Горячее
Лучшее
Свежее
Подписки
Сообщества
Блоги
Эксперты
#Круги добра
Войти
Забыли пароль?
или продолжите с
Создать аккаунт
Я хочу получать рассылки с лучшими постами за неделю
или
Восстановление пароля
Восстановление пароля
Получить код в Telegram
Войти с Яндекс ID Войти через VK ID
Создавая аккаунт, я соглашаюсь с правилами Пикабу и даю согласие на обработку персональных данных.
ПромокодыРаботаКурсыРекламаИгрыПополнение Steam
Пикабу Игры +1000 бесплатных онлайн игр Что спрятано в недрах Земли? Ад? Одному Аиду известно. А так же тем, кто пройдёт шахту до конца.

Эпичная Шахта

Мидкорные, Приключения, 3D

Играть

Топ прошлой недели

  • SpongeGod SpongeGod 1 пост
  • Uncleyogurt007 Uncleyogurt007 9 постов
  • ZaTaS ZaTaS 3 поста
Посмотреть весь топ

Лучшие посты недели

Рассылка Пикабу: отправляем самые рейтинговые материалы за 7 дней 🔥

Нажимая кнопку «Подписаться на рассылку», я соглашаюсь с Правилами Пикабу и даю согласие на обработку персональных данных.

Спасибо, что подписались!
Пожалуйста, проверьте почту 😊

Помощь Кодекс Пикабу Команда Пикабу Моб. приложение
Правила соцсети О рекомендациях О компании
Промокоды Биг Гик Промокоды Lamoda Промокоды МВидео Промокоды Яндекс Директ Промокоды Отелло Промокоды Aroma Butik Промокоды Яндекс Путешествия Постила Футбол сегодня
0 просмотренных постов скрыто
5
PNIPU
PNIPU
18 дней назад

Ученые ПНИПУ разработали экономичную технологию производства кормового белка из отходов сахарной промышленности⁠⁠

Кормовые белковые компоненты играют ключевую роль в современном животноводстве, восполняя глобальный дефицит протеина, который, по данным ООН, составляет 30 миллионов тонн в год.  Этот критический недостаток питательных веществ создает серьезные проблемы для обеспечения продовольственной безопасности. Без таких специализированных добавок рационы сельскохозяйственных животных становятся существенно обедненными. Это неизбежно приводит к хроническому недостатку незаменимых аминокислот, что вызывает целый комплекс негативных последствий: ухудшение усвояемости кормов, замедление роста и развития молодняка, снижение продуктивности (удоев, привесов, яйценоскости) на 20-40%, а также ухудшение качества конечной продукции. Среди различных источников биологически активных соединений особый интерес представляет микробный протеин, производимый из дрожжей и бактерий, однако его производство требует значительных затрат на сырье, такое как глюкоза и сахароза. Ученые Пермского Политеха разработали экономичную технологию получения кормового белка из свекловичной мелассы с помощью смешанного культивирования микроорганизмов. Метод позволяет в одном процессе производить целевой продукт, снижая себестоимость в 4–10 раз за счёт использования отходов и увеличивая продуктивность процесса накопления биомассы на 61%.

Статья опубликована в сборнике «Химия. Экология. Урбанистика», Том 1.

Белковые кормовые компоненты представляют собой важнейшие элементы современного животноводства, специально разработанные для оптимизации питательной ценности рационов. Согласно исследованиям ООН, мировая потребность в пищевом белке ежегодно превышает доступные ресурсы на 30 миллионов тонн. Этот существенный дефицит представляет серьезную проблему для современного сельского хозяйства.

В отличие от традиционных кормовых средств, таких как сено, зерно, которые в первую очередь обеспечивают животных энергией и пищевыми волокнами, белковые компоненты выполняют более специализированную функцию — восполняют нехватку протеина, аминокислот и других биологически активных веществ.

Дефицит кормовых белковых добавок уже сегодня наносит существенный ущерб сельскому хозяйству. Недостаток протеина в питании скота и птицы вызывает серьезные проблемы: уменьшение надоев молока, снижение ежедневных прибавок в весе, уменьшение количества яиц. Параллельно ухудшается состояние поголовья — пища усваивается хуже, молодые особи медленнее растут, повышается заболеваемость. Эти негативные последствия влекут за собой существенные экономические потери: увеличиваются затраты на питательные смеси, возрастает продолжительность выращивания, снижается общая доходность предприятий. В связи с этим протеиновые добавки стали обязательным элементом современных научно обоснованных рационов в животноводстве.

В современной системе классификации кормовые добавки подразделяются на пять основных категорий: протеиновые продукты животного и растительного происхождения, микробный белок, синтетические аминокислоты и белки, полученные из насекомых. Особый интерес представляет одноклеточный протеин, производимый из различных микроорганизмов, включая бактерии, дрожжи, микрогрибы и водоросли. Ключевыми достоинствами его выступают — высокая биологическая ценность и рентабельность производства, но вместе с тем его широкое применение сдерживает ключевой фактор — высокая стоимость исходного сырья.

Основные расходы при создании питательных примесей для животных связаны с энергетическими компонентами — глюкозой и сахарозой, выполняющими две важнейшие задачи: служат источником энергии для дрожжей и выступают основой для формирования питательных соединений. Без этих сладких добавок микроскопические организмы лишаются возможности полноценного роста и выработки ценных питательных веществ. Однако применение очищенных подсластителей обладает рядом существенных недостатков.

Во-первых, их стоимость высока — 300-600$ за тонну. Во-вторых, они содержат только углеводы, но не включают витамины, минералы и другие необходимые дрожжам питательные вещества. Из-за этого производителям приходится дополнительно закупать и вносить витаминно-минеральные комплексы, что значительно увеличивает себестоимость производства. Кроме того, технологический процесс усложняется тем, что требуется тщательная очистка сырья, точное дозирование и смешивание всех компонентов. Хотя дрожжи демонстрируют хорошую продуктивность на таких искусственных средах, совокупные затраты на сырьё и подготовку делают традиционную технологию экономически невыгодной. Это создаёт необходимость поиска более доступных и эффективных решений, которые могли бы снизить себестоимость без потери качества конечного продукта.

Ученые Пермского Политеха разработали технологию получения кормового белка из мелассы с использованием смешанной микробной культуры.

Меласса — густой сиропообразный побочный продукт, остающийся после производства сахара из свёклы или тростника, стоимостью всего 50-150$ за тонну. Меласса, в отличие от глюкозы и сахарозы, содержит те же необходимые сахара (около 50% состава), но при этом включает полный комплекс сопутствующих питательных веществ — калий, магний, витамины группы B и органические кислоты. Это как заменить аптечный раствор глюкозы и баночку витаминов на натуральный мёд — все ключевые компоненты остаются, но в естественной, сбалансированной и значительно более дешёвой форме. Такое решение позволяет в 4-10 раз снизить себестоимость производства, одновременно решая проблему утилизации отходов.

Кроме того, при использовании специально подобранных штаммов дрожжей меласса позволяет получать спирт, востребованный в различных отраслях промышленности. Такой этанол является дополнительным ценным продуктом, повышающим рентабельность всего биотехнологического процесса.

Для эксперимента были целенаправленно отобраны два вида дрожжей — Schizosaccharomyces pombe Y-3303 и Candida maltosa Y-194. Во-первых, они отлично перерабатывают сахара в полезный белок, что делает их высокопродуктивными. Во-вторых, неприхотливы и хорошо переносят различные примеси, которые могут содержаться в сырье. В-третьих, совершенно безопасны для использования в производстве кормов для животных.

— Сначала мы готовили питательную среду (основная «еда» для дрожжей). Для этого использовали два основных компонента: пептон (он содержит аминокислоты – «строительные блоки» для белков) и дрожжевой экстракт (богат витаминами и микроэлементами). Эти вещества необходимы дрожжам для активного роста. Затем добавляли углеродный субстрат – мелассу, сахарозу и глюкозу. Здесь сахара выступают как «топливо» для дрожжей: микроорганизмы расщепляют их и получают энергию для жизни и синтеза белка. Мы сравнивали разные виды сахаров, чтобы понять, на каком субстрате дрожжи растут лучше всего и производят больше белка. Затем методом проб определяли оптимальную концентрацию сахара (1-10 г/л) и изучали влияние добавок — азота, фосфора и микроэлементов. Дрожжи выращивали в 50 мл колбах с добавлением 20 мл среды при постоянном встряхивании (120 оборотов в минуту) и температуре 28-30°C, — рассказала Анастасия Зорина, кандидат биологических наук, доцент кафедры «Химия и биотехнология» ПНИПУ.

Оказалось, что на мелассе дрожжи растут быстрее и производят больше белка, чем на очищенных сахарах (сахарозе и глюкозе), благодаря тому, что меласса уже содержит в себе полезные вещества.

— Мы контролировали рост дрожжей двумя методами. Первый — измерение мутности раствора прибором (фотоэлектроколориметром) на длине волны 540 нм: чем больше клеток, тем выше показания. Второй метод включал центрифугирование проб для отделения клеток, их последующую сушку и взвешивание для определения сухой биомассы. Одновременно анализировали концентрацию белка по методу Бредфорда: к пробам добавляли синий краситель, изменение цвета которого зависит от содержания белка. После чего измеряли оптическую плотность раствора на спектрофотометре (прибор, который измеряет интенсивность света). Для точного расчета концентраций строили калибровочные кривые, — пояснила Анастасия Зорина.

Для контроля за ростом дрожжей ученые применяли комплексную систему мониторинга, сочетающую оперативные и точные методы анализа. Ежедневно проводились два типа измерений: быстрые экспресс-тесты для оценки динамики развития культуры и детальные лабораторные исследования для получения точных количественных данных. Первый метод давал возможность оперативно отслеживать изменения, второй — обеспечивал высокоточные численные показатели.

Исследование показало, что обычная меласса служит идеальным сырьем для выращивания дрожжей, производящих ценный кормовой белок. В ходе экспериментов с двумя штаммами было установлено, что эти микроорганизмы не только прекрасно развиваются на мелассе, но и демонстрируют более высокую продуктивность по сравнению с использованием очищенных углеводов. На основании анализа ростовых характеристик установлено, что использование мелассы позволяет увеличить продуктивность процесса накопления биомассы на 61% по отношению к глюкозе и на 5,6% по сравнению с сахарозой.

По результатам анализа также была выявлена важная особенность: при совместном выращивании двух штаммов продуктивность возрастает. Если по отдельности штаммы производили 0,065 г/л (Sz. Pombe) и 0,068 г/л (C. Maltosa) белка соответственно, то в смешанной культуре выход достиг 0,072 г/л, что на 8% больше. Следовательно, дрожжи в составе смешанной культуры показывают результат, который превосходит простую сумму возможностей отдельных штаммов.

Этот вывод имеет важное практическое применение, эффективно решая сразу две актуальные проблемы современной агропромышленной отрасли. Ежегодно сахарные заводы сталкиваются с необходимостью утилизации миллионов тонн патоки — побочного продукта производства, в то время как животноводческий сектор испытывает острый дефицит белковых кормов. Разработанная технология предлагает комплексное решение: она позволяет преобразовывать отходы сахарной промышленности в высококачественный и доступный по стоимости кормовой протеин.

Показать полностью
Ученые Научпоп Наука Промышленность Текст Длиннопост
2
74
real.goblin
real.goblin
Топовый автор
Goblin
Серия История
18 дней назад

Пифагор, часть 1: Греция в VI веке до н.э⁠⁠

Пифагор, часть 1: Греция в VI веке до н.э.
https://oper.ru/news/read.php?t=1051627617

Аудиоверсия: https://oper.ru/video/getaudio/pythagoras1.mp3

Плейлист: https://rutube.ru/plst/410611

Показать полностью
[моё] Видео RUTUBE История (наука) Военная история Античность Древняя Греция Пифагор Древний мир Научпоп Цивилизация Государство Религия Общество Негатив Критическое мышление Дмитрий Пучков Джон Шемякин Длиннопост
0
188
Vselenziaurum
Vselenziaurum
18 дней назад
Наука | Научпоп
Серия NooTech

Прорыв к отказоустойчивым квантовым компьютерам: учёные впервые очистили магические состояния⁠⁠

Прорыв к отказоустойчивым квантовым компьютерам: учёные впервые очистили магические состояния Квант, Компьютер, Вычисления, Технологии, Наука, Прорыв, Физика, Mit, Гарвард, Кубит, Ошибка, Алгоритм, Природа, Будущее, Научпоп

Визуализация открытия.

Команда учёных из компании QuEra Computing, Гарварда и MIT объявила о прорыве на пути к созданию мощных и отказоустойчивых квантовых компьютеров. Впервые в истории им удалось экспериментально провести «дистилляцию магических состояний» — ключевой процесс для выполнения сложных вычислений — на основе защищённых от ошибок логических кубитов.

Для выполнения любых, а не только базовых, задач квантовому компьютеру необходимы специальные ресурсы — так называемые «магические состояния». Однако их создание подвержено ошибкам. Продемонстрированный учёными процесс дистилляции, или «очистки», решает эту проблему: он позволяет из нескольких несовершенных, «шумных» состояний получить одно — высокого качества, с минимальным уровнем ошибок. Это открывает дорогу к универсальным квантовым вычислениям.

Главная новизна эксперимента заключается в том, что дистилляция впервые проведена не на обычных, физических кубитах, а на логических. Логический кубит — это система из нескольких физических кубитов, которая способна самостоятельно обнаруживать и исправлять ошибки. Успешно реализовав протокол на своём квантовом компьютере Gemini, исследователи доказали, что вся цепочка — от защиты информации до создания ресурсов для сложных вычислений — может работать как единый отказоустойчивый механизм.

Это достижение устраняет один из ключевых барьеров на пути к масштабированию квантовых систем. Оно на практике подтверждает жизнеспособность теоретических концепций, разработанных два десятилетия назад, и доказывает, что создание мощных и одновременно надёжных квантовых компьютеров является достижимой инженерной задачей. Прорыв приближает эру, когда квантовые вычисления смогут решать практические задачи, недоступные классическим суперкомпьютерам.

