величайший парадокс квантовой механики

Разгадан величайший парадокс квантовой механики Физика, Квантовая физика, Парадокс, Наука, Ученые, Китай, Квантовая механика, Открытие

Китайские ученые успешно проверили гипотезу, называемую квантовым дарвинизмом, которая объясняет трудноразрешимые противоречия между квантовой механикой и классической физикой, в том числе парадокс кота Шредингера. Исследователи протестировали одно из основных положений концепции, согласно которому одно из состояний квантовой системы многократно «отпечатывается» в окружающей среде, с которой эта система взаимодействует. Об этом сообщает издание Science Alert.


Для объяснения, как возникает классическая физика, исследователи предположили существование особенно устойчивых к декогеренции состояний, называемых состоянием указателя (pointer states). Конкретное местоположение частицы или ее скорость, значение ее спина или поляризация могут быть зафиксированы как устойчивое положение стрелки на измерительном устройстве. Иными словами, взаимодействие с окружением разрушает одни состояния, а другие оставляет, например, положение частицы. Это называется суперселекцией, индуцированной средой.

Согласно второму условию квантового дарвинизма, способность человека наблюдать какое-либо свойство зависит от того, насколько хорошо оно «отпечатано» в окружающей среде. Ученые подсчитали, что частица пыли в один микрометр за одну микросекунду «отпечатается» в фотонах около ста миллионов раз, что и обуславливает ее классические свойства. Разные наблюдатели видят пылинку в одном и том же месте благодаря «копированию» информации о наиболее устойчивом состоянии (в данном случае местоположении).


Ученые создали квантовую систему (фотон) в искусственной среде, состоящей всего из нескольких частиц (других фотонов). Согласно предсказанию квантового дарвинизма, наблюдая только за средой, можно получить всю информацию о классическом поведении частицы. Результаты проверки этого положения показали совместимость наблюдаемых свойств с теорией. Однако для доказательства последней необходимы дальнейшие исследования.


Декогеренцией называют процесс, когда квантовая система, которая находится в состоянии суперпозиции (ее альтернативные состояния наложены друг на друга), начинает проявлять классические свойства. Именно поэтому кот Шредингера, который, согласно мысленному эксперименту, является одновременно живым и мертвым, при открытии коробки оказывается лишь в одном из двух альтернативных состояний. Квантовая система запутывается с окружающей средой, взаимодействуя с огромным числом атомов, в результате чего ее состояния прекращают быть наложенными друг на друга. Если окружающая среда состоит из миллиарда атомов, то декогеренция происходит почти мгновенно, а кот не может быть одновременно живым и мертвым на отрезке времени, который поддается измерению.

Так себе источник: https://m.lenta.ru/news/2019/07/25/quantum/amp/

Показать полностью
114

Проблема колец для салфеток (Vsauce на русском)

Доказательство довольно интересного геометрического парадокса от Майкла Стивенса из Vsauce. Перевод Космического Маффина.

Похожие посты закончились. Возможно, вас заинтересуют другие посты по тегам: