Всем привет. Иногда буду рассказывать про коллег по инженерному делу на примерах их разработок и проектов. Сегодня с нами на связи Юрий Бурков, конструктор ГПК, опыт 8+ лет.
Всем привет, на связи резидент инженерного хаба, который превращает тысячи деталей в мощные краны, а сложные расчеты — в надежные решения.
Проектирование грузоподъемных механизмов
Привет, коллеги! Меня зовут Юрий, и я проектирую грузоподъемные механизмы и занимаюсь технологией размещения ГПМ на производственных объектах уже 8 лет. Моя основная специализация — мостовые и судовые краны. Чаще всего это судовые и мостовые краны различного назначения. В работе я использую КОМПАС, SolidWorks, AutoCAD и Solid Edge. Сегодня хочу показать вам проекты судовых кранов, в которых мне довелось поучаствовать. Прочностные расчеты выполнялись в Solid works simulation. Конструкторская документация прошла аттестацию документации и приемки на испытаниях органом РМРС (Российский Морской Регистр Судоходства).
Расчет и конструирование кранов и грузоподъемных механизмов
Подробности о кране с кабиной: 3000 деталей в сборке 36 тонн - масса крана 6 месяцев разработки в одни руки
Фото готового крана собранного по проекту и прошедшего аттестацию в РМРС (Российский Морской Регистр Судоходства).
Ниже приведу пять важных нюансов, о которых не стоит забывать при разработке стреловых кранов с канатной системой изменения вылета:
- Важно учитывать массу каната в системе механизма подъема и массу крюковой подвески, чтобы обеспечить натяжение каната.
- Важно учитывать массу стрелы и груза, что бы избежать ситуации, когда груз может стать «мертвяком» и остановить изменение вылета стрелы. Стрела может оказаться в «мертвой» точке, ограничивая свое перемещение.
- При изменении вылета груз должен перемещаться по горизонтальной траектории, поэтому в механизме подъема должен быть заложен дополнительный канат с системой блоков.
- Система изменения вылета (за исключением гидравлической) всегда должна быть оборудована дополнительным тормозом.
- Внимательно проверять длину каната и канатоемкость системы блоков.
Благодарю Юрия, за то что он поделился одним историей про один из своих проектов и приглашаю почитать о проекте Сергея (рентген-аппарат патологоанатомических исследований причин смерти и криминалистики).
Добрый день, коллеги. Хочу поделиться с вами опытом проектирования конструкции фундамента на понтоне под кран манипулятор. Обратился ко мне мой давний приятель с предложением помочь добрым людям и запилить фундамент под кран манипулятор на понтоне. Я с радостью согласился помочь хорошему человеку, тем более имею богатый опыт проектирования фундаментов, и задача обещала быть интересной.
В качестве исходных данных получил неполный комплект чертежей конструкции понтона без опознавательных знаков, инструкцию по эксплуатации, общее расположение, марку модели крана манипулятора и пожелания заказчика. Заказчик предупредил, что все конструкции должны быть из проката, который можно купить в «Пятерочке». А также, что кран должен поднимать тонну на плече 14 метров.
Кран манипулятор
В сети нашел общие сведения по крану манипулятору и фото. Ни присоединительных размеров, ни опорной поверхности крана найти не удалось.
Как оказалось, понтон используется в качестве склада для хранения корма для рыбы. После анализа чертежей понтона выяснилось, что отсутствует куча размеров, которые необходимы при проектировании фундамента. Сам понтон представляет из себя конструкцию, состоящую из поплавков, фермы и платформы, установленной на фундаментах, приваренных к поплавкам.
Вот он наш герой
Пообсуждал конструкцию фундамента с прочнистом (Павел привет) и накидал предварительную схему с целью согласовать ее с заказчиком. В ответ заказчик прислал новые фото понтона на которых отсутствовала ферма. Платформа стояла на фундаментах.
Так выглядит в модели
Окей, подумал я, и переделал конструкцию.
Фундамент было решено сделать из двух частей. Первая часть — это подкрепление существующей платформы в месте установки крана манипулятора. Присоединительных размеров крана не было, пришлось в чертеже указывать зависимые размеры от основания крана. Надеюсь ребята не запутались при монтаже.