Показать полностью 1
[моё] Квант Компьютер Вычисления Технологии Наука Прорыв Физика Mit Гарвард Кубит Ошибка Алгоритм Природа Будущее Научпоп
58
46
PNIPU
PNIPU
18 дней назад
Наука | Научпоп

Разработка ученых Пермского Политеха позволяет в 3 раза быстрее найти слабые зоны 3D-печатных изделий⁠⁠

Разработка ученых Пермского Политеха позволяет в 3 раза быстрее найти слабые зоны 3D-печатных изделий ПНИПУ, 3D печать, 3D принтер, Авиация, Прочность, Научпоп, Длиннопост

Образец для экспресс-оценки циклических свойств аддитивного конструкционного материала.

Объем мирового рынка аддитивного производства растет с каждым годом и на 2024 год оценивается в 3,56 млрд долларов. 3D-печать широко применяется в аэрокосмической, автомобильной, строительной и медицинской отраслях. Технология позволяет создавать легкие и прочные изделия разнообразной формы путем «выращивания» материала слой за слоем на 3D-принтере. Однако прочность получаемого продукта во многом зависит от направления печати, например, вертикального или углового. Заранее это предсказать сложно. Чтобы понять, при каких условиях тот или иной материал получается качественнее, из него создают множество дорогостоящих тестовых образцов и для каждого проводят долгие различные проверки. Ученые Пермского Политеха разработали новый метод экспресс-оценки, который вдвое сокращает расход материала и ускоряет испытания с месяца до нескольких дней. Теперь можно быстрее и дешевле определить устойчивость будущих деталей к циклическим нагрузкам, что критически важно для повышения безопасности конструкций в высокотехнологичных отраслях.

На изобретение получен патент. Исследование выполнено в рамках программы стратегического академического лидерства «Приоритет 2030».

Аддитивное производство постепенно становится ключевой технологией в промышленности. Это процесс послойного создания детали из пластика, металла или композита по цифровой 3D-модели. С его помощью можно изготавливать изделия любой сложной формы с минимальными отходами, при этом легкие и прочные. Такие свойства особенно востребованы в аэрокосмической, оборонной, энергетической, нефтегазовой и медицинской отраслях, где используется для изготовления деталей двигателей, корпусов, турбин, трубопроводов, а также индивидуальных имплантов и протезов.

3D-принтер создает изделие, послойно накладывая материал друг на друга. Направление такой печати может быть разным – 90, 45, 60 градусов и т.д. Это влияет на итоговые свойства продукта, в том числе способность выдерживать большие нагрузки. Проблема в том, что предсказать, какой угол печати даст минимальную прочность, невозможно. Поэтому, перед запуском в эксплуатацию, инженерам приходится делать множество тестовых образцов под разными углами и испытывать их на специальных стендах, имитируя реальные условия.

Подобные исследования необходимы и снижают риск разрушения критических элементов при эксплуатации. Однако это крайне дорогой и долгий процесс, требующий большого количества дорогостоящего материала. Для проверки каждого направления печатают 4-6 стандартных образцов. Их поочередно устанавливают в специальную испытательную машину и подвергают нагрузкам до полного разрушения, тем самым проверяя на растяжение, сжатие, изгиб, твердость, выносливость и многие другие факторы. Этот процесс только для одного образца занимает более 10 часов. В среднем, полноценные испытания материала могут отнимать от пары недель до месяцев, что требует развития новых экспресс методов оценки свойств аддитивных материалов.

Ученые Пермского Политеха разработали новую методику экспресс-оценки прочности, которая в 3 раза сокращает время проверки 3D-печатных материалов по сравнению с классическим способом. Вместо множества стандартных образцов эксперты предлагают использовать одну уникальную конструкцию в виде колеса. С ней можно проверить прочность сразу в четырех направлениях, что значительно экономит время и деньги.

– Новый тип конструкции представляет собой колесо, в центре которого находится одно круглое отверстие, а по окружности симметрично расположены еще восемь в форме равнобедренных трапеций. Образец печатают из того же материала и на том же оборудовании, что и будущие детали, устанавливают в испытательной машине и подвергают циклическим нагрузкам (многократному изгибу). Она одновременно нагружает все восемь рабочих поверхностей – перемычек между отверстиями, до их разрушения. По появляющимся деформациям можно определить, где материал слабее всего. Направление, где деталь сломалась после наименьшего числа циклов испытания, и есть самое слабое и опасное, – поделился Артем Ильиных, доцент кафедры «Экспериментальная механика и конструкционное материаловедение» ПНИПУ, старший научный сотрудник Центра экспериментальной механики, кандидат технических наук.

Ученые отмечают, что такая форма образца в виде колеса позволяет тестировать долговечность материала сразу в четырех различных направлениях за одно испытание. При этом в два раза сокращая количество образцов по сравнению с традиционными методами. Это значительно экономит затрачиваемые материалы и уменьшает время испытаний с нескольких недель до 1-7 дней.

Предлагаемая идея эффективна для всех отраслей, использующих 3D-печать. Например, при производстве костных имплантатов из композитов, которые при эксплуатации должны выдерживать высокие нагрузки: перед запуском продукта на рынок можно напечатать тестовое «колесо» из того же материала и проверить его прочность одновременно с разных сторон. Это поможет за короткий срок выбрать оптимальные параметры печати для создания более надежного изделия.

Применение нового типа конструкции дает возможность точно определить, в каком направлении печатать деталь нельзя, так как она быстро сломается под нагрузкой, а в каком – можно, чтобы она прослужила долго. Метод позволяет быстро и достоверно оценить надежность 3D-печатного материала.

Разработка ученых ПНИПУ обеспечивает экспресс-оценку свойств аддитивной конструкции, а также снижение стоимости испытаний за счет количества используемых ресурсов. Теперь можно без проведения долгих проверок корректировать параметры печати, чтобы избежать опасных направлений в готовых изделиях.

Показать полностью
ПНИПУ 3D печать 3D принтер Авиация Прочность Научпоп Длиннопост
20
201
scinquisition
scinquisition
18 дней назад
Наука | Научпоп
Серия О науке интересно

Солнце - друг или враг?⁠⁠

Смотреть видео без замедлений и VPN

Сегодня мы обсудим Солнце и его влияние на наш организм. Вреден ли ультрафиолет и как от него защититься? Есть ли польза от загара? Что такое аллергия на Солнце и какой крем для загара выбрать, чтобы не бояться побочек? Как Солнце помогает вырабатывать витамин D? Давайте разбираться.

Солнце - друг или враг? Наука, Научпоп, Исследования, Ученые, Солнце, Видео, YouTube, Длиннопост

Безопасный ультрафиолет?

Посмотрите на фото этого человека. Он был дальнобойщиком почти 30 лет. Внимание, вопрос: в стране с право- или левосторонним движением он работал?

