Посоветуйте мемуары/интервью/"подкасты" инженеров-конструкторов, создателей чего-то значимого. Желательно транспортных средств
Инженеры нынче не популярны, так легко подобный материал не найти. А хочется послушать, как твердые умы рассказывают о пути от идеи до реализации, превозмогая все проблемы.
Прочитал только мемуары Яковлева, создателя истребителей Як, близкого к Сталину человека. Хочется период послевоенного времени - второй половины 20 века.
Конечно, интересны больше создатели транспортных средств. Не обязательно советских, подойдут и европейские, и японские, и американские изобретатели. Хотя их читать труднее из за немного иной культуры и менталитета.
Ответ на пост «"Фууу, что это за плесень?" или " Как усики из металлов мешают работать электронике?"»2
Вопрос к пикабушникам!
Прочитал в инженерном хабе @hubdelo интересный материал про усики. И подумал, а ведь сегодня мозги электронные не только в бытовой технике, но и в авто и промышленном оборудовании. Интересно как защищают электронику в промышленных станках от воздействия влажности, пыли и даже вибраций станка? Особенно в дорогих ЧПУ центрах? А еще слышал про миграцию водорода в чипах - это что-то про нейтрино и плоскую землю?)))
Компания Analog Devices представила новый свч усилитель
Микросхема изготовлена на основе нитрида галлия и предназначена для усиления сигналов в диапазоне 1 Ггц - 22 Ггц. Типовое усиление 14db на частоте 8 Ггц, при этом выходная мощность достигает 42 dbm, что не мало для интегральных усилителей на такие высокие частоты.
Микросхема может представлять интерес в качестве выходного усилителя wi-fi сигнала в диапазонах от 2,4 Ггц до 6 Ггц, а так же в качестве выходного усилителя диапазона LTE для базовых станций мобильной связи.
Ответ на пост «"Фууу, что это за плесень?" или " Как усики из металлов мешают работать электронике?"»2
Тут коллеги, продвигающие инженерный хаб @hubdelo выкатили пост про нитевидные кристаллы (они же "усы", "вискеры"). И почитав комментарии я хочу немного расширить кругозор аудитории. Ну и надеюсь подписанные на меня инженеры поправят меня.
Есть разные интересные явления, про которые уже знают материаловеды. Потому что предшествовало этому "АААааа пиздец все сломалось, мы не знаем почему, все делали правильно!!!!1111" И в процессе дотошного расследования, изучения того, что осталось, натыкались на разные явления. Давайте познакомлю с некоторыми из них:
Оловянная чума.
Олово имеет аллотропные модификации, как например углерод. Алмаз и графит сделаны из одинаковых атомов углерода, но в по-разному построенных кристаллических решетках, поэтому один прозрачен и тверд, а второй черный и жирный. И если есть подходящие условия, то вещество может из одной формы переходить в другую. Так и олово при комнатной температуре находится в виде β-формы ("белое олово"), твердого блестящего металла. При температуре ниже +13С оно может переходить в α-форму ("серое олово") - серого рыхлого порошка, как на фото справа. Но процесс этот крайне медленный, и заметным становится при сильном (-30С) морозе или при наличии загрязнителей. В частности автор этого фото (http://www.periodictable.ru/ горячо рекомендую) для ускорения процесса добавил на правый конец кусочек антимонида индия, как затравку.
С последствиями оловянной чумы столкнулась экспедиция ТерраНова полярника Скотта. Представьте, вы посреди ледяной пустыни возвращаетесь замерзшие, к ранее разбитому лагерю с припасами, а там все топливо вытекло. Потому что жестяные банки тогда запаивали оловом.
Сейчас с этим борются добавками разных металлов. Так достаточно добавить примерно 2% висмута и проблема больше не появится.
2. Нитевидные кристаллы.
Они же "усы", они же "вискеры". Самопроизвольно вырастают из разных покрытий (не только олово, усы дают покрытия из цинка, кадмия, серебра, золота) тончайшие и длинные кристаллики.