Вторая часть — это фундаменты, которые передают нагрузку на поплавки. В процессе выполнения расчетов прочности выяснилось, что необходимо подкрепить места приварки стенок фундаментов внутри поплавка. Для этого выполнили технологические вырезы для возможности доступа внутрь поплавков. Вырезов сделали два – безопасность прежде всего.
Направил предварительную версию фундамента на согласование добрым людям – в ответ получил ничего)). Сроки поджимали пришлось отдавать в расчет как есть, в надежде, что глобальных изменений не будет.
Для определения расчетной нагрузки решили воспользоваться правилами РМРС. Согласно требованиям РМРС, после установки грузоподъемного устройства, перед вводом в эксплуатацию оно должно подвергаться испытанию пробным грузом 1,25 рабочей нагрузки. Расчет прочности показал, что при принятых материалах и размерах связей, прочность рассматриваемых конструкции обеспечена.
Напряжения в поплавке
Напряжения в балках
От заказчика получили фидбэк, размеры деталей с чертежа снять не могут. Пришлось дополнительно разработать альбом деталей.
Для себя сделал вывод, в обычной жизни нужно делать комиксы для людей. ЕСКД это зло
В предыдущем посте я попросил оставить в комментариях темы, которые были бы интересны. Сразу предупрежу, что некоторые вопросы не будут мной разобраны в том виде, в котором они сформулированы, чтобы не опозориться не вводить никого в заблуждение. Но постараюсь рассказать о чем-то наиболее приближенном по моему мнению.
Каков путь от программы на Verilog/VHDL до реального чипа, минуя ПЛМ?
Область моих компетенции связана непосредственно с микроэлектромеханическими системами (МЭМС), а точнее я занимаюсь разработкой технологии их изготовления. Поэтому расскажу, какой нужно проделать путь от идеи до реализации ее в виде конечного продукта. Надеюсь, будет интересно не нудно.
Да кто такой этот ваш МЭМС? (взято из интернета)
МЭМС - это такой чип, состоящий из механической части (именуется чувствительным элементом), которая может вибрировать, перемещаться или изгибаться, и электрической части (обычно интегральная схема специального назначения, она же ASIC), которая позволяет считывать и преобразовывать сигналы, и управлять механической частью. Короче, это всякие микромеханические акселерометры (датчики ускорения), гироскопы (датчики угловой скорости), датчики давления и т.п. Зачем они нужны? Конечно же для функции автоповорота экрана в смартфоне, иначе как ещё смотреть видео на Ютубе Рутубе. На самом деле применяют датчики МЭМС много где.
Знакомьтесь, датчик МЭМС: внутри корпуса расположены та что побольше и поярче - интегральная схема, а невзрачный - это чувствительный элемент (взято из интернета)
Приступим к идее. Во-первых, нужно определиться для каких целей делать датчик. Универсальных решений не существует, к сожалению. Не получится сделать и суперкомпактный, и мегаточный, и со сверхнизким потреблением энергии, да ещё и практически бесплатный. Поэтому у топовых компаний типа Analog Devices только микромеханических акселерометров более 15 разновидностей! Отмечу, что электроника может быть универсальной, и одна и та же интегральная схема может хорошо подходить для большинства датчиков. Подробно я разберу именно механическую часть (чувствительный элемент). У каждого чувствительного элемента есть особый слой (именуют его обычно приборным) или слои, которые являются определяющими с точки зрения характеристик датчика.
Так выглядит этот особый слой у гироскопа (взято из интернета)
С помощью ПО Comsol Multiphysics или Ansys подбирают конструкцию этого особого слоя или слоев, чтобы они потенциально обеспечивали нужные характеристики. Затем уже в виде некой принципиальной схемы разрабатывают целиком топологию чувствительного элемента, который вообще может состоять не просто из нескольких слоев, но и из нескольких пластин.