Солнце - друг или враг? Наука, Научпоп, Исследования, Ученые, Солнце, Видео, YouTube, Длиннопост

Разумеется, руль был слева. А те неравномерные признаки старения лица, которые вы видите на фото, – это наглядные последствия многолетнего воздействия солнечного ультрафиолета на человеческую кожу. Да, солнце ускоряет старение.

Здесь важно оговориться, что есть два типа старения кожи: обычное и фотостарение. Первое связано с универсальными механизмами старения. С этим, надеюсь, когда-нибудь справится большая наука с ее генными и клеточными терапиями. А вот фотостарение вызвано ультрафиолетовым излучением, повреждающим белки и ДНК в клетках.

По данным научных исследований, 80% старения кожи вызвано ультрафиолетом. Но на самом деле это распространенный миф, на который я сам чуть не попался. Вы найдете в массе научных статей упоминание этой цифры, но где первоисточник? Я прошелся по ссылкам, на которые ведут упоминания данного факта. И все в итоге ведут на другие статьи, где снова даются ссылки… пока не доберешься до письма 1997 года в New England Journal of Medicine, где это предлагается как “анекдотическое предположение”. Так что даже в научных журналах иногда некритично подходят к цитированию источников.

И все же есть одна статья 2013 года, авторы которой работают в департаменте прикладных исследований Лореаль. Они взяли 298 девушек разного возраста со светлым цветом кожи и поделили их на любительниц позагорать и предпочитающих тень.

И изучили признаки старения их кожи. Действительно, у светолюбок было больше морщин и пигментных нарушений, а светофобки даже выглядели на пару лет моложе – по мнению непредвзятых оценщиков. Авторы даже пишут, что эффект был примерно 80%. Но эта цифра берется явно из ниоткуда и будто ничего не значит. Хотя результаты исследования интересные и подтверждают вред солнца.

Солнце - друг или враг? Наука, Научпоп, Исследования, Ученые, Солнце, Видео, YouTube, Длиннопост

Ультрафиолет – это электромагнитное излучение с длинами волн от 10 до 400 нм, то есть меньше видимого человеком спектра. В биологии и медицине обычно диапазон сужают до 100-400 нм. Часто ультрафиолетовое излучение делят на 3 категорииа: A, B и C. От ультрафиолета С с самой короткой длиной волны, который мог бы быть самым опасным для человека, нас защищает озоновый слой. А вот с ультрафиолетом типа A и B вы точно сталкивались – просто выходя на улицу.

Ультрафиолет B воздействует преимущественно на верхний слой кожи человека - эпидермис.

Солнце - друг или враг? Наука, Научпоп, Исследования, Ученые, Солнце, Видео, YouTube, Длиннопост

Он вызывает покраснения и ожоги, а его фотоны поглощаются ДНК и вызывают потенциально мутагенные повреждения. Воздействие этого типа ультрафиолета напрямую связано с раком, вызванным солнечным излучением. Более того, в раковых клетках кожи можно обнаружить характерные повреждения ДНК, вызванные именно ультрафиолетом типа B. Это как визитные карточки преступника.

Разумеется, организм пытается защитить свою ДНК. Например, есть система починки повреждений, эксцизионная репарация, которая обеспечивает значительную защиту от мутаций, вызванных таким ультрафиолетом. Без нее все было бы гораздо хуже. При редком генетическом заболевании ксеродерме эта система работает плохо – и риск рака кожи может значительно повышаться. В некоторых случаях в 1000 раз.

Есть и хорошая новость. От ультрафиолета типа B довольно хорошо защищает даже обычное стекло. Но последние исследования показывают, что ультрафиолет A, который проникает в кожу глубже ультрафиолета B, может быть не менее опасен. И обычные стекла от него уже не защищают – нужны специальные.

Ультрафиолет типа А имеет длину волны 320–400 нм. Он составляет более 95% падающего на нас УФ-излучения и плохо поглощается ДНК, но все равно вызывает ее повреждения. Просто косвенно, через образование активных форм кислорода. А еще он разрушает важные структурные белки кожи – коллаген и эластин, а также белки репарации ДНК, усиливая мутагенный эффект ультрафиолета типа B.

Иногда производители соляриев говорят, что у них правильный ультрафиолет, полезный, позволяющий загорать без вреда.

Солнце - друг или враг? Наука, Научпоп, Исследования, Ученые, Солнце, Видео, YouTube, Длиннопост

Одни предлагают ультрафиолет типа A, другие типа B, но правда в том, что полностью безопасного ультрафиолета не существует. И любой солярий вреден в долгосрочной перспективе. В 2009 году Международное агентство по изучению рака классифицировало любые устройства для загара с использованием ультрафиолета как вызывающие рак у людей – категории 1. Ведь они повышают риск меланомы и других видов онкологических заболеваний кожи. К тому же они способствуют фотостарению. А еще ультрафиолет повышает риск катаракты.

Зато после операции по удалению хрусталика, испорченного катарактой, люди могут начать видеть ультрафиолет. По крайней мере часть спектра. У Клода Моне к концу жизни выявили катаракты обоих глаз и удалили хрусталик в правом глазу. Там были свои нюансы, но в результате этим глазом он, по-видиому, стал видеть часть ультрафиолетового спектра, что, естественно, отражалось и на его картинах.

Солнце - друг или враг? Наука, Научпоп, Исследования, Ученые, Солнце, Видео, YouTube, Длиннопост

Кстати, пчёлы вполне себе видят ультрафиолетовое излучение и даже используют его, чтобы находить нектар. Некоторые птицы тоже видят ультрафиолет и используют его, чтобы находить пищу и различать друг друга. Но получается, что они видят мир не так, как видим его мы. Объекты, которые для нас выглядят невзрачно, могут быть яркими для организма, видящего ультрафиолет.

Ультрафиолет обеззараживает

Вообще ультрафиолет может быть нам полезен. Недаром же в медицинских учреждениях используются ультрафиолетовые лампы для дезинфекции помещений. Их же используют и для обеззараживания воды. Правда, чаще используют коротковолновое излучение типа C, потому что именно под его воздействием лучше всего уничтожаются и инактивируются микроорганизмы, например, возбудители туберкулеза. Ультрафиолетовые лампы буквально повреждают ДНК бактерий и препятствуют их размножению.

Но и ультрафиолет от солнца может играть похожую роль. Когда была эпидемия коронавируса, солнце, по всей видимости, играло на нашей стороне, убивало часть вирусных частиц и обеззараживало поверхности. Хотя надежно измерить этот эффект проблематично.

И все же, когда мы используем УФ-лампы для дезинфекции, мы обычно выходим из помещения. Это излучение вредит нам.

