Горячее
Лучшее
Свежее
Подписки
Сообщества
Блоги
Эксперты
Войти
Забыли пароль?
или продолжите с
Создать аккаунт
Регистрируясь, я даю согласие на обработку данных и условия почтовых рассылок.
или
Восстановление пароля
Восстановление пароля
Получить код в Telegram
Войти с Яндекс ID Войти через VK ID
ПромокодыРаботаКурсыРекламаИгрыПополнение Steam
Пикабу Игры +1000 бесплатных онлайн игр  Что обсуждали люди в 2024 году? Самое время вспомнить — через виммельбух Пикабу «Спрятано в 2024»! Печенька облегчит поиск предметов.

Спрятано в 2024

Поиск предметов, Казуальные

Играть

Топ прошлой недели

  • cristall75 cristall75 6 постов
  • 1506DyDyKa 1506DyDyKa 2 поста
  • Animalrescueed Animalrescueed 35 постов
Посмотреть весь топ

Лучшие посты недели

Рассылка Пикабу: отправляем самые рейтинговые материалы за 7 дней 🔥

Нажимая «Подписаться», я даю согласие на обработку данных и условия почтовых рассылок.

Спасибо, что подписались!
Пожалуйста, проверьте почту 😊

Помощь Кодекс Пикабу Команда Пикабу Моб. приложение
Правила соцсети О рекомендациях О компании
Промокоды Биг Гик Промокоды Lamoda Промокоды МВидео Промокоды Яндекс Маркет Промокоды Пятерочка Промокоды Aroma Butik Промокоды Яндекс Путешествия Промокоды Яндекс Еда Постила Футбол сегодня
0 просмотренных постов скрыто
8
rusfbm
rusfbm

Природа 11-летних циклов солнечной активности. 12-летние циклы Ленского⁠⁠

4 дня назад

Обычно про Солнце говорят просто: «У него есть 11-летний цикл активности». Звучит красиво и аккуратно. Но если взять реальные данные наблюдений и честно их изобразить, картина оказывается намного сложнее — и куда интереснее.

Ниже разберём четыре графика, построенных на основе официального ряда Международного числа солнечных пятен (SILSO, версия 2.0). Посмотрим, как на самом деле распределяются длительности циклов, как они менялись с течением времени, есть ли связь между длиной и интенсивностью цикла и как именно измеряется «длительность цикла» на уровне исходного сигнала.

Все графики построены на одном и том же наборе данных: годовое среднее число солнечных пятен с середины XVIII века до наших дней.

График 1. Гистограмма длительностей циклов

https://disk.yandex.ru/i/woHwrT3q4Yvxrw

Что изображено

По горизонтальной оси отложена длительность циклов солнечной активности в годах. По вертикальной оси показано, сколько циклов попало в каждый интервал длительности. Каждый столбик обозначает количество циклов, длительность которых лежит в определённом диапазоне: 8–9 лет, 9–10 лет, 10–11 лет, 11–12 лет, 12–13 лет, 13–14 лет и так далее.

Длительность цикла определяется как промежуток между соседними минимумами ежегодного (и слегка сглаженного) числа солнечных пятен. Иными словами, мы берём год одного минимума, затем год следующего минимума, вычитаем первый год из второго и получаем длительность цикла в годах.

Как это интерпретировать

Циклы Солнца не привязаны к одной единственной цифре. На гистограмме ясно видно, что реальная длительность колеблется в широком диапазоне — примерно от 9 до 15 лет. Встречаются циклы длиной 9–10 лет, есть циклы 12–13 лет и даже длиннее. Никакого жёсткого 11-летнего метронома в природе не существует.

Максимум распределения смещён в сторону больших значений. Чаще всего циклы длятся примерно 11–12 лет, а не ровно 11. Пик гистограммы слегка сдвинут в сторону 11,5–12 лет.

Этот график подтверждает важный вывод: цифра 12 лет — это не произвольное округление, а тот диапазон, в котором концентрируется значительная доля реальных циклов на всём протяжении инструментальной эпохи наблюдений.

График 2. Эволюция длительностей циклов во времени

https://disk.yandex.ru/i/EF7s9azuzsy74w

Что изображено

По горизонтальной оси отложен календарный год, соответствующий середине каждого цикла. По вертикальной оси показана длительность этого цикла в годах. Каждая точка обозначает отдельный цикл, точки соединены линией в хронологическом порядке. На графике проведены две вспомогательные горизонтальные линии: пунктирная на уровне 11 лет и штриховая на уровне 12 лет.

Что видно

Длительности циклов постоянно варьируют от одного к другому. Линия движется вверх и вниз: иногда возникают серии относительно коротких циклов, иногда — серии более длинных. Солнце не функционирует как надёжный метроном, отсчитывающий один и тот же интервал.

Цифра 11 лет — это исторический условный обозначение, а не физический закон природы. Хотя некоторые точки действительно располагаются рядом с отметкой 11 лет, множество других находятся существенно выше или ниже этой линии. На фоне всего ряда наблюдений становится ясно, что «11 лет» — всего лишь грубое усреднение.

Около 12 лет видна естественная центр концентрации данных. Если рассмотреть весь временной диапазон, облако точек в среднем явно тяготеет к уровню примерно 12 лет, чем к строгому значению 11 лет. Это ещё один аргумент в пользу того, чтобы говорить не о жёстком «11-летнем цикле», а об эффективном 12-летнем ритме, вокруг которого Солнце реально колеблется.

Как можно выразить это в научном тексте: «На этом графике видно, как от цикла к циклу меняется их длительность. Попадаются циклы покороче, попадаются подлиннее, а "классических" 11 лет — лишь приблизительный ориентир. Если обозреть всю историю инструментальных наблюдений, то естественный центр тяжести распределения оказывается ближе к 12 годам. По этой причине в качестве эффективного такта разумнее использовать не жёсткий 11-летний период, а 12-летний шаг.»

График 3. Интенсивность (амплитуда) цикла в зависимости от его длительности

https://disk.yandex.ru/i/ViCXju9yF-mggA

Что изображено

По горизонтальной оси отложена длительность цикла в годах. По вертикальной оси — амплитуда цикла, то есть максимальное годовое значение числа солнечных пятен, достигнутое в пределах данного цикла. Каждая точка на графике соответствует одному циклу: она показывает, сколько лет он длился и насколько интенсивным был максимальный всплеск его активности.

Что показывает этот график

Циклы различаются одновременно и по продолжительности, и по мощности. Видно, что встречаются циклы короткие и слабые, короткие и очень сильные, длинные и слабые, длинные и мощные. Простой линейной зависимости типа «чем дольше длится цикл, тем сильнее его выброс» не наблюдается.

Сильные и слабые циклы встречаются при самых разных длительностях. Нет того, чтобы все самые мощные циклы обязательно приходились на 11 лет. Мощные всплески активности встречаются и в области 10–11 лет, и в области 12–13 лет. То же самое верно и для слабых циклов.

Этот график подтверждает целесообразность концепции «эффективного периода». На этом фоне 12-летний шаг удобно применять в качестве средней единицы отсчёта времени. Мы не привязываем мощность цикла к одной фиксированной длительности, а признаём реальное существование диапазона длин в 9–14 лет и описываем его через один эффективный период. Это особенно полезно при построении более крупных временных шкал — например, 72-летних блоков, каждый из которых представляет собой набор из шести условных 12-летних циклов.

График 4. Учебный «зум»: откуда берутся цифры длительности

https://disk.yandex.ru/i/6ebkf3XUOwPHBQ

Первые три графика показывают уже готовую статистику: набор значений длительностей, историю их изменения и связь с интенсивностью. Но естественный вопрос встаёт сам собой: «А как именно вы определяете длительность цикла? Откуда берутся все эти числа на гистограмме?»

Чтобы ответить, нужен учебный график с «увеличением» на несколько циклов подряд, где всё отчётливо видно прямо на исходном сигнале.

Что изображено

По горизонтальной оси отложены годы (например, 1900–1975). По вертикальной оси — сглаженное годовое число солнечных пятен. На графике показана плавная кривая солнечной активности за этот период. На ней вертикальными пунктирными линиями отмечены годы минимумов, возле каждой линии подписан год минимума. Между соседними минимумами нанесены двусторонние стрелки с подписью вида «10,4 года», «11,2 года» и т. д.

Иными словами, этот график выполняет следующие функции:

  • показывает «живой» сигнал — как растёт и падает активность на протяжении нескольких десятилетий;

  • явно отмечает точки, которые мы считаем границами циклов;

  • между этими границами показывает именно те числа, которые потом попадают на гистограмму длительностей.

Как читать этот график

Процедура простая и наглядная.

Находим минимум. Год, когда активность (после сглаживания) достигает локального минимума, — это одна «точка отсчёта».