Причем, это именно кристаллики - они имеют идеальную структуру, поверхность. Их прочность близка к теоретическому максимуму и ученые мечтают научиться их выращивать по заказу, пока получается с переменным успехом. Но инженеры от них не в восторге, просто посмотрите какой пиздец:
Проектируешь печатную плату, делаешь зазор в 8 мм, что дофига, а тут из лужения спустя несколько лет вырастает такой кристаллик и устраивает короткое замыкание. Причем, в зависимости от цепи, может устраивать как временные, самоустраняющиеся неисправности, если цепь сигнальная, так и стать инициатором дуги, с последующим фейверком. Гарантированного рецепта предотвращения роста усов нет, но есть шаманские практики, соблюдение которых сводит вероятность их появления к минимуму. Например добавление более 3% свинца к олову. Но против этого выступают экологи (гуглить "ROHS"), поэтому приходится снова развлекаться с добавлением висмута.
3. Электрохимическая миграция
Явление, когда при наличии влажности, загрязнений и приложенного напряжения, на катоде начинает расти кристалл металла дендритной формы. Он тоже может устроить короткое замыкание.
Кристаллы появляются только под напряжением, в отличии от усов. При определенных условиях, могут прорастать ВНУТРИ диэлектрика
Рецепт борьбы - тщательная отмывка печатной платы от следов флюса, отпечатков от пальцев. Защита от пыли (которая хорошо удерживает влагу) и покрытие всего защитным лаком. "Безотмывочные" флюсы надо отмывать, если хотите долгой работы:
4. Электромиграция.
С этим эффектом сталкиваются разработчики микросхем. Слои металла там микроскопические, а токи, по местным масштабам, огромные.
Если объяснять суть эффекта пятилетнему ребенку - в металле, между атомов перемещаются электроны. Иногда эти электроны могут дать атому пенделя в сторону своего движения. Если электронов движется много, температура высокая - то вполне можно напинать ощутимую горку атомов в одном месте с образованием ямы в другой.
Поэтому процессор в вашем компьютере может умереть в один прекрасный день, особенно если он горяч, а техпроцесс его тонок. Вообще температура - основной ускоритель процессов, в том числе приводящих к старению и отказу электроники.
5. Диффузия
Вы разработали красивую печатную плату с контактами по краю, и решили шикануть на все деньги и покрыть медные дорожки, в том числе и контакты золотом. Это и защита от коррозии, и обеспечение хорошего контакта, и паяется такая плата отлично. Но что же происходит:
Красивое золотое покрытие очень быстро исчезает - из-за взаимной диффузии меди и золота. Поэтому при покрытии золотом, создают разделительный слой из никеля - он препятствует взаимной диффузии.
Объявляю срач в комментариях открытым) Наде наброшу в виде плашки для донатов:
Технологии: "Блок питания" пульсации напряжения и почему они вредны
Пульсации выходного напряжения — это естественное явление в импульсных источниках питания, к которым относятся компьютерные БП. Но в исправном блоке их значения должны быть в пределах нормы, так как слишком сильные пульсации могут оказывать негативное влияние на работу комплектующих ПК. Почему появляются пульсации, и чем они вредны?
Как преобразовывается напряжение
Переменный ток высокого напряжения является самым удобным способом доставки электричества к конечному потребителю. В первую очередь из-за того, что он обеспечивает минимальные потери энергии при ее передаче на большие расстояния. Именно такой ток с помощью линий электропередач и множества трансформаторов попадает в розетки наших домов и квартир в виде привычных 220 В с частотой 50 Гц.
Однако подобное напряжение совершенно не подходит для питания электроники в бытовой технике. Поэтому для этой цели используются внешние или встроенные блоки питания, преобразовывающие высокое переменное напряжение из сети в низкое постоянное. Такие БП бывают двух видов — линейными и импульсными.
В линейных блоках питания ток из сети подается на обмотку понижающего трансформатора. После этого уменьшенное переменное напряжение проходит через диоды выпрямителя, пропускающего ток в одном направлении: так он становится постоянным. Но, чем меньше частота переменного тока, тем меньше вызываемая ей электродвижущая сила в обмотках трансформатора.
