247

Прочность самолётов. Нагрузки, коэффициент безопасности и запас прочности

В честь первого подписчика продолжу неспешно переносить записи из своего ЖЖ про свою работу. Вопросы прочности самолётов периодически появляются в комментариях под видеозаписями жёстких посадок и прочностных испытаний тут, потому - думаю интересующимся будет интересно. Постарался максимально упрощённо, но текста получилось многовато.


Расчет любой конструкции на прочность, необязательно самолёта, начинается с определения собственно нагрузки на эту конструкцию. Необходимо определить, что мы в итоге хотим получить от изделия, какие нагрузки оно должно выдерживать. Понятное дело, я буду говорить об нагрузках на самолет.


Очевидно, что при полете крыло самолета нагружено распределенной нагрузкой - подъемной силой. На заглавном рисунке эта эпюра нагрузки показана на правой консоли и обозначена буквой q.


Интенсивность этой распределенной нагрузки должна быть такой, чтобы общая результирующая подъемной силы была равна:

Y = f*Ny*m, где:

f - коэффициент безопасности (не путать с запасом прочности)

Ny - максимальная эксплуатационная перегрузка (та, которая записана в РЛЭ в разделе ограничения)

m - масса летательного аппарата.


По порядку об этих трех параметрах.

Коэффициент безопасности f показывает во сколько раз разрушающая нагрузка (перегрузка в общем случае) больше максимальной эксплуатационной. Авиационные конструкции расчитываются не по допускаемым напряжениям, как в общем машиностроении, а по разрушающим. Потому что, понятно - культура веса, минимизация массы - основное направление деятельности инженеров при проектировании самолетов. Относительная близость к разрушающим нагрузкам компенсируется высокой точностью определения нагрузок на самолет и применением различных методов расчета, для получения уверенного результата расчета.


Диапазон величин коэффициента безопасности для многоразового летательного аппарата лежит в пределах f = 1.5....2.5 в зависимости от режима полета и типа конструктивного элемента. Максимальные коэффициенты безопасности применяют к герметичным конструкциям, которые нагружены избыточным давлением - баллоны высокого давления, гермокабины, пассажирские салоны. Почему минимальное значение коэффициента безопасности равно 1.5 для самолетов? Одним из требований к авиационной конструкции гласит, что в самолете должны отстутствовать необратимые пластические деформации материала. То есть при достижении предельных эксплуатационных перегрузок самолет не должен, грубо говоря, потерять форму безвозвратно. Это уже завязано на параметр материала - предел текучести. Т.е. такие напряжения, при которых материал возвращается к своим первоначальным размерам полностью и деформируется упруго после снятия нагрузки. А разрушающие напряжения для большинства металлов примерно в 1.5 раза больше предела текучести.


Максимальная эксплуатационная перегрузка Ny зависит от типа проектируемого летательного аппарата. Различают несколько групп самолетов, разделенных по величине максимальной эксплуатационной перегрузки:


1. Неманевренные самолеты. Это самолеты с максимальной Ny не более 2.5 ед.

Это все пассажирские и транспортные самолеты.


2. Ограниченно маневренные самолеты с максимальной экслуатационной Ny лежащей в интервале от 2.5 до 6 единиц. Сюда относятся фронтовые бомбардировщики, штурмовики, тяжелые перехватчики (Су-24, Су-25, МиГ-25, МиГ-31)


3. Маневренные самолеты. Самолеты с максимальной эксплуатационной перегрузкой от 6 до 9 единиц. Это - все современные истребители.


4. Спортивно-пилотажные самолеты. Этот те экстремальные самолеты, которые могут выходить на перегрузки до Ny=+12 единиц - Су-29, Су-31, Як-55, наверное зарубежные аналоги - всякие Extra 300.


Исходя из класса самолета определяется и природа возникновения максимальных эксплуатационных перегрузок. Для неманевренных самолетов выход на максимальные перегрузки связан с полетом в неспокойном воздухе, для остальных - максимальные перегрузки достигаются в следствии, естессна, криволинейного полета - маневрирования.


Масса самолета. Было бы просто сказать, что мол самолет должен без проблем выходить на максимальную перегрузку при максимальной взлетной массе. И на значительном числе самолетов такое условие выполняется. Правда порой такие жертвы ни к чему и дабы не перетяжелять конструкцию вводятся некоторые ограничения на максимальные массы и максимальные перегрузки.