Да-да, несколько пластин для одного МЭМСа, но об этом позже (взято из интернета)
Как только с топологией определились, появляется намек уже на какую-то документацию. Важно понимать, что топологию и конструкцию разрабатывают с учётом имеющихся технологических возможностей, а также наличия конкретного материала. Условно, если в наличии имеются пластины толщиной 380 мкм или особый слой могут сделать сейчас только толщиной 100 мкм, то в первую очередь будут исходить из этого. После согласования топологии и конструкции чувствительного элемента обычно утверждают геометрические размеры и электрические параметры, которые будут контролировать в процессе изготовления для определения качества изделия и его работоспособности. Далее формируют документацию для изготовления фотошаблонов для литографии в формате GDSII. Во-первых, необходимо полностью отрисовать все слои и посмотреть, как в пределах одного чипа они накладываются друг на друга. Во-вторых, необходимо размножить разместить чипы на подложке как можно больше и плотнее друг к другу. Но меру тоже нужно знать, поэтому от края пластины обычно отступают 5-10 мм. В-третьих, нужны метки совмещения для литографии.
Так может выглядеть метка совмещения. Красным выделены нониусы, обеспечивающие точное совмещение (взято из интернета)
Главными элементами меток совмещения являются нониусы, их размер и расстояние между ними позволяют оценивать рассовмещение слоев между друг другом. При заказе фотошаблонов также указывают, какие области должны быть прозрачными, а какие нет. Некоторые фотошаблоны должны быть ещё и отзеркалены. Короче, одна ошибка и ты ошибся. Технологический процесс изготовления в виде маршрута набрасывают ещё при формировании документации на фотошаблоны. Делают сопроводительную документацию на изготовление. Также параллельно заказывают необходимые материалы (всякие фоторезисты, проявители, смыватели, кислоты, щелочи и т.п.). И ждут уведомления от озона поставку фотошаблонов и материалов.
Куда ж без шакалов (взято из интернета)
Как только все необходимое есть, начинают отрабатывать какие-то отдельные элементы или операции, чтобы потенциально меньше возникло проблем где-то в середине процесса изготовления. И наконец-то пробуют сделать первую партию пластин. Помните, я упоминал, что для изготовления одного МЭМСа (или одной партии) может потребоваться несколько пластин?
Это чувствительный элемент микромеханического акселерометра, и он не слышал ни о каких планарных технологиях (взято из интернета)
Микроэлектроника построена фактически на планарной технологии. Это когда вы на лицевой стороне пластины последовательно формируете различные слои, что и приводит к изготовлению конечного продукта. В МЭМС так не получится, так как есть всякие подвижные элементы. А чтобы они двигались нужны различные ямы полости над ними, под ними, между ними. Кроме этого все эти подвижные элементы следует располагать в герметичном объеме (чтобы в зазоры размером 2-3 микрометра не попадали твердые частицы в принципе), а в некоторых случаях ещё и нужно поддерживать вакуум!
Да-да, внутри гироскопа делают "микронасос" (взято из интернета)
Так что чтобы сделать одну пластину, нужно запустить минимум 2-3 и помолиться надеяться на чудо. Почему? Потому что может случиться вот это:
Хорошо, когда такое происходит на первых операциях
Поэтому обычно запускают 10-20 пластин, чтобы на выходе гарантировано получить 1-2 с готовыми изделиями.
Особо неприятно, когда "пластина-шахид" унесла не только свою "жизнь", и необходимо начинать заново (взято из интернета)
После того, как получили хотя бы одну пластину с чувствительными элементами, проводят контроль на зондовой станции, которая тыкается своими иголками зондами в металлические контакты и измеряет электрические параметры (ёмкости, сопротивления). По неким установленным критериям бракуют чипы и появляется карта годных чипов по пластине. Пластину кромсают пилят между чипами, чтобы их отделить друг от друга. После этого годные чипы устанавливают в корпус вместе с электроникой. Микросваркой соединяют чип с электроникой и выводят контакты на корпус. Затем корпус закрывают крышкой и герметизируют. Вот и получили первый датчик МЭМС. Но бывают нюансы, например, датчик давления ставят на штуцер. Дальше начинаются испытания для определения характеристик датчика и степень соответствия с тем, что закладывали в самом начале. Вероятность получить с первого раза даже что-то работающее невысока, а уж чтобы это соответствовало ожиданиям, ещё ниже. Поэтому идёт поиск виноватых проблем и их решений, чтобы добиться нужных характеристик изделий. Корректируют конструкцию, топологию, технологию, фотошаблоны, то есть идет нормальный итерационный процесс.