Для передачи приличной мощности при стандартных 50 Гц обмотка должна состоять из большого количества витков, что неминуемо ведет к увеличению размеров трансформатора и самого блока питания. Из-за этого линейные БП в современной технике сегодня используются редко, уступив место импульсным.
Импульсный блок питания устроен немного по-другому. Здесь напряжение из сети сразу же выпрямляется с помощью диодов. Затем из полученного постоянного напряжения вновь формируется переменное с очень высокой частотой — от десятков до сотен кГц. Это делается с помощью инвертора, роль которого играют мощные транзисторы под управлением ШИМ-контроллера. Они попеременно открываются и закрываются тысячи раз в секунду, все время меняя направление тока.
Такой ток вызывает в обмотках заметно более высокую электродвижущую силу. За счет этого даже компактный трансформатор может преобразовывать большую мощность. После трансформатора пониженный переменный ток высокой частоты вновь выпрямляется через диоды, и только затем отправляется питать подключенные к БП устройства.
Откуда берутся пульсации и как они сглаживаются
Переменный ток все время меняет свое направление, из-за чего поступает на диоды выпрямителя волнами. Это вызывает пульсации — периодические колебания постоянного напряжения на выходе из выпрямителя. А так как выпрямителей в импульсном блоке питания два, пульсации тоже получаются двух видов: низкочастотными (удвоенная частота сети, т.е. в нашем случае — 100 Гц) и высокочастотными (удвоенная частота работы инвертора). При профессиональном тестировании БП их измеряют специальным прибором — осциллографом.
Чтобы сгладить пульсации, используются конденсаторы и дроссели, образующие так называемые LC-фильтры (L — катушка дросселя, C — конденсатор). Они накапливают энергию в момент поступления волны, а затем отдают эту энергию в цепь, когда волна «отхлынула».
Для повышения эффективности сглаживания фильтры в импульсных БП устанавливаются в трех местах: на входе перед выпрямителем, после первичного выпрямления напряжения, а также после его вторичного выпрямления на выходе из трансформатора. Такая комбинация не избавляет от пульсаций полностью, но помогает их минимизировать.
Допустимые значения пульсаций
По стандарту ATX, для компьютерных блоков питания допускаются следующие пульсации.
Под данными значениями понимается предельная амплитуда напряжений. То есть, 120 мВ в случае с линией 12 В — это допустимая разница между минимальным и максимальным значением напряжения, которое меняется из-за пульсаций. К примеру, в допустимые укладываются пульсации от 11.94 до 12.06 В (12 В ± 0.5%), но не от 11.88 до 12.12 В (12 В ± 1%).
Величина пульсаций БП зависит как от качества компонентов фильтров, так и от схем самой фильтрации. В самых бюджетных моделях используются примитивные одноступенчатые фильтры с недорогими компонентами. Поэтому нередко они «пульсируют» на грани допустимых значений. В то же время, блоки из верхнего ценового сегмента, благодаря качественным компонентам и многоступенчатой фильтрации, до этих граней заметно не дотягиваются — их пульсации чаще всего не превышают 40–50 мВ по линии 12 В и 20–30 мВ по линиям 5 В/3.3 В.
Со временем емкость конденсаторов фильтров деградирует, и пульсации БП растут. Но данное явление наиболее заметно лишь у дешевых моделей. Для блоков из среднего и высокого ценового сегмента это обычно лишь отдаленная перспектива — они нередко обходятся без высоких пульсаций минимум по 10 лет.
Влияние пульсаций на оборудование
Комплектующие персонального компьютера рассчитаны на работу с небольшими пульсациями в пределах стандарта. Однако превышение допустимого уровня грозит им в лучшем случае нестабильной работой, а в худшем — выходом из строя.
Высокие пульсации влияют на стабильность работы компьютера под нагрузкой. Программные сбои, зависание ОС или приложений, «синие экраны смерти» и неожиданные перезагрузки — все это является следствием воздействия пульсаций на процессор, ОЗУ, видеокарту и прочие компоненты ПК.