Вернусь обратно к заглавному рисунку. Если на правой консоли я нарисовал распределение подъемной силы по размаху крыла, то на левой консоли я нарисова эпюру изгибающего момента. Наугад, примерно. Но общую картину она отражает. Следует также заметить, что крыло, помимо изгиба нагружается еще и крутящим моментом, так как линия действия резуьтирующей аэродинамической силы и линия жесткости крыла не совпадают.


Распределение подъемной силы по размаху и по хорде крыла зависит от режима полета самолета. В некоторых случаях максимальным будет изгибающий момент, в некоторых - крутящий, а могут быть и такие случаи, когда вроде и изгибающий момент не максимален, и крутящий тоже. Однако совместное их действие вызывает максимальные напряжения в элементах конструкции. Такие предельные режимы полета называются расчетными случаями (loadcase). Предствляют они собой крайние точки эксплуатационных ограничений самолета (flight envelope). Расчетных случаев - великое множество, к отдельным элементам конструкции и агрегатам могут применяться дополнительные комбинации нагрузок и для них количество расчетных случаев может исчисляться десятками, а то и сотнями.


В таблице ниже приведены несколько основных полетных случаев:

В шапке таблицы названия расчетных случаев - А, А-штрих, B, C, D и D-штрих, слева - параметры полета самолета:

Су - коэффициент подъемной силы крыла

ny - перегрузка

q - скоростной напор.

f - коэффициент безопасности принимаемый для данного расчетного случая.


Случай А - полет самолета при максимальной эксплуатационной перегрузке на углах атаки соответствующих максимальному коэффициенту подъемной силы (близких к критическому углу атаки для самолета). Скоростной напор при этом не будет максимальным, а будет зависить от описаного в таблице соотношения. Этот расчетный случай возможен при энергичном вводе самолета в вертикальный маневр, действие на самолет вертикального порыва воздуха.


Случай А-штрих - криволинейный полет самолета при предельном скоростном напоре и максимальной эксплуатационное перегрузке. Подъемная сила одинакова в двух этих случаях, она равна весу самолета умноженому на ny. Другое дело, что в расчетном случае А перегрузка реализуется за счет максимального угла атаки, путем быстрого выхода самолета на него и интенсивным торможением, а в случае А-штрих перегрузка реализуется на малых углах атаки при максимальном скоростном напоре. Реализация расчетного случая А-штрих возможна, например при выводе самолета из пикирования. Коэффициент безопасности равен тоже 1.5.


Основная разница - в распределении подъемной силы по размаху и хорде крыла. В случае А распределение будет таким, каким я его нарисовал на заглавной картинке - плавно увеличивающимся от законцовок к фюзеляжу. В случае А-штрих, который характеризуется меньшими углами атаки на диаграмме распределения подъемной силы будут наблюдаться провалы в местах крепления двигателей, внешних подвесок и фюзеляжа. Эти элементы не столь совершенны аэродинамически как профиль крыла, а потому вклад в формирование подъемной силы заметен только на больших углах атаки, коих не наблюдается в случае А-штрих.


Различным будет и распределение нагрузки по хорде крыла.

Расчетный случай В - полет при перегрузке, примерно в половину от максимальной эксплуатационной, но с отклоненными элеронами. На максимальном скоростном напоре. Это комбинация совместного действия на крыло изгибающего и крутящих моментов умереной величины. f=2


Расчетный случай С - полет на углах атаки соответсвущих нулевой подъемной силе с отклоенными элеронами. Случай характеризуется практически нулевыми изгибающими моментами и максимальным крутящим. Пример - восходящая или нисходящая вертикальная бочка. f=2


Если представить вышеперечисленные расчётные случаи на картинке, в системе координат "скорость-перегрузка", то область допустимых полётных параметров неманевренного самолёта выглядит вот так:

Область максимальных эксплатационных полётных параметров, ограниченных инструкцией к летательному аппарату лежит внутри многоугольника 0-А-А'-B-C-D'-D. Внутри и на границе этой области самолёт может летать сколь угодно часто и долго - достигаемые при этом перегрузки от -1G до 2.5G не вызовут необратимых последствий в конструкции. Тем не менее по статистике только один самолёт из трёх за всю свою долгую жизнь приближается к эксплуатационным ограничениям. Зачастую перегрузки и скорости в типовом полёте лежат в диапазоне величин, ограниченных на графике синим прямоугольником. "Кардиограммой" внутри этого прямоугольника я показал всякие типовые воздушные ямы и турбулентности, встречающиеся в полёте.