Находим следующий минимум. Следующий такой минимум через несколько лет — это конец текущего цикла и одновременно начало следующего.

Вычитаем годы. Например, если минимум пришёлся примерно на 1901,5 года, а следующий — примерно на 1909,5 года, то длительность цикла равна примерно 1909,5 − 1901,5 = 8,0 года. Если следующий минимум окажется в районе 1928,5 года, то длительность следующего цикла составит примерно 1928,5 − 1909,5 = 19,0 года (это условный пример; реальные значения на графике подписаны с большей точностью).

Записываем это число в реестр длительностей. Именно эти значения потом попадают на гистограмму (График 1), на график эволюции длительностей во времени (График 2) и на график интенсивности против длительности (График 3).

Зачем нужен такой учебный «зум»

Этот увеличенный график важен для полной прозрачности методики. Он показывает, что:

  • длительность цикла — это не абстрактная модельная величина, а вполне конкретное расстояние между минимумами на реальном сигнале;

  • выбор минимумов виден визуально и может быть проверен;

  • все дальнейшие статистические построения опираются на одну простую и понятную процедуру.

Такой рисунок удобно помещать в качестве иллюстрации в приложение или в отдельный раздел статьи: он сразу рассеивает сомнения вроде «вы, наверное, что-то хитро подгоняете», поскольку вся логика измерения длительностей лежит буквально на поверхности и доступна для проверки.

Итоговая картина: что дают четыре графика вместе

Если рассмотреть все четыре изображения в совокупности, картина складывается следующая:

Учебный «зум» показывает, как из реального сигнала выделяются минимумы и измеряется расстояние между ними.

Гистограмма длительностей показывает, что эти расстояния варьируют в широком диапазоне и никакого «строгого» 11-летнего периода не существует.

График эволюции длительностей во времени показывает, как эти значения «гуляют» от цикла к циклу и намекает на более естественный центр концентрации около 12 лет.

График интенсивности против длительности показывает, что Солнце свободно варьирует как длину, так и мощность своих циклов; попытка привязать всё к единственной цифре 11 лет чрезмерно упрощает реальность.

На этом фоне идея эффективного 12-летнего такта выглядит вполне обоснованно. Солнце живёт в диапазоне примерно 9–14 лет, однако значительная часть циклов концентрируется в области около 12 лет. Такой шаг удобно брать в качестве базовой единицы, когда мы строим более крупные временные шкалы — например, 72-летние «блоки» из шести условных 12-летних циклов и затем сопоставляем их с климатической и исторической динамикой.

Циклы Ленского

https://disk.yandex.ru/i/15W2U7VC0DGvHA

Эта диаграмма представляет собой «общий вид» нашей схемы 12-летних циклов Ленского и 72-летних блоков, размещённых на фоне моды Глейсберга.

Что изображено

Горизонтальная ось

По горизонтальной оси отложены годы примерно от 1750 до 2050 года. Это условная временная шкала, в которую вписаны два примера 72-летних блоков.

Два 72-летних блока (полупрозрачные прямоугольники)

На диаграмме выделены две широкие цветовые полосы:

Блок 1 (нижний, примерно 1784–1856 гг.) с подписью «72-летний блок (минимум Дальтона)». Это пример 72-летнего интервала, который охватывает область пониженной солнечной активности, исторически известной как минимум Дальтона.

Блок 2 (верхний, примерно 1933–2005 гг.) с подписью «72-летний блок ("современный максимум")». Это пример 72-летнего интервала, соответствующего повышенной активности середины XX века, которую часто обозначают как «современный максимум» Солнца.

Внутри каждого блока — шесть циклов Ленского

Каждый прямоугольник разделён вертикальными линиями примерно на 6 равных отрезков. Это представляют собой:

  • 6 условных 12-летних циклов Ленского, содержащихся внутри каждого 72-летнего блока;

  • над каждым делением проставлены номера 1, 2, 3, 4, 5, 6, чтобы наглядно показать, что блок состоит из шести циклов.

Рядом помещена подпись: «циклы Ленского (≈12 лет)», что подчёркивает, что 72 года здесь понимаются как 6×12.

Гладкая кривая сверху — мода Глейсберга

Над прямоугольниками проходит плавная волнистая линия с подписью «концептуальная мода Глейсберга (~88 лет)». Это не отражение реальных наблюдений, а схематичный фон, который показывает:

  • восходящие и нисходящие фазы долгопериодической (~88 лет) модуляции солнечной активности;

  • как наши 72-летние блоки размещаются на этом фоне: один располагается ближе к минимуму, другой — ближе к максимуму.

Как читать эту диаграмму

72 года как «солнечное поколение»

Каждый прямоугольник представляет собой 72-летний блок, который:

  • состоит из шести 12-летних циклов Ленского;

  • может интерпретироваться как одно «солнечное поколение» в нашей системе.

Формально: 6 × 12 лет ≈ 72 года. Хотя реальные циклы Швабе варьируют по длительности, на агрегированном уровне такой масштаб оказывается устойчивым и удобным.

Связь с минимумом Дальтона и «современным максимумом»

Левый/нижний блок (примерно 1784–1856) — это пример 72-летнего периода, в который вписан минимум Дальтона. В этом случае солнечная активность в среднем понижена, и блок попадает в нисходящую и низкую фазу модуляции.

Правый/верхний блок (примерно 1933–2005) — пример 72-летнего периода, соответствующего «современному максимуму» середины XX века, когда активность повышена и блок оказывается в восходящей и высокой фазе моды Глейсберга.

Глейсберг как внешний фон

Волнистая кривая символизирует:

  • долгий (~88-летний) ритм усиления и ослабления солнечной активности;

  • положение наших 72-летних блоков относительно максимумов и минимумов этого ритма.

Иерархическая структура

В итоговой конструкции выявляется трёхуровневая организация:

На нижнем уровне находятся отдельные циклы Швабе (9–15 лет) с их естественной вариативностью.

На среднем уровне расположен эффективный 12-летний такт (циклы Ленского), который служит удобной и стабильной «единицей отсчёта».

На верхнем уровне располагаются 72-летние блоки (6×12 лет), рассматриваемые как «солнечные поколения», которые развиваются на фоне 88-летной моды Глейсберга.

Заключение

Предложенная трёхуровневая схема организации солнечной активности позволяет преодолеть упрощённое представление о 11-летнем цикле и раскрывает истинную сложность солнечной динамики.

На основе анализа реальных данных Международного числа солнечных пятен (SILSO) становится ясно, что индивидуальные циклы Швабе не подчиняются жёсткому периоду. Они варьируют в диапазоне 9–15 лет, при этом значительная часть концентрируется около 12 лет. Эта вариативность не случайна — она отражает фундаментальные процессы в магнитодинамике солнечной конвективной зоны.

Введение эффективного 12-летнего такта (циклов Ленского) как удобной единицы отсчёта позволяет работать с более стабильным масштабом без утраты информации об истинной изменчивости. Такой подход оправдан статистически: большинство реальных циклов группируются именно в этом диапазоне.

Агрегирование шести 12-летних циклов в 72-летние блоки («солнечные поколения») открывает возможность анализа долгопериодических модуляций солнечной активности. Эти блоки демонстрируют чёткую связь с известными эпохами повышенной и пониженной активности — минимумом Дальтона и «современным максимумом» XX века. Такое соответствие указывает на реальность и методологическую целесообразность данной иерархической структуры.

Размещение 72-летних блоков на фоне 88-летной моды Глейсберга создаёт многоуровневую модель, которая объединяет:

  • микромасштаб индивидуальных циклов Швабе;

  • мезомасштаб эффективных 12-летних ритмов;

  • макромасштаб многодесятилетних модуляций.

Такая иерархия не только описывает наблюдаемые закономерности, но и предоставляет инструмент для сопоставления солнечной динамики с климатическими и историческими процессами, которые также развиваются на множественных временных масштабах.

Данный подход демонстрирует, что солнечная активность — это не случайный процесс и не строго периодический маятник, а система с упорядоченной, но гибкой внутренней организацией, в которой глобальные ритмы согласованы на нескольких уровнях одновременно.

Читайте также

12-летний такт как фундаментальная единица описания солнечной активности: анализ на основе SILSO, космогенных изотопов и реконструкций TSI

Солнце как метроном исторического процесса. 12-летние (циклы Ленского) и 72-летние (циклы Яра) такты солнечной активности

Солнечная активность и история: сопоставление концепции «живых детекторов» Д. Речкина и солнечно-тактовой стратификации Руслана Абдуллина

Солнце и земные бури: есть ли связь?

