10

Равновесие по Нэшу

Серия Теория игр для начинающих

Всем привет! Я продолжаю свою серию постов по популяризации науки :) Пока я выкладываю материалы по теории игр.


Прошлые посты тут:


Игра с природой, или что такое математическое ожидание? : Часть 1, Часть 2

Дилемма заключённого : Часть 1, Часть 2, Часть 3,

Частные и общественные блага: Часть 1, Часть 2



Немного классификации и терминов


Мы с вами уже построили платёжные матрицы в двух играх, проведём немного классификации.

В 1944 году за авторством Оскара Моргенштерна и Джона фон Неймана была опубликована книга «Теория игр и экономическое поведение» («Game Theory and Economic Behavior»), в которой:


- Было сформулировано определение «игры», как деятельности двух и более участников (игроков) имеющей условия некоего «выигрыша» и «проигрыша», в рамках которой все участники могут распоряжаться какими-то ресурсами и взаимодействуют между собой, преследуя цель «выиграть» и принимая решения, основанные на поведении других игроков;

- Был математически описан способ поиска оптимальных стратегий в такой игре (ведущих к «выигрышу» с какой-то определенной вероятностью).


Джон фон Нейман (1903—1957) – американский математик и физик венгерского происхождения. Он внес важный вклад во многие области. Тема упомянутой выше книги скорее связана с экономикой. На самом деле до 1930-х годов экономическая наука (по крайней мере, ее основные направления того времени) использовала большое количество числовых данных, но без какой-либо настоящей научной строгости. Это напоминало физику 17-го века, ожидающую языка и научного метода для выражения и решения своих проблем. В то время как классическая физика нашла решение в исчислении бесконечно малых, фон Нейман предлагает для экономики в характерном для нее аксиоматическом подходе теорию игр и теорию общего равновесия.


Суммой игры называется общий итог выигрышей и проигрышей.


В игре с нулевой суммой выигрыш одной стороны равен проигрышу другой. Некоторые карточные игры – преферанс, покер, бридж – есть игры с нулевой суммой. Игры с отрицательной суммой тоже имеются − например, лотереи (если считать сумму участников и не учитывать организаторов).


Команда, выступающая как единое целое, тоже может считаться игроком.


Антагонистической игрой называется игра двух игроков с нулевой суммой – выигрыш одного игрока оборачивается проигрышем другого.


Первым значительным вкладом фон Неймана в 1928 году стала минимаксная теорема, которая утверждает, что в игре с нулевой суммой при полной информации (каждый игрок знает возможные стратегии своего противника и их последствия) у каждого есть набор предпочтительных («оптимальные») стратегии. В игре между двумя рациональными игроками нет ничего лучше для каждого из них, чем выбрать одну из этих оптимальных стратегий и придерживаться её.


Существуют игры с количеством участников, большим двух. Эти игры можно разделить на два класса – кооперативные, когда разрешено нескольким участникам вступать в коалицию (например, в преферансе при розыгрыше мизера обычно два игрока играют против одного в пределах одной партии). В некооперативных играх каждый участник играет только за себя.

В спортивных играх – командных (футбол, хоккей) или личных (шахматы) каждый матч или партия есть игра с нулевой суммой по результатам (ничья, или же один выигрывает, а другой проигрывает). Хотя в турнирных таблицах фигурируют общие набранные очки, в шахматах, например, считают именно «плюсы» – разницу между выигранными и проигранными партиями. В футболе, в связи с борьбой с ничьими, ничейный результат невыгоден обоим. Но если брать именно набранные очки, то турнир – игра с положительной суммой.


Равновесие по Нэшу


Джон Нэш (John Forbes Nash) (1928-2015) в теории игр был признан второй звездой после фон Неймана. Родился в 1928 г., изучал математику в Принстоне и скоро проявил интерес к теории игр. В своей диссертации (1950) двадцатидвухлетний Нэш сформулировал понятие, которому суждено было изменить теорию игр. Кстати, по мотивам его жизни был снят фильм «Игры разума», весьма советую к просмотру.