Аллергии на солнце

Приведу вам один пассаж: “Моя солнечная крапивница началась в феврале 2016 во время отпуска на Мадейре. В моменте я думала, что руки сгорели на солнце, но через пару часов ожог прошел. Поначалу у меня была периодическая реакция на солнце, особенно при нахождении рядом с водой. С годами мое состояние ухудшилось, и реакцию на солнце у меня вызывало даже небольшое его воздействие. Моя кожа тут же становилась красной, очень чувствительной и болезненной. Причем крапивница возникала не только на улице, но и в помещениях, через окна. Такая реакция могла длиться по несколько часов. Я обратилась к своему терапевту, который посоветовал мне пользоваться солнцезащитным кремом и принимать антигистаминные препараты. В то время я каждое утро наносил на всё тело солнцезащитный крем с SPF 50+, который довольно густой и жирный, и если я пропускала какой-то участок кожи, у меня возникала реакция на солнечный свет. Я пробовала разные антигистаминные, но ни один из них, похоже, не помогал. Мне приходилось закрываться и носить одежду с защитой от УФ-излучения, изготовленную из плотной ткани — иначе реакция возникала даже через одежду. Я была вынуждена носить брюки, рубашки с длинным рукавом и носки даже в жаркую погоду и всегда головной убор”.

Если кому-то нужно научно обосновать вампиров, боящихся солнца, для книги или фильма, используйте. Это заболевание называется “солнечная крапивница” – и это одна из форм аллергии на солнце. Эта болезнь чаще всего является реакцией организма на ультрафиолет типа А, на тот самый, который даже перед стеклом не остановится. Кроме того, эту болезнь могут провоцировать солярии и даже галогенные и флуоресцентные лампочки.

У больного солнечной крапивницей возникает сыпь вплоть до волдырей на незащищенных или плохо защищенных от солнца участках кожи, причем в большинстве случаев это заболевание возникает спонтанно. То есть живешь себе, живешь, а поедешь отдыхать на какую-нибудь Мадейру – и вдруг солнечная крапивница.

Но есть и хорошие новости. Согласно исследованию, которое проводилось в Шотландии, эта болезнь встречается всего у 3 человек на 100000. Аллергия – это избыточная иммунная реакция, чаще всего возникающая на определенный белок. Но ведь солнце – это не белок! Тут история такая – мы до конца не знаем, как устроена аллергия на солнце, но, как ни парадоксально, скорее всего и там виноват белок. Ультрафиолет влияет не только на ДНК, но и на белки в нашей коже, меняет их структуру, и из-за этого у некоторых людей возникает аллергическая реакция на свои же измененные белки.

Причем видов аллергий на солнце сразу несколько. Например, еще бывает полиморфная световая сыпь. Это отдельное заболевание, проявляющееся в виде сыпи и сильного раздражения на открытых солнцу участках кожи. Преимущественно на предплечьях, плечах, шее и верхней части груди. В большинстве случаев возникает после встречи с интенсивным солнечным ультрафиолетом весной или ранним летом, а потом проходит в течение нескольких дней, если свидания с солнцем прекратить. Это немного сексистская болезнь, потому что в 75% случаев она возникает у женщин, а еще ей больше подвержены светлокожие.

Кстати, чувствительность к Солнцу можно приобрести и по собственному желанию. Хоть я и не рекомендую. Вампиром вас это не сделает, а здоровью навредит. Речь о знаменитом Борщевике Сосновского. Он содержит фуранокумарины, которые делают кожу более чувствительной к ультрафиолетовому излучению, вызывая фоточувствительность и приводя к серьезным ожогам под воздействием солнечного света.

Кроме того, похоже, есть еще один простой и натуральный способ повысить риск меланомы – перед тем как оказаться на солнце поесть побольше грейпфрутов или других цитрусовых. Дело в том, что цитрусовые содержат псоралены, фотосенсибилизирующие вещества из класса фуранокумаринов. Ультрафиолет их активирует, они связываются с ДНК и повреждают ее. Но не будем демонизировать грейпфруты – не так уж сильно растет риск. Но перед походом на пляж лучше ими не злоупотреблять. С другой стороны, некоторые ученые, наоборот, пытаются использовать псоралены для борьбы с раком. Ведь фотоактивированный ультрафиолетом псорален сильнее влияет именно на активно делящиеся клетки, то есть потенциально раковые. Исследования ведутся.

Источник витамина D

Но нельзя отрицать пользу солнца – так, оно помогает нам синтезировать витамин D. И в связи с этим помогает от одного из самых изученных и доказанных вредов индустриализации. Известно, что депривация солнечного света повышает риск развития рахита у детей, при котором нарушается формирование костей и зубов и возникают деформации тела. Связь между рахитом и нехваткой солнечного света  впервые в 1822 году предположил Йенджей Снядецкий — президент медицинского общества Вильнюса. Он обратил внимание, что дети из сельских районов практически не страдали рахитом, в отличие от городских жителей Варшавы, где меньше солнца.

Через 70 лет уже другой ученый пришёл к похожему выводу, исследуя жителей Лондона, в котором количество больных рахитом детей было сильно больше, чем в Индии и Китае. А еще через 30 лет миру был представлен доклад немецкого врача Курта Хульдщинского, который придумал лечение. Он сажал детей, больных рахитом, под ртутную лампу, излучающую ультрафиолет. Курт доказал, что именно ультрафиолет помогает бороться с рахитом. А еще он обратил внимание, что эффект от такого облучения системный. То есть, если у ребенка под лампой была только одна рука, то крепче становились все кости, а не только кости руки. Значит, что-то вырабатывается в коже и циркулирует по всему организму.

Кстати, было еще одно исследование, где детей с рахитом помещали на крышу больницы в Нью-Йорке, чтобы они облучались самим солнцем. И это работало. А еще выяснилось, что дети с темным цветом кожи больше подвержены рахиту – и, чтобы предотвратить болезнь, должны находиться на солнце дольше. Расизм!

Как вы понимаете, оказалось, все дело в витамине D.  Выяснилось, что у нас в эпидермисе содержится химическое соединение 7-дигидрохолестерин, которое под воздействием ультрафиолета типа B образует превитамин D3, который потом в организме превращается в витамин D3. И этот витамин регулирует у нас кальциево-фосфорный обмен – то есть укрепляет кости.  Вот почему нам просто необходимо солнце.

С другой стороны, зачем нам солнце, если есть БАДы? Если у человека дефицит витамина D, то, выбирая между БАДом и ультрафиолетом, конечно, лучше выбрать БАДы. А можно не выбирать из двух зол, а купить лекарственные формы витаминов, где дозировка более точная – и сделать это после анализов и консультации с врачом. В этом плане очень хорошо, что люди научились производить витамины, в том числе и витамин Д. Причем сначала - витамин D2. Никогда не угадаете, кто нам с ним помог. Грибы. Они производят большое количество эргостерола, который под воздействием ультрафиолета типа B превращается в превитамин D2, а потом и в витамин D2.

Некоторые ученые считают, что такой механизм позволяет грибам кое-как минимизировать повреждение других своих молекул ультрафиолетом. Фактически эргостерол служит своеобразным кремом от загара для грибов. В середине XX века именно витамин D2 из грибов был дешевым источником витамина D, который часто добавляли в пищу для борьбы с авитаминозом. Но последние исследования показывают, что лучше всё же принимать D3.

Осталось только понять, в каком случае этот витамин вообще нужен. Ведь сегодня дефицит витамина D встречается не так часто – и его добавки нужны далеко не всем.