Магнитные бури и международные кризисы: есть ли связь? Разбираемся на примере 2015–2025 годов

От праславянского *Яр- до Христа и Хорса. Как культ Яра (арианство) стал христианством. Яско-хурритская экспансия в Европу

Корень GOR / HOR / KOR / GUR. Как солнечная ипостась Гора сменила крылья на копыта

Русская природа слова "варяг". Развеиваем мифы пангерманизма

Этимология слова «ВАРЯГ»: почему это не *WARA- «ВЕРНОСТЬ», а «ЯР»

Корень *JAR ‘Яр против выдуманного пангерманистами корня *hner- (гнэр)

Этимология имени Юлия. Деполитизированная этимология

КАК «КОЛО» И «ЛОНО» превратились в СЛАВЯН, ВЕНЕДОВ, КЕЛЬТОВ И СОЛНЦЕ. ПРОЯВЛЕНИЕ СОЛНЕЧНОГО КУЛЬТА ДРЕВНИХ СЛАВЯН

Двойная солярная этимология имени Александр: как ПИЕ корни КОЛ и ЯР объединились в имени Александр

Этноним «венеды»: полная этимологическая реконструкция

Показать полностью 5
Контент нейросетей Альтернативная история Античность Древний Рим Энергия Исследования Астрофизика Солнце Звезда по имени Солнце Ученые Древние артефакты История (наука) Длиннопост
2
DELETED
DELETED

Движение солнца на плоской земле и обогрев её⁠⁠

2 месяца назад

Привет разумные. Сегодня раскажу как на самом деле солнце вращается вокруг плоской земли и греет её.

В школе нам предлагают вот такую общепринятую модель:

Там где солнечные лучи падают на землю под более прямым углом, то там будет жарче, а где вскользь, как бы по касательной, там холодней. На картинке, по касательной падают лучи на полярных зонах, южного и северного полюса. В середине на экваторе, самая жара (экваториальная и тропическая зона), а рядом, справа и слева, субропический и умеренный климат. И типо шар-земля, крутится вокруг солнца и прогревает себя, по указанным зонам. НО МОДЕЛЬ НЕ ВЕРНАЯ!

Давайте разбираться, что не так.

Дело в том, что ученые утверждают, что ось земли находится под наклоном к солнцу на 23.5 градуса. Наклон этот появился после того как в землю врезалось протопланетарное тело под названием Тейя. Врезалось, образовало наклон, вырвало кусок земли с земли и образовался наш естественный спутник луна.

А теперь наложим школьную модель на землю под наклоном:

На картинке крайний, верхний луч солнца уже находится по касательной в полярной зоне (голубая зона с верху), северного полюса в летнее солнцестояние, но проведя прямую, точно под таким же углом, находится тропическая зона (нижний луч, в оранжевой зоне). То есть лучи падают одинаково, а тепрература, климат, флора и фауна, координально разные.

Так же и лучи в середине, один попадает в супер жаркий, экваториальный климат (оранжевая зона), а другой в субтропический (зелёная зона). И здесь всё не сходится. Не может быть, настолько разная температура воздуха в этих зонах, так как сами ученые утверждают, что именно попадание лучей под разными углами влияют на температуру. А углы в этих случаях совершенно одинаковые.

А вот как на самом деле солнце вращается и греет истенную, плоскую землю:

Солнце по часовой стрелке вращается над плоской землей. У неё есть так называемые три кольца: южный тропик (Тропик Козерога), Северный тропик (Тропик Рака) и Экваториальное кольцо. Так вот, у настоящей плоской земли, во круг раположен южный полюс, окруженный льдами антарктиды. А в самом центре земли находится север.

Обратите внимание на картинки, так солнце перемещается по кольцам, образуя времена года:

Январь вы уже видите, солнце на кольце южного тропика. И вы видите, что все страны, находящиеся ближе всего к этому кольцу, круглый год, теплее остальных.

Теперь далее, февраль:

Март:

Апрель:

Май:

Июнь:

Июль:

Вы може с легкостью сами проверить, проведя интересный эксперимент у себя дома. Сделайте фото солнца из дома или квартиры в середине лета и зимы, зафиксировав камеру в трех точках по ориентирам. Первый: как и где стоит фотоаппарат, под каким углом, точка опоры штатива на поверхности. Второй ориентир по местности, например дерево или здание и третий это зум фото. Нужен тот же аппарат, например камера телефона и тот же зум, в момент съемки. Желательно воспользоватся угломером.

И ещё желательно сфотографировать сам штатив с телефоном, угломером и поверхностью на которой он стоит. И сравнив фото летом и зимой, и даже осенью и зимой, вы увидите, что солнце будет дальше от вас, по тем же самыи ориентирам. Солнце никогда не приближается ближе или дальше трёх кругов, летом или зимой.

Учёные не признают это, так как это очень сильно оскорбит их, либо они намеренно это делают.

Показать полностью 10
[моё] Плоская земля Солнце Разум Ученые Космос Длиннопост
21
287
EnergeticUm
EnergeticUm
Наука | Научпоп

Ученые хакнули водород⁠⁠

3 месяца назад
Ученые хакнули водород

Водород — один из ключевых игроков в химической промышленности. Его используют для производства топлива, пластмасс, моющих средств, спиртов и даже пищевых стабилизаторов. Но прежде чем применять водород, его нужно «разобрать» на атомы. Обычно для этого требуется разогреть реакторы до сотен градусов и использовать дорогие катализаторы вроде золота или платины. Это энергозатратно, дорого и небезопасно.

Ученые нашли решение. Они разработали метод, который позволяет разделять молекулы водорода при комнатной температуре. Для этого они использовали диоксид титана с наночастицами золота и добавили ультрафиолетовое излучение длиной волны 365 нм. Под воздействием УФ-света электроны перемещаются внутри катализатора, формируя электрон-дырочные пары, которые буквально разрывают связи между атомами водорода.

Результат оказался впечатляющим: ученые смогли восстановить углекислый газ до этана, а затем превратить этан в этилен — важный продукт для производства пластмасс. Все это — без гигантских температур и давления, а только с помощью света. Более того, реакция прекрасно идет и на естественном солнечном излучении.

Если этот метод масштабируют, химическая промышленность может измениться радикально.

Представьте себе заводы, где опасные и дорогие процессы заменены реакциями, которые запускает солнечный свет. Это не просто экономия энергии — это новый взгляд на производство и переработку топлива, пластмасс и других важных материалов.


Больше интересной информации про топливо, нефть, энергию и энергетику в телеграм-канале ЭнергетикУм

Показать полностью
[моё] Энергия Энергетика (производство энергии) Водород Топливо Электролиз Солнце Ученые Химия Перевел сам Титан Золото Ультрафиолет
84
15
Vselenziaurum
Vselenziaurum
Осознание собственного сознания — необходимое условие качественного познания реальности.
Будущее - рядом
Серия NooTech

Создан солнечный реактор для производства водорода из воды⁠⁠

3 месяца назад

Разработаны и успешно испытаны прототипы реактора, способного производить чистое водородное топливо, используя только солнечный свет и воду.

В основе устройства лежит инновационная технология фотокаталитических панелей. Эти панели, подобно солнечным батареям, поглощают энергию света, но вместо производства электричества направляют ее на химическую реакцию — расщепление молекул воды (H₂O) на водород (H₂) и кислород (O₂). Такой процесс, известный как фотокатализ, имитирует естественный фотосинтез, но с целью получения ценного энергоносителя.

Визуализация фотокаталитических панелей

Визуализация фотокаталитических панелей

Главное преимущество нового реактора — производство «зеленого» водорода без каких-либо выбросов углекислого газа. В отличие от традиционных промышленных методов, которые в основном опираются на природный газ, эта технология требует только двух самых распространенных ресурсов на планете — солнечного света и воды. Полученный водород можно использовать в качестве топлива для транспорта, для выработки электроэнергии или в промышленности, при этом единственным побочным продуктом его сгорания является вода.

Созданное устройство является успешным прототипом, его демонстрация открывает широкие перспективы для масштабирования. Следующими шагами для ученых станут повышение эффективности и долговечности фотокаталитических материалов, а также разработка более крупных систем, способных обеспечить промышленное производство водорода. Этот прорыв приближает человечество к созданию устойчивой зелёной водородной энергетики.

Показать полностью 2
[моё] Водород Энергия Солнце Технологии Наука Открытие Реактор Топливо Экология Вода Инновации Будущее Прототип Прорыв Ученые Научпоп Энергетика (производство энергии) Длиннопост
19
205
scinquisition
scinquisition
Наука | Научпоп
Серия О науке интересно

Солнце - друг или враг?⁠⁠

3 месяца назад

Смотреть видео без замедлений и VPN

Сегодня мы обсудим Солнце и его влияние на наш организм. Вреден ли ультрафиолет и как от него защититься? Есть ли польза от загара? Что такое аллергия на Солнце и какой крем для загара выбрать, чтобы не бояться побочек? Как Солнце помогает вырабатывать витамин D? Давайте разбираться.