Разработчик и технолог решают, кто виноват (взято из интернета)
На этом пожалуй завершу. Что-то я мог упустить, что-то опустил специально. Получилась простыня, я честно старался написать ёмко, но не смог, не получилось.
Без рейтинга. Прошу помочь поднять, может в мире начнутся перемены.
Как же этого грустно, когда приходится работать с производителем оборудования, у которого на сайте нет документации, чертежей или моделей.
Еще грустно то, когда производитель специфической продукции не может на сайте выложить примеры применения своей продукции или какой-то пример проекта.
За что вы так? Зачем вы вообще существуете на рынке? Зачем таких как вы закладывают в проект?
Задолбали.
Все надо выпрашивать, все надо выбивать, надо сообщить кучу данных о себе и компании, чтобы скачать какую-то кривожопую модель или огрызок документации. Потом менеджер этой компании доебывает раз в месяц.
Не надо так.
Астанавитесь!
Выложите все, что можете выложить. Всех форматов. Всех вариаций. Не осложняйте работу на пустом месте.
Друзья, сегодня мы хотим рассказать вам о газификации — процессе снабжения жилых домов и предприятий природным газом. Это удивительное явление, которое делает нашу жизнь комфортной и уютной.
Газификация началась ещё в древности, когда люди использовали огонь для приготовления пищи и обогрева своих жилищ. С течением времени технологии развивались, и сегодня мы имеем возможность наслаждаться всеми преимуществами природного газа.
Один из главных плюсов газификации — экономия времени и сил. Вместо того чтобы тратить часы на приготовление еды на костре или углях, мы можем готовить быстро и удобно на газовой плите. А отопление с помощью газа позволяет сохранять тепло в доме даже в самые холодные зимние дни.
Ещё один плюс газификации — экологичность. Природный газ считается одним из самых чистых видов топлива, поэтому его использование не наносит вреда окружающей среде. Кроме того, газовые котлы и плиты потребляют меньше электроэнергии, что помогает снизить нагрузку на электросети и экономить деньги.
Конечно, газификация требует определённых затрат на начальном этапе. Однако эти инвестиции окупаются в долгосрочной перспективе, так как позволяют сэкономить на коммунальных услугах и улучшить качество жизни.
Так что, если вы ещё не подключены к газовой сети, самое время задуматься о газификации своего дома или предприятия. Это инвестиция, которая точно окупится и сделает вашу жизнь комфортнее и уютнее.
Газопровод проектируют и обслуживают не гномы, а специалисты-профессионалы, но давайте представим, что мы попали в СКАЗКУ, где газопровод проектируют и строят Гномы…….
«В одной сказочной стране, где горы были высокими, а реки глубокими, жили гномы-проектировщики. Они славились своим мастерством и умением проектировать самые сложные инженерные сооружения.
Однажды король этой страны решил построить новый газопровод, который бы соединил все города и деревни. Он обратился к гномам-проектировщикам с просьбой разработать проект газопровода.
Гномы с радостью взялись за работу. Они изучили местность, провели исследования и разработали проект, который отвечал всем требованиям безопасности и эффективности.
Когда проект был готов, гномы приступили к его реализации. Они использовали свои знания и навыки, чтобы проложить трубопровод через горы и реки.
Строительство газопровода шло быстро и успешно. Гномы работали днём и ночью, и вскоре трубопровод был готов.
Король был очень доволен работой гномов-проектировщиков. Он наградил их золотом и драгоценными камнями.
С тех пор гномы стали известными и уважаемыми в своей стране. Их мастерство и умение проектировать газопроводы стали примером для других специалистов.»
Развитие газоснабжения и газификации в России: бесконечная СКАЗКА.