Если пульсации не такие сильные, но выше допустимых, могут наблюдаться помехи в работе различных интерфейсов. В первую очередь — аналоговых. Например, в акустике или наушниках, подключенных к звуковой карте с помощью разъема 3.5 мм, можно будет услышать посторонние наводки и шумы. А на мониторе, подключенном к видеокарте кабелем VGA, в этом случае появятся видимые помехи.
Помимо аналоговых, пагубно влияют пульсации и на цифровые интерфейсы. Нередко это влияние нивелируется благодаря работе встроенной системы коррекции ошибок интерфейса, поэтому видимых изменений в работе ПК может и не быть. Но в случае с накопителями воздействие пульсаций все же можно обнаружить: если в параметрах S.M.A.R.T. постоянно растет число ошибок при передаче данных, хотя с разъемом M.2 или кабелем SATA все в порядке, то велик шанс, что виноваты в этом именно пульсации.
Недолгое воздействие пульсаций оборудованию обычно не вредит: стоит устранить их причину (то есть, отремонтировать или заменить дефектный БП), и проблема со сбоями, шумами, помехами или ошибками сразу же решается. Но, если чрезмерные пульсации воздействуют на компьютер приличное время, то от них начинают страдать электронные компоненты ПК.
Наиболее подвержены этому конденсаторы: под воздействием пульсаций у них повышается температура, что ведет к преждевременному износу. Особенно страдают электролитические конденсаторы, которые могут «вздуться». У большинства материнских плат такие используются только в аудиотрактах, но у бюджетных моделей могут встречаться и в других местах.
Помимо конденсаторов, в не менее сложной ситуации оказываются и прочие компоненты подсистем питания материнской платы и видеокарты (VRM). Из-за избыточных пульсаций их транзисторы и дроссели вынуждены работать под повышенной нагрузкой, что приводит к увеличению нагрева, снижению эффективности и срока службы. Работа в таком режиме не сулит ничего хорошего и компонентам, которые питаются от VRM — ЦП, ГП и оперативной памяти. Под длительным воздействием нестабильного напряжения кристаллы центрального и графического процессоров со временем деградируют, а в работе чипов памяти на планках ОЗУ и видеокарте могут появиться ошибки.
После долгого воздействия пульсаций страдают и различные накопители. Со временем на смену ошибкам при передаче данных могут прийти медленные и сбойные сектора, а у жестких дисков (как внутренних, так и внешних) — еще и начаться проблемы с мотором.
Итоги
Пульсации напряжения — побочное явление от преобразования переменного тока в постоянный. В исправном блоке питания они сглаживаются до низких значений, что позволяет комплектующим ПК работать стабильно.
В отличие от допустимых отклонений напряжения, пульсации БП обычный пользователь редко имеет возможность замерить правильно самостоятельно — ведь для этой цели понадобится качественный осциллограф, который может стоить дороже нового блока.
Поэтому важно помнить, что при возникновении высоких пульсаций их можно заметить по описанным в статье сбоям и помехам. Увидели схожие симптомы? Тогда в первую очередь проверьте систему с другим блоком питания. Если проблемы исчезнут, то подвергать компьютер дальнейшему воздействию неисправного БП опасно — его нужно отдать в ремонт или заменить.
Суррогаты начало! Если кто видел фильм поймет отсылку
В Японии придумали кресло для дистанционного управления роботами
Система позволяет управлять гуманоидами, просто напрягая мышцы тела. А роботам передаются не только намерения, но и прикладываемая сила.
Японский технологический стартап H2L представил разработку в виде массажного кресла, которая способна передавать движения человеческого тела и физическую силу.
Система Capsule Interface превращает пользователя в живой удаленный интерфейс и позволяет управлять роботами через свои мышцы. Тем самым заставляя убираться, поднимать коробки и взаимодействовать с людьми.
Законы физики нарушены?
Пока в интернетах спорят что медь с люминью нельзя, скрутки под ХБ изолентой отработали 30 лет, и как новенькие!