Безопасный ультрафиолет?

Посмотрите на фото этого человека. Он был дальнобойщиком почти 30 лет. Внимание, вопрос: в стране с право- или левосторонним движением он работал?

Разумеется, руль был слева. А те неравномерные признаки старения лица, которые вы видите на фото, – это наглядные последствия многолетнего воздействия солнечного ультрафиолета на человеческую кожу. Да, солнце ускоряет старение.

Здесь важно оговориться, что есть два типа старения кожи: обычное и фотостарение. Первое связано с универсальными механизмами старения. С этим, надеюсь, когда-нибудь справится большая наука с ее генными и клеточными терапиями. А вот фотостарение вызвано ультрафиолетовым излучением, повреждающим белки и ДНК в клетках.

По данным научных исследований, 80% старения кожи вызвано ультрафиолетом. Но на самом деле это распространенный миф, на который я сам чуть не попался. Вы найдете в массе научных статей упоминание этой цифры, но где первоисточник? Я прошелся по ссылкам, на которые ведут упоминания данного факта. И все в итоге ведут на другие статьи, где снова даются ссылки… пока не доберешься до письма 1997 года в New England Journal of Medicine, где это предлагается как “анекдотическое предположение”. Так что даже в научных журналах иногда некритично подходят к цитированию источников.

И все же есть одна статья 2013 года, авторы которой работают в департаменте прикладных исследований Лореаль. Они взяли 298 девушек разного возраста со светлым цветом кожи и поделили их на любительниц позагорать и предпочитающих тень.

И изучили признаки старения их кожи. Действительно, у светолюбок было больше морщин и пигментных нарушений, а светофобки даже выглядели на пару лет моложе – по мнению непредвзятых оценщиков. Авторы даже пишут, что эффект был примерно 80%. Но эта цифра берется явно из ниоткуда и будто ничего не значит. Хотя результаты исследования интересные и подтверждают вред солнца.

Ультрафиолет – это электромагнитное излучение с длинами волн от 10 до 400 нм, то есть меньше видимого человеком спектра. В биологии и медицине обычно диапазон сужают до 100-400 нм. Часто ультрафиолетовое излучение делят на 3 категорииа: A, B и C. От ультрафиолета С с самой короткой длиной волны, который мог бы быть самым опасным для человека, нас защищает озоновый слой. А вот с ультрафиолетом типа A и B вы точно сталкивались – просто выходя на улицу.

Ультрафиолет B воздействует преимущественно на верхний слой кожи человека - эпидермис.

Он вызывает покраснения и ожоги, а его фотоны поглощаются ДНК и вызывают потенциально мутагенные повреждения. Воздействие этого типа ультрафиолета напрямую связано с раком, вызванным солнечным излучением. Более того, в раковых клетках кожи можно обнаружить характерные повреждения ДНК, вызванные именно ультрафиолетом типа B. Это как визитные карточки преступника.

Разумеется, организм пытается защитить свою ДНК. Например, есть система починки повреждений, эксцизионная репарация, которая обеспечивает значительную защиту от мутаций, вызванных таким ультрафиолетом. Без нее все было бы гораздо хуже. При редком генетическом заболевании ксеродерме эта система работает плохо – и риск рака кожи может значительно повышаться. В некоторых случаях в 1000 раз.

Есть и хорошая новость. От ультрафиолета типа B довольно хорошо защищает даже обычное стекло. Но последние исследования показывают, что ультрафиолет A, который проникает в кожу глубже ультрафиолета B, может быть не менее опасен. И обычные стекла от него уже не защищают – нужны специальные.

Ультрафиолет типа А имеет длину волны 320–400 нм. Он составляет более 95% падающего на нас УФ-излучения и плохо поглощается ДНК, но все равно вызывает ее повреждения. Просто косвенно, через образование активных форм кислорода. А еще он разрушает важные структурные белки кожи – коллаген и эластин, а также белки репарации ДНК, усиливая мутагенный эффект ультрафиолета типа B.

Иногда производители соляриев говорят, что у них правильный ультрафиолет, полезный, позволяющий загорать без вреда.

Одни предлагают ультрафиолет типа A, другие типа B, но правда в том, что полностью безопасного ультрафиолета не существует. И любой солярий вреден в долгосрочной перспективе. В 2009 году Международное агентство по изучению рака классифицировало любые устройства для загара с использованием ультрафиолета как вызывающие рак у людей – категории 1. Ведь они повышают риск меланомы и других видов онкологических заболеваний кожи. К тому же они способствуют фотостарению. А еще ультрафиолет повышает риск катаракты.

Зато после операции по удалению хрусталика, испорченного катарактой, люди могут начать видеть ультрафиолет. По крайней мере часть спектра. У Клода Моне к концу жизни выявили катаракты обоих глаз и удалили хрусталик в правом глазу. Там были свои нюансы, но в результате этим глазом он, по-видиому, стал видеть часть ультрафиолетового спектра, что, естественно, отражалось и на его картинах.

Кстати, пчёлы вполне себе видят ультрафиолетовое излучение и даже используют его, чтобы находить нектар. Некоторые птицы тоже видят ультрафиолет и используют его, чтобы находить пищу и различать друг друга. Но получается, что они видят мир не так, как видим его мы. Объекты, которые для нас выглядят невзрачно, могут быть яркими для организма, видящего ультрафиолет.

Ультрафиолет обеззараживает

Вообще ультрафиолет может быть нам полезен. Недаром же в медицинских учреждениях используются ультрафиолетовые лампы для дезинфекции помещений. Их же используют и для обеззараживания воды. Правда, чаще используют коротковолновое излучение типа C, потому что именно под его воздействием лучше всего уничтожаются и инактивируются микроорганизмы, например, возбудители туберкулеза. Ультрафиолетовые лампы буквально повреждают ДНК бактерий и препятствуют их размножению.

Но и ультрафиолет от солнца может играть похожую роль. Когда была эпидемия коронавируса, солнце, по всей видимости, играло на нашей стороне, убивало часть вирусных частиц и обеззараживало поверхности. Хотя надежно измерить этот эффект проблематично.

И все же, когда мы используем УФ-лампы для дезинфекции, мы обычно выходим из помещения. Это излучение вредит нам.

Аллергии на солнце

Приведу вам один пассаж: “Моя солнечная крапивница началась в феврале 2016 во время отпуска на Мадейре. В моменте я думала, что руки сгорели на солнце, но через пару часов ожог прошел. Поначалу у меня была периодическая реакция на солнце, особенно при нахождении рядом с водой. С годами мое состояние ухудшилось, и реакцию на солнце у меня вызывало даже небольшое его воздействие. Моя кожа тут же становилась красной, очень чувствительной и болезненной. Причем крапивница возникала не только на улице, но и в помещениях, через окна. Такая реакция могла длиться по несколько часов. Я обратилась к своему терапевту, который посоветовал мне пользоваться солнцезащитным кремом и принимать антигистаминные препараты. В то время я каждое утро наносил на всё тело солнцезащитный крем с SPF 50+, который довольно густой и жирный, и если я пропускала какой-то участок кожи, у меня возникала реакция на солнечный свет. Я пробовала разные антигистаминные, но ни один из них, похоже, не помогал. Мне приходилось закрываться и носить одежду с защитой от УФ-излучения, изготовленную из плотной ткани — иначе реакция возникала даже через одежду. Я была вынуждена носить брюки, рубашки с длинным рукавом и носки даже в жаркую погоду и всегда головной убор”.

Если кому-то нужно научно обосновать вампиров, боящихся солнца, для книги или фильма, используйте. Это заболевание называется “солнечная крапивница” – и это одна из форм аллергии на солнце. Эта болезнь чаще всего является реакцией организма на ультрафиолет типа А, на тот самый, который даже перед стеклом не остановится. Кроме того, эту болезнь могут провоцировать солярии и даже галогенные и флуоресцентные лампочки.

У больного солнечной крапивницей возникает сыпь вплоть до волдырей на незащищенных или плохо защищенных от солнца участках кожи, причем в большинстве случаев это заболевание возникает спонтанно. То есть живешь себе, живешь, а поедешь отдыхать на какую-нибудь Мадейру – и вдруг солнечная крапивница.

Но есть и хорошие новости. Согласно исследованию, которое проводилось в Шотландии, эта болезнь встречается всего у 3 человек на 100000. Аллергия – это избыточная иммунная реакция, чаще всего возникающая на определенный белок. Но ведь солнце – это не белок! Тут история такая – мы до конца не знаем, как устроена аллергия на солнце, но, как ни парадоксально, скорее всего и там виноват белок. Ультрафиолет влияет не только на ДНК, но и на белки в нашей коже, меняет их структуру, и из-за этого у некоторых людей возникает аллергическая реакция на свои же измененные белки.