В современном мире развитие газоснабжения и газификации играет важную роль в обеспечении энергетической безопасности и повышении качества жизни населения. В России этот процесс происходит с невероятной скоростью и эффективностью, напоминая сказку о том, как гномы проектируют газопровод.
В начале сказки стоит упомянуть о том, что в России находится около 48% мировых запасов природного газа. Это делает страну одним из крупнейших поставщиков газа на мировой рынок. Однако для эффективного использования этого ресурса необходимо обеспечить доступ к нему для всех потребителей.
Проектированием газопровода занимаются настоящие «гномы»— специалисты газовой отрасли. Они обладают уникальными знаниями и опытом, позволяющими им создавать надёжные и безопасные системы газоснабжения. Благодаря их труду, газопровод становится символом сотрудничества и взаимопомощи между различными регионами страны.
Строительство газопровода происходит с использованием самых современных технологий и материалов. Это обеспечивает долговечность и надёжность системы, а также снижает затраты на её эксплуатацию.
Важным аспектом сказки является то, что газопровод не только соединяет различные регионы страны, но и обеспечивает доступ к газу для миллионов жителей. Это позволяет улучшить качество жизни населения, повысить уровень экономического развития и укрепить энергетическую безопасность государства.
Сказка о том, как гномы проектируют газопровод, заканчивается счастливым концом. Благодаря их усилиям и профессионализму, Россия становится лидером в области газоснабжения и газификации, обеспечивая своих граждан надёжным и доступным источником энергии.
Всем привет. Уже прошел год с первой встречи инженеров CAD meetup в Минске. Какие успехи сообщества?
В нашем закрытом чате в telegram мы попробовали разные форматы и протестировали разные темы и ветки для обсуждения. На сегодня устаканилась основа чата и уже есть несколько администраторов. Чем полезен чат? В чате можно похвастаться своими проектами и показать свое портфолио (из тех, что можно показывать конечно).
Резюме и портфолио инженера конструктора
Также в чате можно спросить про ЧПУ станки. Иногда находятся быстрые и точные советы.
Вопросы про ЧПУ
В чате мы делимся полезными ссылками, постами и файлами. Некоторые файлы коллеги делают в свободное время в рамках хобби. Среди ссылок есть полезные ресурсы с архивами моделей и проектов для САПР. Иногда можно найти полезные книги и сборники.
3Д модели и проекты для САПР можно скачать бесплатно
Также в чате рассказываем и делимся интересными концептами изделий и успешными проектами коллег по инженерному делу. Чаще всего это проекты талантливых коллег и соотечественников.
Успешные кейсы промышленного дизайна и производства в РФ
Ну а кроме того просто обсуждаем разные вопросы, иногда о производстве иногда про экономику, а иногда просто бытовые темы про здоровье и отдых.
Общение, знакомства и нетворкинг для инженера, конструктора РФ, РБ, СНГ
Кроме того можно задать вопрос по ЧПУ или САПР, а также есть отдельная ветка по Cadmech | Интермех. А еще в чате можно разместить свое резюме или вакансию, а также любой участник может предложить тему для обсуждения. Или предложить задачу для поиска квалифицированного коллеги для совместной работы.
Сегодня в чате есть очередная задача на проектирование.
Подработка для инженера, работа и дополнительный заработок конструктора
Приглашаю коллег инженеров в наш уютный чат для знакомства, общения и продуктивного нетворкинга. Мы ведь иногда проводим и офлайн мероприятия.)
Также будем рады предложениям по сотрудничеству и развитию сообщества. Подать заявку в наш закрытый чат в telegram можно здесь.
Блог ВК нашего сообщества здесь. Задать вопросы администратору проекта можно в сообщениях ВК или в telegram.
Привет, друзья! С вами команда SKANDI — мы те, кто знает толк в домах. Забудьте о хлопотах, мы строим ключевые решения для вас. Сегодня у нас для вас пара крутых фактов о каменных домах.
А вы знали, что Каменные дома — это не просто стены и фундамент, это история, заключенная в каждом камне, это произведение искусства, созданное природой и человеком. Они словно хранители времени, перенося нас в эпохи, когда строительство было искусством, а дом — крепостью.