Главная причина онкологических заболеваний кожи

Рыжий – прекрасный цвет волос. Но, увы, современные исследования показывают, что рыжие люди больше других подвержены онкологическим заболеваниям кожи. Для того, чтобы понять, почему, придется разобраться, как вообще работает загар. В нашей коже есть клетки – меланоциты, которые обеспечивают пигментацию. Они производят меланин, тот самый пигмент, который придает цвет коже, волосам, глазам и снижает количество ультрафиолета, достигающего ДНК клеток. У темнокожих людей меланоцитов примерно столько же, но есть отличия в количестве и качестве синтезируемого меланина. При одном и том же воздействии ультрафиолета у них будет меньше повреждений ДНК, то есть и риск рака.

Казалось бы, все понятно, но меланоциты не работают в одиночку, у них есть эффективный менеджер - кератиноциты, самые распространенные клетки в эпидермисе. Когда они чувствуют ультрафиолет, им это не нравится, и они выделяют специальный меланоцитостимулирующий гормон, который, в свою очередь, активирует белок - рецептор меланокортина 1 на поверхности меланоцитов. Такая активация заставляет меланоциты производить больше меланина. И у вас возникает загар. Естественный механизм фотозащиты. Если хотите произвести впечатление, можете теперь говорить не загар, а “активация рецептора меланокортина 1”. Так эволюционно наш вид адаптировался к солнцу.

Ген рецептора меланокортина 1 может быть от рождения поломан, в результате чего процесс усиления выработки меланина не срабатывает – и поражение от ультрафиолета увеличивается. И, согласно исследованиям, у людей с наиболее светлым типом кожи и рыжими волосами обе копии этого гена с 80% вероятностью как раз и поломаны.

Есть, кстати, интересное предположение, что эволюционно такие поломки в ДНК как раз были адаптивны и помогали организму получать больше витамина D в широтах, где меньше солнца. Это было до того, как люди стали ездить на курорты и получать достаточное количеством витамина Д из пищи. Вот мы теперь и страдаем. Возможно, будущее у человечества - снова стать темнокожими.

Кстати, темный цвет кожи, с одной стороны, мешает выработке витамина Д, но, с другой, защищает от разрушения под воздействием ультрафиолета другой витамин, фолиевую кислоту. Которая, как вы знаете, часто рекомендуется беременным женщинам. Некоторые авторы считают, что эволюция темного цвета кожи в условиях высокой активности солнечного света была нужна не только и не столько для защиты от рака, но и для улучшения фертильности.

К сожалению, на этом плохие новости для светлокожих и рыжеволосых не закончились. Очередное исследование показало, что свойственная им мутация гена рецептора меланокортина 1 повышает риск меланомы и других видов новообразований кожи даже без воздействия ультрафиолета. Хоть и не так сильно.

Кстати, про другие типы онкологических болезней кожи. Для многих рак кожи и меланома стали почти синонимами из-за того, как часто именно меланома упоминается в массовой культуре. Но немеланомные виды опухолей встречаются аж в 20 раз чаще меланомы, хоть и смертность при них обычно ниже. Впрочем, и среди немеланомных новообразований кожи есть довольно опасные, например, плоскоклеточный рак кожи, возникающий из поврежденных солнцем кератиноцитов. Но самым распространенным видом рака кожи является базальноклеточная карцинома. Она берется из базальных клеток, еще одних представителей эпидермиса, которые может повредить ультрафиолет. Шанс заболеть этим видом рака в течении жизни для светлокожего человека составляет около 30%, но протекает он медленно, поддается лечению и очень редко смертелен.

А вот меланома знаменита тем, что она растет быстрее, чем большинство других видов опухолей кожи и часто дает метастазы. То есть распространяется в другие ткани и органы – лимфатические узлы, легкие, печень, мозг и кости. После этого ее намного сложнее лечить. Если меланому обнаружить на ранней стадии, вероятность выжить в последующие пять лет близка к 100%. На второй стадии – 85%. На третей – 75%. На четвертой все хуже, но и там разрабатываются лечения. Поэтому так важно следить за своим телом и при обнаружении подозрительных растущих новообразований на коже обращаться к специалисту.

Надо сказать, родинки являются, еще одним фактором риска рака кожи. Родинки – это некогда активно делящиеся пигментные клетки, в которых включился защитный механизм клеточного старения. По сути, это механизм против рака. Чем больше у вас родинок, тем больше покушений на вас было успешно остановлено таким вот естественным образом. Теперь вы знаете, откуда готовилось нападение.

Наличие пигментных пятен, так называемых солнечных лентиго, и веснушек – тоже факторы риска.

Веснушки – дело рук меланоцитов. Они бывают 2 видов – эфелиды, то есть те, которые предопределены генетически и могут сильнее проявляться под воздействием солнца, и лентиго, которые появляются из-за повреждений кожи, вызванных тем же солнечным ультрафиолетом.

А теперь у меня наконец-то хорошая новость. В последнее время наука очень продвинулась в лечении меланомы. Например, существует такой подход в борьбы с онкологическими заболеваниями как ингибиторы чекпоинтов, за открытие которых дали Нобелевскую премию. Это лекарства, которые отбирают у раковых клеток способность эффективно скрываться от иммунитета.

Есть и еще одна хорошая новость. От рака, вызванного лучами солнца можно защищаться.

Как защититься от солнца

Для защиты от солнца подойдет всем знакомый крем от загара. Вообще с солнцезащитными кремами связано довольно много мифов, но ничего лучше для нахождения на солнце пока не придумали. Кремы от загара бывают разными по составу, но в целом работают за счет поглощения ультрафиолета или его отражения. Вы наверняка слышали слово из трех букв – SPF. Расшифровывается эта аббревиатура как фактор защиты от солнца, но куда интереснее, как этот фактор считают. По сути, берем два участка кожи. Один мажем кремом, другой не мажем. А потом облучаем оба ультрафиолетом. Если кожу с кремом нужно облучать 30 минут, чтобы получить такой же ожог, как на коже без крема за 1 минуту, значит, крем дает SPF 30. Все по науке! Там реально ставят опыты на людях и облучают их.

Есть ли доказательства того, что кремы защищают от меланомы? Кое-какие имеются, но на удивление скромные. Например, есть рандомизированное исследование, где солнцезащитный крем снижал риск меланомы. Хоть эффект не совсем дотягивает до статистической значимости и явно должен быть доизучен. Да, надежных исследований на большой выборке, которые однозначно подтверждали бы пользу солнцезащитных кремов в борьбе с меланомой и другими видами рака кожи, я найти не смог. И знаем мы об их пользе больше исходя из понимания механизма действия ультрафиолета.

Ну, как, например, о пользе парашютов мы знаем не потому, что проводили масштабное рандомизированное исследование, где случайной половине прыгающих вместо парашюта давали плацебо-парашют. Те же значения SPF не с потолка берутся, кремы действительно блокируют часть ультрафиолета.

Отсутствие столь подробных исследований имеет объяснение и не означает, что кремы не работают. Проблема в том, что надежное исследование на эту тему должно проходить много лет, и непонятно, как контролировать тщательное и регулярное нанесение крема всеми его участниками на протяжении всего времени. Кроме того, солнцезащитные кремы относятся к косметическим средствам, а требования к их доказательной базе ниже, чем к лекарствам. Чем и пользуются производители. И все же количество небольших исследований, подтверждающих способность кремов защитить от меланомы, превалирует, а медицинские организации рекомендуют их использовать. Ничего лучше мы пока не придумали. Разве что вообще скрываться от Солнца.