Причем видов аллергий на солнце сразу несколько. Например, еще бывает полиморфная световая сыпь. Это отдельное заболевание, проявляющееся в виде сыпи и сильного раздражения на открытых солнцу участках кожи. Преимущественно на предплечьях, плечах, шее и верхней части груди. В большинстве случаев возникает после встречи с интенсивным солнечным ультрафиолетом весной или ранним летом, а потом проходит в течение нескольких дней, если свидания с солнцем прекратить. Это немного сексистская болезнь, потому что в 75% случаев она возникает у женщин, а еще ей больше подвержены светлокожие.

Кстати, чувствительность к Солнцу можно приобрести и по собственному желанию. Хоть я и не рекомендую. Вампиром вас это не сделает, а здоровью навредит. Речь о знаменитом Борщевике Сосновского. Он содержит фуранокумарины, которые делают кожу более чувствительной к ультрафиолетовому излучению, вызывая фоточувствительность и приводя к серьезным ожогам под воздействием солнечного света.

Кроме того, похоже, есть еще один простой и натуральный способ повысить риск меланомы – перед тем как оказаться на солнце поесть побольше грейпфрутов или других цитрусовых. Дело в том, что цитрусовые содержат псоралены, фотосенсибилизирующие вещества из класса фуранокумаринов. Ультрафиолет их активирует, они связываются с ДНК и повреждают ее. Но не будем демонизировать грейпфруты – не так уж сильно растет риск. Но перед походом на пляж лучше ими не злоупотреблять. С другой стороны, некоторые ученые, наоборот, пытаются использовать псоралены для борьбы с раком. Ведь фотоактивированный ультрафиолетом псорален сильнее влияет именно на активно делящиеся клетки, то есть потенциально раковые. Исследования ведутся.

Источник витамина D

Но нельзя отрицать пользу солнца – так, оно помогает нам синтезировать витамин D. И в связи с этим помогает от одного из самых изученных и доказанных вредов индустриализации. Известно, что депривация солнечного света повышает риск развития рахита у детей, при котором нарушается формирование костей и зубов и возникают деформации тела. Связь между рахитом и нехваткой солнечного света  впервые в 1822 году предположил Йенджей Снядецкий — президент медицинского общества Вильнюса. Он обратил внимание, что дети из сельских районов практически не страдали рахитом, в отличие от городских жителей Варшавы, где меньше солнца.

Через 70 лет уже другой ученый пришёл к похожему выводу, исследуя жителей Лондона, в котором количество больных рахитом детей было сильно больше, чем в Индии и Китае. А еще через 30 лет миру был представлен доклад немецкого врача Курта Хульдщинского, который придумал лечение. Он сажал детей, больных рахитом, под ртутную лампу, излучающую ультрафиолет. Курт доказал, что именно ультрафиолет помогает бороться с рахитом. А еще он обратил внимание, что эффект от такого облучения системный. То есть, если у ребенка под лампой была только одна рука, то крепче становились все кости, а не только кости руки. Значит, что-то вырабатывается в коже и циркулирует по всему организму.

Кстати, было еще одно исследование, где детей с рахитом помещали на крышу больницы в Нью-Йорке, чтобы они облучались самим солнцем. И это работало. А еще выяснилось, что дети с темным цветом кожи больше подвержены рахиту – и, чтобы предотвратить болезнь, должны находиться на солнце дольше. Расизм!

Как вы понимаете, оказалось, все дело в витамине D.  Выяснилось, что у нас в эпидермисе содержится химическое соединение 7-дигидрохолестерин, которое под воздействием ультрафиолета типа B образует превитамин D3, который потом в организме превращается в витамин D3. И этот витамин регулирует у нас кальциево-фосфорный обмен – то есть укрепляет кости.  Вот почему нам просто необходимо солнце.

С другой стороны, зачем нам солнце, если есть БАДы? Если у человека дефицит витамина D, то, выбирая между БАДом и ультрафиолетом, конечно, лучше выбрать БАДы. А можно не выбирать из двух зол, а купить лекарственные формы витаминов, где дозировка более точная – и сделать это после анализов и консультации с врачом. В этом плане очень хорошо, что люди научились производить витамины, в том числе и витамин Д. Причем сначала - витамин D2. Никогда не угадаете, кто нам с ним помог. Грибы. Они производят большое количество эргостерола, который под воздействием ультрафиолета типа B превращается в превитамин D2, а потом и в витамин D2.

Некоторые ученые считают, что такой механизм позволяет грибам кое-как минимизировать повреждение других своих молекул ультрафиолетом. Фактически эргостерол служит своеобразным кремом от загара для грибов. В середине XX века именно витамин D2 из грибов был дешевым источником витамина D, который часто добавляли в пищу для борьбы с авитаминозом. Но последние исследования показывают, что лучше всё же принимать D3.

Осталось только понять, в каком случае этот витамин вообще нужен. Ведь сегодня дефицит витамина D встречается не так часто – и его добавки нужны далеко не всем.

Главная причина онкологических заболеваний кожи

Рыжий – прекрасный цвет волос. Но, увы, современные исследования показывают, что рыжие люди больше других подвержены онкологическим заболеваниям кожи. Для того, чтобы понять, почему, придется разобраться, как вообще работает загар. В нашей коже есть клетки – меланоциты, которые обеспечивают пигментацию. Они производят меланин, тот самый пигмент, который придает цвет коже, волосам, глазам и снижает количество ультрафиолета, достигающего ДНК клеток. У темнокожих людей меланоцитов примерно столько же, но есть отличия в количестве и качестве синтезируемого меланина. При одном и том же воздействии ультрафиолета у них будет меньше повреждений ДНК, то есть и риск рака.

Казалось бы, все понятно, но меланоциты не работают в одиночку, у них есть эффективный менеджер - кератиноциты, самые распространенные клетки в эпидермисе. Когда они чувствуют ультрафиолет, им это не нравится, и они выделяют специальный меланоцитостимулирующий гормон, который, в свою очередь, активирует белок - рецептор меланокортина 1 на поверхности меланоцитов. Такая активация заставляет меланоциты производить больше меланина. И у вас возникает загар. Естественный механизм фотозащиты. Если хотите произвести впечатление, можете теперь говорить не загар, а “активация рецептора меланокортина 1”. Так эволюционно наш вид адаптировался к солнцу.

Ген рецептора меланокортина 1 может быть от рождения поломан, в результате чего процесс усиления выработки меланина не срабатывает – и поражение от ультрафиолета увеличивается. И, согласно исследованиям, у людей с наиболее светлым типом кожи и рыжими волосами обе копии этого гена с 80% вероятностью как раз и поломаны.

Есть, кстати, интересное предположение, что эволюционно такие поломки в ДНК как раз были адаптивны и помогали организму получать больше витамина D в широтах, где меньше солнца. Это было до того, как люди стали ездить на курорты и получать достаточное количеством витамина Д из пищи. Вот мы теперь и страдаем. Возможно, будущее у человечества - снова стать темнокожими.

Кстати, темный цвет кожи, с одной стороны, мешает выработке витамина Д, но, с другой, защищает от разрушения под воздействием ультрафиолета другой витамин, фолиевую кислоту. Которая, как вы знаете, часто рекомендуется беременным женщинам. Некоторые авторы считают, что эволюция темного цвета кожи в условиях высокой активности солнечного света была нужна не только и не столько для защиты от рака, но и для улучшения фертильности.

К сожалению, на этом плохие новости для светлокожих и рыжеволосых не закончились. Очередное исследование показало, что свойственная им мутация гена рецептора меланокортина 1 повышает риск меланомы и других видов новообразований кожи даже без воздействия ультрафиолета. Хоть и не так сильно.

Кстати, про другие типы онкологических болезней кожи. Для многих рак кожи и меланома стали почти синонимами из-за того, как часто именно меланома упоминается в массовой культуре. Но немеланомные виды опухолей встречаются аж в 20 раз чаще меланомы, хоть и смертность при них обычно ниже. Впрочем, и среди немеланомных новообразований кожи есть довольно опасные, например, плоскоклеточный рак кожи, возникающий из поврежденных солнцем кератиноцитов. Но самым распространенным видом рака кожи является базальноклеточная карцинома. Она берется из базальных клеток, еще одних представителей эпидермиса, которые может повредить ультрафиолет. Шанс заболеть этим видом рака в течении жизни для светлокожего человека составляет около 30%, но протекает он медленно, поддается лечению и очень редко смертелен.