Термин «равновесие по Нэшу» настолько популярен, что сам Нэш стал бы миллионером, если бы ему платили по доллару за каждое упоминание о нём. Во всяком случае, профессором MIT он стал. А также Нэш – единственный математик и экономист, удостоенный Нобелевской премии по экономике в 1994 году и Абелевской премии по математике в 2015 году.


Вначале Нэш исследовал игру двух игроков с ненулевой суммой, затем объектом его исследований стали некооперативные игры с тремя и более участниками. Нэш вначале выдвинул понятие о равновесии в таких играх, затем доказал, что оно существует для любых конечных игр с любым числом игроков. До него фон Нейманом было доказано только равновесие в играх двух лиц с нулевой суммой.


Исследования Джона Нэша принесли ему Нобелевскую премию по экономике в 1994 году совместно с Джоном Харсаньи и Райнхардом Селтеном. Нобелевский комитет пояснил, что Харсаньи премирован за «распространение равновесия по Нэшу на класс игр с неполной информацией», а Селтен – за обогащение этого равновесия.


Мы видим, что равновесие по Нэшу привело троих учёных к Нобелевской премии (хотя это была математика, премию дали за экономику, математикам Нобелевские премии не положены). Так что же это такое, равновесие по Нэшу?


Равновесие по Нэшу – ситуация в игре, в которой ни один из игроков не может улучшить свое положение, односторонне изменив свою стратегию, если другие игроки свои стратегии не меняли.


Каждый из игроков в равновесии по Нэшу осведомлён о стратегиях других игроков и в связи с этим выбирает для себя лучшую из доступных ему стратегий. В равновесии по Нэшу действует принцип «оглашения» – если все игроки огласят свои стратегии, ни один из них не захочет изменить свою. Это приводит к выводу, что каждому из игроков невыгодно в одностороннем порядке менять свою стратегию – система находится равновесии. Для его поддержания не требуется внешних сил, каждый из игроков старается реализовать в создавшихся условиях именно свою стратегию, и равновесие нарушать невыгодно каждому из игроков. Именно здесь кроется различие между кооперативными и некооперативными играми – для устойчивости первых могут потребоваться внешние силы (например, обращение в суд), устойчивость вторых же внешних сил не требует.


К сожалению, встречаются такие ситуации, когда такое устойчивое состояние возникает в невыгодной для всех ситуации. Если бы все изменили свои стратегии, система пришла бы к более выгодному состоянию для всех, но для этого необходимо сотрудничество всех, которое невозможно в некооперативных играх, а попытка любого из игроков изменить для себя стратегию приводит к ещё более худшим результатам. Упомянутая ранее дилемма заключённого – один из случаев стабильно плохой по Нэшу ситуации для всех.

Темы

Политика

Теги

Популярные авторы

Сообщества

18+

Теги

Популярные авторы

Сообщества

Игры

Теги

Популярные авторы

Сообщества

Юмор

Теги

Популярные авторы

Сообщества

Отношения

Теги

Популярные авторы

Сообщества

Здоровье

Теги

Популярные авторы

Сообщества

Путешествия

Теги

Популярные авторы

Сообщества

Спорт

Теги

Популярные авторы

Сообщества

Хобби

Теги

Популярные авторы

Сообщества

Сервис

Теги

Популярные авторы

Сообщества

Природа

Теги

Популярные авторы

Сообщества

Бизнес

Теги

Популярные авторы

Сообщества

Транспорт

Теги

Популярные авторы

Сообщества

Общение

Теги

Популярные авторы

Сообщества

Юриспруденция

Теги

Популярные авторы

Сообщества

Наука

Теги

Популярные авторы

Сообщества

IT

Теги

Популярные авторы

Сообщества

Животные

Теги

Популярные авторы

Сообщества

Кино и сериалы

Теги

Популярные авторы

Сообщества

Экономика

Теги

Популярные авторы

Сообщества

Кулинария

Теги

Популярные авторы

Сообщества

История

Теги

Популярные авторы

Сообщества