Кроме того, есть довольно убедительное исследование, в котором одна группа участников использовала крем от солнца регулярно в течение 4,5 лет, а другая - нет. Потом не знавшие об исследовании эксперты оценивали изменения кожи испытуемых. Оказалось, что регулярное использование солнцезащитных кремов защищает от визуального старения кожи.

В некоторых исследованиях ученые утверждают, что использование кремов для загара, особенно с наибольшим фактором защиты, ассоциировано с более высоким риском меланомы. Как же так? Тут мы должны вспомнить о том, как важно корректно применять научный метод, чтобы избежать ошибок. Вспомните, когда вы в последний раз пользовались кремом от загара. Скорее всего, перед тем как пойти под палящие лучи солнца, где-нибудь на пляжном отдыхе. Вряд ли вы мажетесь им дома. Логично, что люди, которые пользуются кремом от загара, проводят на солнце больше времени.

Кроме того, здесь работает эффект Пельцмана – когнитивное искажение, при котором слишком большое количество защитных устройств и правил техники безопасности повышает риск несчастных случаев из-за ложного чувства неуязвимости. Так, использующие солнцезащитный крем люди принимают больше солнечных ванн, и в результате на них действует больше, а не меньше ультрафиолета. Ведь никакой крем для загара не может защитить от ультрафиолета полностью. Крем смывается, не всегда распределен по телу равномерно, оставляет какие-то части тела уязвимыми. Но даже при идеальном применении 2 часа на солнце с SPF 30 – это 4 минуты загара без защиты.

Какой крем лучше выбрать? Кроме степени защиты, важен состав крема. Насколько крем водоустойчив, какая у него текстура, какие используются солнцезащитные компоненты. Последние можно поделить на две основных категории – физические и химические.

Диоксид титана и оксид цинка относятся к средствам физической защиты от ультрафиолета. Они отражают солнечные лучи, создавая защитный экран на поверхности кожи. Эти вещества не разрушаются под действием ультрафиолета, что хорошо. Они защищают и от ультрафиолета A, и от ультрафиолета B. Через кожу не проникают, минимизируя воздействие на организм. Но часто имеют неприятную текстуру, могут забиваться в поры на коже и легко смываются водой. Это плохо, но не критично. Просто крем на такой основе надо наносить заново после каждого купания.

Это были кремы физической защиты. Химическую защиту дают кремы, как правило, состоящие из органических соединений. Например, авобензон. Некоторые из них могут поглощать только ультрафиолет типа А – например, тот же авобензон или екамсул, другие - только типа B, например, октиноксат или гомосалат. Поэтому их обычно смешивают. Надеюсь, что за гомосалат этот пост не забанят.

Конечно, желательно выбирать крем с набором соединений, которые вместе защищают от любого вида ультрафиолета. Но есть неожиданные нюансы. Например, тот же оксибензон запрещен, например, на Гавайях. Дело в том, что оксибезон может разрушать коралловые рифы. Вообще, оказывается, некоторые солнцезащитные кремы настолько долго остаются в воде после применения человеком, что их остатки находили даже в Арктических водах.

Но, кроме самих защитных компонентов, чего только не кладут в кремы от загара. Например, активно продают солнцезащитные крема с антиоксидантами – якобы они усиливают защиту от ультрафиолета. На самом деле эффективность заявленных антиоксидантов в защите кожи остается недоказанной. Кроме того, сама концепция о пользе антиоксидантов в последнее время сильно пересматривается. Бывает, что они даже вредят, мешая встроенным механизмам защиты клетки. Есть статья профессора Гарвардской Медицинской школы Вадима Гладышева, специалиста по старению, которая так и называется – “Теория свободных радикалов в старении мертва, да здравствует теория повреждений”.

Хорошая новость в том, что хотя бы вред человеку от кремов от загара пока строго не доказан. Хотя споры о вреде солнцезащитных кремов ведутся. Есть исследования, которые показывают, что систематическое использование кремов химической защиты способствует проникновению действующих веществ в организм. Некоторые люди переживают, что это может негативно сказаться на их здоровье, в том числе на эндокринной системе. Но исследований, показывающих гормональные эффекты от кремов для загара, мало – и они не столь убедительны, чтобы сделать однозначный вывод об ужасном вреде.

Еще есть опасение, что солнцезащитные кремы провоцируют дефицит витамина D. Но опять-таки, если вам кажется, что у вас авитаминоз, лучше это проверить и при необходимости компенсировать нехватку таблеткой. 

В итоге при выборе солнцезащитного крема дерматологи советуют обращать внимание на то, чтобы он защищал от ультрафиолета А и B типов, чтобы SPF был 30 и выше, желательно водостойкий, если вы хотите плавать, и лучше, чтобы он подходил под ваш тип кожи, например, для чувствительной или склонной к жирности. Если вы переживаете, что кремы могут повлиять на ваше здоровье и поэтому отказываетесь от них, используйте кремы на основе диоксида титана или оксида цинка.

Но лучше прятаться от солнца под зонтом.

Но что, если все мои советы скоро устареют – и можно будет загорать с помощью таблеток? Здесь надо сразу оговориться: американский регулятор FDA предупреждает, что, хотя очень многие производители обещают легкий и быстрый загар с помощью таблетки, одобренных препаратов пока нет. А многие известные вещества, которые используют в таких целях, имеют серьезные побочные эффекты.

Например, есть такое вещество – кантаксантин. Оно одобрено FDA в небольших количествах для использования в качестве красителя в пищевых продуктах. При приёме внутрь кантаксантин накапливается в эпидермисе и подкожном жире, придавая коже оранжево-коричневый оттенок. Однако FDA запретило таблетки для загара, содержащие кантаксантин, из-за серьёзных побочных эффектов при употреблении в больших дозах.

Но это не значит, что подходы для искусственного загара не появятся в будущем. Ведь загар - это всего лишь результат активации меланоцитов под действием ультрафиолета, где посредником выступает альфа-меланоцит-стимулирующий гормон. Некоторые люди пытаются получить загар за счет аналогов этого гормона.

Идея не безумная, но и здесь пока все плохо с испытаниями и доказательствами безопасности. Стимуляция деления меланоцитов может потенциально тоже приводить к повышенному риску меланомы. Короче, ученые еще разбираются.

Солнце - источник жизни

Очевидно, но факт. Если бы не Солнце, не было бы жизни в ее современном виде. Одна из древнейших находок следов жизни на нашей планете - ископаемые строматолиты, представляющие собой остатки цианобактерий, способных к фотосинтезу. Они появились около 3 млрд лет назад.

Любопытно, что не только цианобактерии и растения способны к фотосинтезу. Например, относительно недавно ученые обнаружили фотосинтезирующее животное. Это моллюск рода Elysia, который способен осуществлять фотосинтез при помощи украденных у водорослей хлоропластов.