А вот меланома знаменита тем, что она растет быстрее, чем большинство других видов опухолей кожи и часто дает метастазы. То есть распространяется в другие ткани и органы – лимфатические узлы, легкие, печень, мозг и кости. После этого ее намного сложнее лечить. Если меланому обнаружить на ранней стадии, вероятность выжить в последующие пять лет близка к 100%. На второй стадии – 85%. На третей – 75%. На четвертой все хуже, но и там разрабатываются лечения. Поэтому так важно следить за своим телом и при обнаружении подозрительных растущих новообразований на коже обращаться к специалисту.

Надо сказать, родинки являются, еще одним фактором риска рака кожи. Родинки – это некогда активно делящиеся пигментные клетки, в которых включился защитный механизм клеточного старения. По сути, это механизм против рака. Чем больше у вас родинок, тем больше покушений на вас было успешно остановлено таким вот естественным образом. Теперь вы знаете, откуда готовилось нападение.

Наличие пигментных пятен, так называемых солнечных лентиго, и веснушек – тоже факторы риска.

Веснушки – дело рук меланоцитов. Они бывают 2 видов – эфелиды, то есть те, которые предопределены генетически и могут сильнее проявляться под воздействием солнца, и лентиго, которые появляются из-за повреждений кожи, вызванных тем же солнечным ультрафиолетом.

А теперь у меня наконец-то хорошая новость. В последнее время наука очень продвинулась в лечении меланомы. Например, существует такой подход в борьбы с онкологическими заболеваниями как ингибиторы чекпоинтов, за открытие которых дали Нобелевскую премию. Это лекарства, которые отбирают у раковых клеток способность эффективно скрываться от иммунитета.

Есть и еще одна хорошая новость. От рака, вызванного лучами солнца можно защищаться.

Как защититься от солнца

Для защиты от солнца подойдет всем знакомый крем от загара. Вообще с солнцезащитными кремами связано довольно много мифов, но ничего лучше для нахождения на солнце пока не придумали. Кремы от загара бывают разными по составу, но в целом работают за счет поглощения ультрафиолета или его отражения. Вы наверняка слышали слово из трех букв – SPF. Расшифровывается эта аббревиатура как фактор защиты от солнца, но куда интереснее, как этот фактор считают. По сути, берем два участка кожи. Один мажем кремом, другой не мажем. А потом облучаем оба ультрафиолетом. Если кожу с кремом нужно облучать 30 минут, чтобы получить такой же ожог, как на коже без крема за 1 минуту, значит, крем дает SPF 30. Все по науке! Там реально ставят опыты на людях и облучают их.

Есть ли доказательства того, что кремы защищают от меланомы? Кое-какие имеются, но на удивление скромные. Например, есть рандомизированное исследование, где солнцезащитный крем снижал риск меланомы. Хоть эффект не совсем дотягивает до статистической значимости и явно должен быть доизучен. Да, надежных исследований на большой выборке, которые однозначно подтверждали бы пользу солнцезащитных кремов в борьбе с меланомой и другими видами рака кожи, я найти не смог. И знаем мы об их пользе больше исходя из понимания механизма действия ультрафиолета.

Ну, как, например, о пользе парашютов мы знаем не потому, что проводили масштабное рандомизированное исследование, где случайной половине прыгающих вместо парашюта давали плацебо-парашют. Те же значения SPF не с потолка берутся, кремы действительно блокируют часть ультрафиолета.

Отсутствие столь подробных исследований имеет объяснение и не означает, что кремы не работают. Проблема в том, что надежное исследование на эту тему должно проходить много лет, и непонятно, как контролировать тщательное и регулярное нанесение крема всеми его участниками на протяжении всего времени. Кроме того, солнцезащитные кремы относятся к косметическим средствам, а требования к их доказательной базе ниже, чем к лекарствам. Чем и пользуются производители. И все же количество небольших исследований, подтверждающих способность кремов защитить от меланомы, превалирует, а медицинские организации рекомендуют их использовать. Ничего лучше мы пока не придумали. Разве что вообще скрываться от Солнца.

Кроме того, есть довольно убедительное исследование, в котором одна группа участников использовала крем от солнца регулярно в течение 4,5 лет, а другая - нет. Потом не знавшие об исследовании эксперты оценивали изменения кожи испытуемых. Оказалось, что регулярное использование солнцезащитных кремов защищает от визуального старения кожи.

В некоторых исследованиях ученые утверждают, что использование кремов для загара, особенно с наибольшим фактором защиты, ассоциировано с более высоким риском меланомы. Как же так? Тут мы должны вспомнить о том, как важно корректно применять научный метод, чтобы избежать ошибок. Вспомните, когда вы в последний раз пользовались кремом от загара. Скорее всего, перед тем как пойти под палящие лучи солнца, где-нибудь на пляжном отдыхе. Вряд ли вы мажетесь им дома. Логично, что люди, которые пользуются кремом от загара, проводят на солнце больше времени.

Кроме того, здесь работает эффект Пельцмана – когнитивное искажение, при котором слишком большое количество защитных устройств и правил техники безопасности повышает риск несчастных случаев из-за ложного чувства неуязвимости. Так, использующие солнцезащитный крем люди принимают больше солнечных ванн, и в результате на них действует больше, а не меньше ультрафиолета. Ведь никакой крем для загара не может защитить от ультрафиолета полностью. Крем смывается, не всегда распределен по телу равномерно, оставляет какие-то части тела уязвимыми. Но даже при идеальном применении 2 часа на солнце с SPF 30 – это 4 минуты загара без защиты.

Какой крем лучше выбрать? Кроме степени защиты, важен состав крема. Насколько крем водоустойчив, какая у него текстура, какие используются солнцезащитные компоненты. Последние можно поделить на две основных категории – физические и химические.

Диоксид титана и оксид цинка относятся к средствам физической защиты от ультрафиолета. Они отражают солнечные лучи, создавая защитный экран на поверхности кожи. Эти вещества не разрушаются под действием ультрафиолета, что хорошо. Они защищают и от ультрафиолета A, и от ультрафиолета B. Через кожу не проникают, минимизируя воздействие на организм. Но часто имеют неприятную текстуру, могут забиваться в поры на коже и легко смываются водой. Это плохо, но не критично. Просто крем на такой основе надо наносить заново после каждого купания.

Это были кремы физической защиты. Химическую защиту дают кремы, как правило, состоящие из органических соединений. Например, авобензон. Некоторые из них могут поглощать только ультрафиолет типа А – например, тот же авобензон или екамсул, другие - только типа B, например, октиноксат или гомосалат. Поэтому их обычно смешивают. Надеюсь, что за гомосалат этот пост не забанят.

Конечно, желательно выбирать крем с набором соединений, которые вместе защищают от любого вида ультрафиолета. Но есть неожиданные нюансы. Например, тот же оксибензон запрещен, например, на Гавайях. Дело в том, что оксибезон может разрушать коралловые рифы. Вообще, оказывается, некоторые солнцезащитные кремы настолько долго остаются в воде после применения человеком, что их остатки находили даже в Арктических водах.

Но, кроме самих защитных компонентов, чего только не кладут в кремы от загара. Например, активно продают солнцезащитные крема с антиоксидантами – якобы они усиливают защиту от ультрафиолета. На самом деле эффективность заявленных антиоксидантов в защите кожи остается недоказанной. Кроме того, сама концепция о пользе антиоксидантов в последнее время сильно пересматривается. Бывает, что они даже вредят, мешая встроенным механизмам защиты клетки. Есть статья профессора Гарвардской Медицинской школы Вадима Гладышева, специалиста по старению, которая так и называется – “Теория свободных радикалов в старении мертва, да здравствует теория повреждений”.

Хорошая новость в том, что хотя бы вред человеку от кремов от загара пока строго не доказан. Хотя споры о вреде солнцезащитных кремов ведутся. Есть исследования, которые показывают, что систематическое использование кремов химической защиты способствует проникновению действующих веществ в организм. Некоторые люди переживают, что это может негативно сказаться на их здоровье, в том числе на эндокринной системе. Но исследований, показывающих гормональные эффекты от кремов для загара, мало – и они не столь убедительны, чтобы сделать однозначный вывод об ужасном вреде.

Еще есть опасение, что солнцезащитные кремы провоцируют дефицит витамина D. Но опять-таки, если вам кажется, что у вас авитаминоз, лучше это проверить и при необходимости компенсировать нехватку таблеткой. 

В итоге при выборе солнцезащитного крема дерматологи советуют обращать внимание на то, чтобы он защищал от ультрафиолета А и B типов, чтобы SPF был 30 и выше, желательно водостойкий, если вы хотите плавать, и лучше, чтобы он подходил под ваш тип кожи, например, для чувствительной или склонной к жирности. Если вы переживаете, что кремы могут повлиять на ваше здоровье и поэтому отказываетесь от них, используйте кремы на основе диоксида титана или оксида цинка.

Но лучше прятаться от солнца под зонтом.