Пунктирная линия показывает расчетные нагрузки, которые являются и разрушающими.


Таким образом сравнительно легко можно прикинуть разрушающую перегрузку для любого самолета - достаточно открыть РЛЭ, найти там максимально допустимую перегрузку и умножить ее на 1.5. Для неманевренных самолетов с Ny = 2.5G разрушающая перегрузка будет равна не менее чем 3.75G. Сознательно написал не менее, потому что идеально точно спроектировать самолет не получается, прочнисты всегда перестраховываются и чуть добавляют материала в запас.


В диапазоне от нулевой нагрузки до предельной дожно выполняться требование отсутствия необратимых пластических деформаций в планере самолета. (1G < Ny < 2.5G)


В диапазоне от предельной нагрузки до разрушающей гарантируется неразрушение самолета, но допускается наличие пластических деформаций.(2.5G < Ny < 3.75G)


Конструкция должна на статических испытаниях выдержать расчетную нагрузку в течении не менее трех секунд. (Ny >= 3.75G)


Очень часто коэффициент безопасности f = 1.5 путают с запасом прочности. Фраза "самолёты делают с запасом прочности 1.5" неверна. Это два принципиально разных параметра.


Коэффициент безопасности, как было показано выше, задаётся при начале расчёта руководящими документами, в частности - АП-25 Раздел С п. 25.303 и представляет собой соотношение между нагрузками.


Умножая эксплуатационные нагрузки на коэффициент безопасности инженер-прочнист получает расчётные нагрузки, которые он прикладывает к проектируемой конструкции. Применяя знания сопромата и прочих дисциплин инженер находит напряжения в элементах конструкции и сравнивает их с разрушающими напряжениями материала элемента. То есть запас прочности - это отношение разрушающих напряжений (сигма временное) к действующим напряжениям в элементе, вызваных действием расчётной нагрузки.


В России если полученый запас прочности больше единицы, стало быть конструкция считается достаточно прочной. Если запас прочности меньше единицы - конструкцию необходимо усилить.


В Боинге немного другая формула, там из соотношения ещё вычитают единицу и получается, что если запас прочности (margin of safety по-ихнему) больше нуля - конструкция выдерживает, меньше нуля - не выдерживает, равна нулю - конструкция идеальна, но так не бывает.


Как-то так на сегодня. Надеюсь чуть прояснил этот вопрос.

Оригинальный пост в ЖЖ:

http://fox511.livejournal.com/80167.html

Авиация и Техника

11.7K поста18.7K подписчиков

Правила сообщества

Правила Пикабу

Темы

Политика

Теги

Популярные авторы

Сообщества

18+

Теги

Популярные авторы

Сообщества

Игры

Теги

Популярные авторы

Сообщества

Юмор

Теги

Популярные авторы

Сообщества

Отношения

Теги

Популярные авторы

Сообщества

Здоровье

Теги

Популярные авторы

Сообщества

Путешествия

Теги

Популярные авторы

Сообщества

Спорт

Теги

Популярные авторы

Сообщества

Хобби

Теги

Популярные авторы

Сообщества

Сервис

Теги

Популярные авторы

Сообщества

Природа

Теги

Популярные авторы

Сообщества

Бизнес

Теги

Популярные авторы

Сообщества

Транспорт

Теги

Популярные авторы

Сообщества

Общение

Теги

Популярные авторы

Сообщества

Юриспруденция

Теги

Популярные авторы

Сообщества

Наука

Теги

Популярные авторы

Сообщества

IT

Теги

Популярные авторы

Сообщества

Животные

Теги

Популярные авторы

Сообщества

Кино и сериалы

Теги

Популярные авторы

Сообщества

Экономика

Теги

Популярные авторы

Сообщества

Кулинария

Теги

Популярные авторы

Сообщества

История

Теги

Популярные авторы

Сообщества