Солнце - друг или враг? Наука, Научпоп, Исследования, Ученые, Солнце, Видео, YouTube, Длиннопост

Хлоропласты - это предки древних бактерий, которые помогают растениям фотосинтезировать. Но этим Elysia не ограничивается. Кроме хлоропластов, моллюск “украл” еще и несколько генов водорослей, чтобы можно было поддерживать фотосинтез. По сути, этот моллюск - натуральное трансгенное животное. И, глядя на него, возникает вопрос: “почему не мы?” Увы, сделать человека фотосинтезирующим едва ли получится. Банально не хватит площади нашей поверхности, чтобы прокормить себя. Но идея достойная фантастических фильмов.

Солнце - друг или враг? Наука, Научпоп, Исследования, Ученые, Солнце, Видео, YouTube, Длиннопост

Что мы имеем в сухом остатке? Солнце – и враг, и друг человека одновременно. Просто с ним нужно научиться жить. Избегать долгого нахождения на солнце, использовать солнцезащитные кремы, носить шляпу, ценить тень. И помнить, что при всех его опасностях солнце поддерживает жизнь на нашей планете.


Подписывайтесь на соц. сети:

Бусти / Патреон / Instagram / Telegram / Youtube / TikTok


Мой авторский курс

Как проверять информацию


Мой осенний тур

Билеты и подробности — здесь.

Показать полностью 8
[моё] Наука Научпоп Исследования Ученые Солнце Видео YouTube Длиннопост
26
6
Vselenziaurum
Vselenziaurum
18 дней назад
Будущее - рядом
Серия NooSpace

NASA раскрасит небо над восточным побережьем США для изучения космоса⁠⁠

NASA раскрасит небо над восточным побережьем США для изучения космоса NASA, Космос, Наука, Запуск, Ракета, Атмосфера, США, Миссия, Исследования, Технологии, Астрономия, Физика, Небо, Эксперимент, Вирджиния, Научпоп

Комплекс TOMEX+

NASA готовится к запуску миссии TOMEX+, в рамках которой три исследовательские ракеты создадут в ночном небе красочные облака для изучения турбулентности на границе с космосом. Запуск запланирован с космодрома Уоллопс в Вирджинии в ночь с 26 на 27 августа, а необычное явление смогут наблюдать жители восточного побережья США при ясной погоде.

Цель миссии — трёхмерное исследование мезопаузы, одного из наименее изученных слоев атмосферы на высоте от 85 до 105 километров. Эта область слишком высока для метеозондов и слишком низка для спутников, поэтому зондирующие ракеты являются идеальным инструментом для её изучения. Две из трёх ракет выпустят паровые трассеры из соединений бария и лития, которые, взаимодействуя с солнечным светом, окрасятся в яркие цвета. Это позволит учёным визуально отследить движение воздушных потоков и понять природу турбулентности.

Третья ракета будет использовать лазерный лидар для измерения плотности и температуры атомов натрия, которые постоянно присутствуют в этом слое из-за сгорания метеоров. Полученные данные помогут уточнить модели атмосферных процессов, влияющих на траектории спутников, и лучше понять, как формируются высотные облака. Предыдущие попытки запуска были отложены из-за неблагоприятных погодных условий.

В случае успешного запуска разноцветные следы от ракет могут быть видны в течение нескольких минут на обширной территории — от Нью-Джерси до Северной Каролины. NASA отмечает, что используемые химические соединения схожи с теми, что применяются в фейерверках, и не представляют опасности для окружающей среды.

Показать полностью
[моё] NASA Космос Наука Запуск Ракета Атмосфера США Миссия Исследования Технологии Астрономия Физика Небо Эксперимент Вирджиния Научпоп
2
2
AlienEngeneer
AlienEngeneer
18 дней назад
Серия Alien Engineer

1/12 - «Вселенная как семя»⁠⁠

Пролог

Мы привыкли мыслить Вселенную «контейнером всего сущего». Но точнее — видеть в ней семя: сжатый код реальности, который однажды попал в среду и начал распаковываться эволюцией.


1. Сингулярность как зерно

В начале — узел максимальной плотности смысла и энергии. Это не «ничто», а сверхконцентрированное всё. Как в любом семени: форма ещё не видна, но потенциал тотален.

2. Взрыв как прорастание

Большой взрыв — не хаос, а пуск роста. Нарастание энтропии даёт пространство для новых устойчивостей. Порядок не противоположен хаосу — он рождается из него.

3. Код и законы

У каждого семени есть код. У Вселенной — набор законов (симметрии, константы, взаимодействия). Они — как ДНК космоса: не диктуют форму до конца, но задают коридор возможного.

4. Среда как почва бытия

Семя не растёт в пустоте. Космическая «почва» — метареальность / квантовый вакуум, поле потенциала, где зерно Вселенной получило питание для разворота: пространство → материя → жизнь → сознание.

5. Фрактал эволюции

Один и тот же цикл повторяется на всех уровнях: семя → среда → рост → новое семя. Звёзды рождают элементы, элементы — жизнь, жизнь — идеи, идеи — новые миры культуры и технологий. Фрактал продолжается.

6. Человек внутри паттерна

Мы — не наблюдатели снаружи, мы — ветви космического дерева. Наши решения — это направления роста. Сознание — механизм, которым Вселенная осознаёт свой собственный код и переписывает его в новых формах.


Эпилог

Вселенная — не статичный объект, а процесс распаковки. Мы здесь, чтобы сажать новые семена, уходом за средой множить жизнь и смысл.


Манифест 1

«В начале — узел. В узле — код. В среде — рост.»

1/12 - «Вселенная как семя» Наука, Научпоп
Показать полностью 1
Наука Научпоп
2
256
brusster
18 дней назад
Улыбнись!

Ответ на пост «Наука!»⁠⁠6

Это вы еще не знаете как появились люди.
Когда-то на Марсе была вода, wi-fi и даже ипотека. Там жили люди, только все рыжие, из-за пыли. Но они так испортили экологию пластиковыми пакетами и аккумуляторами от самокатов, что все умерло. Пришлось искать способ спасения человечества. Они отправили на Землю зонд с мужчинами и женщинами. Зонд упал на Землю, как огромный метеорит и убил всех динозавров. Так появились первые люди.

[моё] Ирония Псевдонаука Юмор Научпоп Странный юмор Ответ на пост Текст Волна постов
25
Посты не найдены
О нас
О Пикабу Контакты Реклама Сообщить об ошибке Сообщить о нарушении законодательства Отзывы и предложения Новости Пикабу Мобильное приложение RSS
Информация
Помощь Кодекс Пикабу Команда Пикабу Конфиденциальность Правила соцсети О рекомендациях О компании
Наши проекты
Блоги Работа Промокоды Игры Курсы
Партнёры
Промокоды Биг Гик Промокоды Lamoda Промокоды Мвидео Промокоды Яндекс Директ Промокоды Отелло Промокоды Aroma Butik Промокоды Яндекс Путешествия Постила Футбол сегодня
На информационном ресурсе Pikabu.ru применяются рекомендательные технологии