Но что, если все мои советы скоро устареют – и можно будет загорать с помощью таблеток? Здесь надо сразу оговориться: американский регулятор FDA предупреждает, что, хотя очень многие производители обещают легкий и быстрый загар с помощью таблетки, одобренных препаратов пока нет. А многие известные вещества, которые используют в таких целях, имеют серьезные побочные эффекты.

Например, есть такое вещество – кантаксантин. Оно одобрено FDA в небольших количествах для использования в качестве красителя в пищевых продуктах. При приёме внутрь кантаксантин накапливается в эпидермисе и подкожном жире, придавая коже оранжево-коричневый оттенок. Однако FDA запретило таблетки для загара, содержащие кантаксантин, из-за серьёзных побочных эффектов при употреблении в больших дозах.

Но это не значит, что подходы для искусственного загара не появятся в будущем. Ведь загар - это всего лишь результат активации меланоцитов под действием ультрафиолета, где посредником выступает альфа-меланоцит-стимулирующий гормон. Некоторые люди пытаются получить загар за счет аналогов этого гормона.

Идея не безумная, но и здесь пока все плохо с испытаниями и доказательствами безопасности. Стимуляция деления меланоцитов может потенциально тоже приводить к повышенному риску меланомы. Короче, ученые еще разбираются.

Солнце - источник жизни

Очевидно, но факт. Если бы не Солнце, не было бы жизни в ее современном виде. Одна из древнейших находок следов жизни на нашей планете - ископаемые строматолиты, представляющие собой остатки цианобактерий, способных к фотосинтезу. Они появились около 3 млрд лет назад.

Любопытно, что не только цианобактерии и растения способны к фотосинтезу. Например, относительно недавно ученые обнаружили фотосинтезирующее животное. Это моллюск рода Elysia, который способен осуществлять фотосинтез при помощи украденных у водорослей хлоропластов.

Хлоропласты - это предки древних бактерий, которые помогают растениям фотосинтезировать. Но этим Elysia не ограничивается. Кроме хлоропластов, моллюск “украл” еще и несколько генов водорослей, чтобы можно было поддерживать фотосинтез. По сути, этот моллюск - натуральное трансгенное животное. И, глядя на него, возникает вопрос: “почему не мы?” Увы, сделать человека фотосинтезирующим едва ли получится. Банально не хватит площади нашей поверхности, чтобы прокормить себя. Но идея достойная фантастических фильмов.

Что мы имеем в сухом остатке? Солнце – и враг, и друг человека одновременно. Просто с ним нужно научиться жить. Избегать долгого нахождения на солнце, использовать солнцезащитные кремы, носить шляпу, ценить тень. И помнить, что при всех его опасностях солнце поддерживает жизнь на нашей планете.


Подписывайтесь на соц. сети:

Бусти / Патреон / Instagram / Telegram / Youtube / TikTok


Мой авторский курс

Как проверять информацию


Мой осенний тур

Билеты и подробности — здесь.

Показать полностью 8
[моё] Наука Научпоп Исследования Ученые Солнце Видео YouTube Длиннопост
26
1170
EurekaToday
EurekaToday
Наука | Научпоп

Зафиксировано редкое явление на Солнце⁠⁠

5 месяцев назад
Зафиксировано редкое явление на Солнце

Телескопы зафиксировали два синхронных протуберанца (29.06.25) на правом краю Солнца. Эти мощные выбросы плазмы, удерживаемые магнитными полями, появились одновременно – довольно необычное явление для нашей звезды

Источник

⭐ Являешься любителем астрономии и космонавтики? Присоединяйся в наше сообщество Telegram и будь в курсе самых свежих новостей астрономии и космонавтики каждый день!

Видео с синхронными протуберанцами демонстрирует впечатляющую картину. Плазменные образования синхронно поднимались над солнечной поверхностью, создавая захватывающее зрелище

Перейти к видео

Источник

Несмотря на это яркое событие, ученые прогнозируют скорое снижение солнечной активности. По данным лабораторий ИКИ и ИСЗФ, после серии вспышек Солнце вступит в период относительного спокойствия

⭐Присоединяйся в наше сообщество и будь в курсе самых свежих новостей астрономии и космонавтики каждый день ⭐

ВАША МОНИТИЗАЦИЯ ОЧЕНЬ ВАЖНА, ДАЖЕ 10 РУБЛЕЙ ОЧЕНЬ МОТИВИРУЮТ

Автор: Осипов Илья Александрович, лектор «Смоленского Планетария» имени Ю. А. Гагарина. (2022-2024)

Спасибо за внимание!

Показать полностью 1
[моё] Телескоп Астрономия Ученые Наука Астрофизика Видео Без звука Короткие видео Солнце
115
37
IceLifeSun
IceLifeSun

Физикам посвящается... "Как в СССР хотели толкать Землю к Солнцу с помощью атомных двигателей"⁠⁠

6 месяцев назад

В начале 1950-х на волне эйфории от «приручения атома» знаменитый советский учёный генерал, поклонник идей Циолковского Георгий Покровский придумал, как улучшить жизнь на Земле. Он предлагал установить на Южном полюсе или на экваторе атомные станции, которые столкнули нашу планету с орбиты и отправили бы её в свободный полёт.

«Зарядившись энергией и полезными ископаемыми, взятыми с других планет, можно обеспечить освещение и отопление Земли помимо Солнца и направиться к отдалённым звёздным системам для их изучения и использования на благо безгранично развивающегося человечества», — писал Покровский.
Георгий Иосифович Покровский родился в 1901 году. В середине 1920-х он — заведующим кафедрой физики Московского инженерно-строительного института и одновременно поклонник идей Циолковского и евгеники. В 1928 году он принимается в Германское общество физиков. В 1932 году переводится в РККА начальником кафедры физики Военно-инженерной академии. Получает звание генерал-майора инженерно-технической службы. Доктор технических наук.
С 1936 года Покровский — член редколлегии журнала «Техника молодёжи». Он считался негласным куратором советских писателей-фантастов со стороны наркомата, а затем Минобороны. Покровский также сам пишет фантастические рассказы под псевдонимами, а также автор более ста фантастических картин и иллюстраций к книгам и статьям в научно-технических журналах. В некрологе в журнале «Техника молодёжи», №3, 1979 говорилось:

Георгий Покровский

Георгий Покровский

«Скоропостижно скончался Георгий Иосифович Покровский, член редколлегии журнала с 1936 года. Профессор Покровский известен многочисленными работами в области технической физики, он является одним из основоположников теории центробежного моделирования, получившей международное признание. От нас ушёл чрезвычайно разносторонний, увлекающийся человек, энергия которого поражала его соратников и близких. Он был автором первых в истории журнала научно-фантастических иллюстраций. Именно благодаря зоркому взгляду Георгия Иосифовича Покровского, его удивительному чувству нового читатели журнала смогли зримо представить себе космическую архитектуру будущего, первый реактор, ракетный вокзал, неповторимые и странные для своего времени тонкоплёночные сооружения».
С начала 1950-х Покровский — фанат использования атома в мирных целях. В частности, он предлагал делать водохранилища с помощью взрывов атомных бомб, направленными взрывами срывать горы. В 1954 году в «Технике молодёжи» он предложил ещё более фантастический вариант — задействовать атом в движении Земли. Приводим в сокращении эту его заметку:
Человечеству грозит «тепловая смерть» — бубнили когда-то пророки конца света. Когда-нибудь Солнце остынет, все источники-энергии будут использованы, жизнь замёрзнет в холодном космосе, наступит гибель человечества.

Можно ли при современных знаниях решить задачу бесконечного развития человечества? На такой вопрос мы можем ответить ясно и твёрдо. Да, уже при современных наших знаниях можно ставить такую задачу. И решение этой задачи грядущего можно было бы осуществить несколькими путями. Первый путь состоит в том, чтобы когда-нибудь обеспечить освоение людьми других планет при помощи космических ракет или других космических кораблей.
Этот способ, несомненно, можно будет применить для освоения планет солнечной системы. Полёт отдельных ракет на другие звёздные системы хотя в принципе и возможен, но, ввиду исключительно большой дальности, будет весьма длительным. Люди могли бы путешествовать на таком корабле только при условии смены многих поколений. Попробуем найти другой путь. На первый взгляд он покажется слишком смелым. Но при высоком развитии техники далёкого будущего такое решение в принципе осуществимо.
Это решение состоит в том, чтобы превратить всю нашу планету целиком в гигантский космический корабль, который будет двигаться не по орбите, а по пути, намеченному человеком.

Для управления движением Земли есть возможность сообщить земному шару некоторое ускорение при помощи огромного реактивного двигателя, ось сопла которого совпадает с осью Земли. Очевидно, что такой двигатель удобно расположить в Антарктике, в районе Южного полюса, совместив его ось с осью Земли. Условия космической навигации будут сильно ограничены такой установкой двигателя, но зато окажется возможным легче приспособить поверхность земного шара к тем изменениям, которые возникнут при ускорении движения Земли. Эти изменения проявятся в форме мощного прилива в южном полушарии и такого же мощного отлива в северном полушарии.
При помощи двигателя, установленного на оси земного шара, нельзя направить Землю по любому заданному направлению. Установка получится недостаточно маневренной. Другой, более гибкий способ управления движением Земли состоит в том, чтобы установить множество реактивных двигателей в полосе тропиков. При этом двигатели смогут работать попеременно; в каждый данный момент включится тот двигатель, который имеет ось, совпадающую с направлением движения Земли по её орбите.
Весьма серьёзной задачей является сохранение атмосферы Земли от её затягивания и выбрасывания в пространство реактивными струями двигателей. Сама конструкция таких двигателей, которые должны работать на основе термоядерных реакций представляет собою, несомненно, сложнейшую проблему.

При приближении к той или иной планете необходимо установить режим движения Земли и другой планеты около общего центра тяжести таким образом, чтобы избежать разрушения планет от действия сил взаимного притяжения (приливные волны), а также их столкновения друг с другом. При этих условиях Земля и планета будут кружиться одна возле другой на сравнительно большом расстоянии. Через этот промежуток можно будет передавать на Землю тяжёлый водород (тяжёлую воду), уран и другие полезные ядерные ископаемые.
Зарядившись энергией и полезными ископаемыми, взятыми с других планет, можно обеспечить освещение и отопление Земли помимо Солнца и направиться к отдалённым звёздным системам для их изучения и использования на благо безгранично развивающегося человечества.
От первой атомной электростанции до проектов космического масштаба лежит очень длинная дорога. Но нет границ для могущества человеческого разума.
В «Технике молодёжи» №4 за 1959 год Покровский продолжает свои идеи. В статье «Лифт» в космос" он предложил соорудить башню высотой 160 км, которая из условий прочности и устойчивости должна была иметь рупоровидную форму, с диаметром у Земли 100 км и в космосе 390 м. Верхняя площадка башни, выполненной из полимерного материала и заполненной водородом, могла бы нести нагрузку в 260 тысяч тонн. Основным назначением такой башни Покровский считал установку астрономических и астрофизических приборов за пределами атмосферы.
В заключение он писал: «Если башню заполнить гелием, то в ней могли бы на большую высоту подниматься аэростаты, заполненные водородом. Это могло бы заменить различные виды лифтов».

Под конец жизни Покровский перешёл на более приземлённые идеи. Например, он сконструировал на бумаге ядерный вездеход массой 1000 тонн, предназначенный для Арктики. Последним проектом генерала стали гигантские дирижабли для Сибири грузоподъёмностью 300-350 тонн. Они должны были связать самые отдалённые уголки северной Евразии в единую транспортную сеть.

Показать полностью 6
Физика Изобретения Наука История (наука) Ученые Научпоп Техника-молодёжи Исследования Земля Солнце Атом Техника Фотография Длиннопост
24
8
EurekaToday
EurekaToday
Космическая движуха

Магнитные бури в мае 2025 года: календарь по дням, советы метеозависимым⁠⁠

7 месяцев назад

В мае 2025 года в России ожидается не менее пяти дней с магнитными бурями, что может привести к ухудшению состояния у метеозависимых людей и пациентов с хроническими неврологическими и сердечными заболеваниями.

Магнитные бури возникают из-за солнечных вспышек и выбросов плазмы.

Когда потоки заряженных частиц приближаются к Земле, они сталкиваются с магнитосферой планеты, вызывая колебания.

Открой для себя Вселенную! Присоединяйся в наше сообщество Telegram и будь в курсе самых свежих новостей астрономии и космонавтики каждый день!

Сильные магнитные бури могут влиять не только на здоровье человека, но и на работу технических систем: например, вызывать сбои в работе радиоаппаратуры или нарушать функционирование электросетей.

В мае 2025 года магнитные бури прогнозируются преимущественно в начале и конце месяца. Их сила не превысит уровень G1, что означает умеренное влияние на работу электросетей. По данным Лаборатории солнечной астрономии ИКИ ИСЭФ, ожидается несколько дней возбуждения магнитосферы. Особую опасность представляют даты: 5-7 и 28-29 мая (магнитная буря G1) и периоды с 18 по 21 мая (возбуждённая геомагнитная магнитосфера).

  • 5 мая — магнитная буря G1;

  • 6 мая — магнитная буря G1;

  • 7 мая — магнитная буря G1;

  • 8 мая — возбужденная геомагнитная магнитосфера;

  • 9 мая — возбужденная геомагнитная магнитосфера;

  • 18 мая — возбужденная геомагнитная магнитосфера;

  • 19 мая — возбужденная геомагнитная магнитосфера;

  • 20 мая — возбужденная геомагнитная магнитосфера;

  • 21 мая — возбужденная геомагнитная магнитосфера;

  • 28 мая — магнитная буря G1;

  • 29 мая — магнитная буря G1;

  • 30 мая — возбужденная геомагнитная магнитосфера.

Ученые отмечают, что во время магнитных бурь увеличивается количество обращений за медицинской помощью людей с хроническими заболеваниями сердца.

Специалисты считают, что геомагнитные возмущения способны сбивать ритм работы клеток организма, влияя на сердечно-сосудистую систему, опорно-двигательный аппарат и даже психику человека. Особую уязвимость проявляют люди в пограничных состояниях: беременные женщины, пожилые люди и дети, у которых снижена сопротивляемость организма.

Магнитные бури особенно сильно влияют на жителей больших городов — стресс, недосып и вредные привычки делают людей более чувствительными к геомагнитным изменениям. Во время магнитных бурь могут наблюдаться повышенная утомляемость, снижение работоспособности, бессонница или нарушения сна, учащенное сердцебиение, повышенное артериальное давление и аритмия. Также возможны раздражительность, тревожность и депрессия.

Людям с заболеваниями сердца в «штормовые дни» важно контролировать артериальное давление, иметь под рукой лекарства и избегать тяжёлых нагрузок. Рекомендуется пить больше воды (1,5–2 литра в день) и ограничить употребление кофе и алкоголя, которые усиливают спазмы сосудов. Полезны дневные прогулки и диафрагмальное дыхание (вдох на 4 счёта, задержка на 2 счёта, выдох на 6 счетов).

Чтобы легче переносить геомагнитные бури, специалисты советуют вести «метеодневник»: в течение двух-трёх недель фиксируйте самочувствие, давление и активность. Сравните данные с графиком магнитных бурь. Если совпадения очевидны, значит, вы метеозависимы, и тогда вам важно следить за прогнозами магнитных бурь. Важно помнить, что 30 процентов людей ошибочно связывают недомогание с геомагнитными процессами, игнорируя реальные причины — от хронической усталости до дефицита витаминов.

Для улучшения самочувствия рекомендуется соблюдать режим сна и бодрствования, включать в рацион продукты, богатые антиоксидантами и витаминами группы B: ягоды, фрукты, овощи, орехи, рыбу, льняное масло. Полезна умеренная физическая нагрузка, например, дневная прогулка на свежем воздухе. Замените утренний кофе на какао с корицей — какао-бобы богаты магнием, а корица

Магнитные бури часто усиливают эмоциональную нестабильность. Справиться с тревожностью можно с помощью проверенных психологических техник: «заземления» (сосредоточения на тактильных ощущениях), творчества (рисования, лепки) и мини-медитаций (три минуты в день с закрытыми глазами под спокойную музыку). При ощущении паники полезно представить, как волны магнитной бури огибают вас, не причиняя вреда.

Присоединяйся в наше сообщество в Telegram и будь в курсе самых свежих новостей астрономии и космонавтики каждый день!

Автор: Осипов Илья Александрович, лектор «Смоленского Планетария» имени Ю. А. Гагарина. (2022-2024)

Показать полностью 6
[моё] Исследования Солнце Ученые Наука Телескоп Астрономия Длиннопост
2
Посты не найдены
О нас
О Пикабу Контакты Реклама Сообщить об ошибке Сообщить о нарушении законодательства Отзывы и предложения Новости Пикабу Мобильное приложение RSS
Информация
Помощь Кодекс Пикабу Команда Пикабу Конфиденциальность Правила соцсети О рекомендациях О компании
Наши проекты
Блоги Работа Промокоды Игры Курсы
Партнёры
Промокоды Биг Гик Промокоды Lamoda Промокоды Мвидео Промокоды Яндекс Маркет Промокоды Пятерочка Промокоды Aroma Butik Промокоды Яндекс Путешествия Промокоды Яндекс Еда Постила Футбол сегодня
На информационном ресурсе Pikabu.ru применяются рекомендательные технологии