Представьте себе дом, который стоит не одно столетие, а множество поколений. Такие дома известны своей невероятной прочностью и способностью выдерживать испытания временем. Они словно скалы, непоколебимые перед лицом ветра, дождя и солнца.
Благодаря материалу внутри дома будет царить особый микроклимат: прохлада в жаркий летний день и уютное тепло зимней ночью. Это не просто стены — это естественный регулятор температуры, который работает без электричества и управления.
Каждое строение — это отражение эпохи, в которой он был построен. Это мост между прошлым и настоящим, между традициями и современностью. Они рассказывают истории о тех, кто их строил, и о тех, кто в них жил.
Использование камня как строительного материала также является одним из самых экологичных выборов. Это природный материал, который не требует дополнительной обработки и служит веками, не нанося вреда окружающей среде.
Каждый камень уникален, и это делает каждый дом неповторимым. Нет двух одинаковых, как нет двух одинаковых отпечатков пальцев. Это дает возможность создавать дома, которые будут отражать индивидуальность и вкусы их владельцев.
Тишина и спокойствие — еще одно преимущество. Толстые стены отлично изолируют звуки, позволяя наслаждаться покоем внутри своего жилища.
И, конечно же, безопасность. Каменные дома — это крепости, которые не боятся огня. В случае пожара они станут вашим надежным убежищем.
Дизайн может быть таким же разнообразным, как и ваши предпочтения. От классических форм до смелых современных решений — камень позволяет воплотить любые архитектурные фантазии.
Каменные дома — это больше, чем просто место для жизни. Это символ устойчивости, красоты и уникальности. Они воплощают в себе дух времени и культуру народов. Если вы ищете не просто жилье, а настоящий дом с душой, то каменный дом — это то, что вам нужно.
Привет, дорогой читатель! Я рад, что вы открыли эту статью, потому что я хочу рассказать о чем-то очень интересном и удивительном. Вы когда-нибудь задумывались, почему некоторые произведения искусства и инжиниринга так притягательны для глаза, а другие - нет? Когда говорят об искусстве, математика, кажется, может быть далека от этого мира творчества. Наверное, думаете, что математика - это скучная и сухая наука, которая не имеет ничего общего с искусством. Представляете себе математиков и инженеров как серых и занудных людей, которые сидят за своими формулами и диаграммами, не замечая красоты мира. Считаете, что искусство - это сфера творчества и воображения, которая не поддается логике и расчетам. Вы, ошибаетесь.
Понимание математики и природы это путь к открытию удивительной красоты, восторг которой равен величайшему искусству.
Вы когда-нибудь задумывались, почему некоторые произведения искусства и инжиниринга так притягательны для глаза, а другие - нет?
Да, я знаю, что это звучит провокационно и дерзко, но я хочу вас удивить и заинтересовать. На самом деле, математические принципы и вычисления часто лежат в основе некоторых из самых впечатляющих искусственных произведений. Ответ на эти вопросы может быть неожиданным: геометрия и математика. Да, вы не ошиблись, математика - это не только скучная наука о числах и формулах, но и источник красоты и творчества. В этом эссе я расскажу вам, как математика используется в разных видах искусства, и как она помогает художникам и инженерам создавать потрясающие произведения. Вот несколько интересных аспектов того, как математика используется в художественных приемах:
Пропорции и Гармония.
Пропорции обладают особым визуальным очарованием и используются в архитектуре, живописи, дизайне и других видах искусства для создания гармоничного баланса и приятного восприятия.
Одним из наиболее известных математических концепций, которые находят применение в искусстве, являются золотое сечение и пропорции Фибоначчи.
Золотое сечение - это отношение двух величин, при котором отношение суммы этих величин к большей из них равно отношению большей величины к меньшей. Звучит сложно, но на самом деле это очень просто. Представьте себе отрезок, который разделен на две части так, что отношение длины всего отрезка к длине большей части равно отношению длины большей части к длине меньшей части. Это и есть золотое сечение. Его значение приблизительно равно 1,618. Это число называют золотым числом или числом Фи.
Пропорции Фибоначчи - это последовательность чисел, в которой каждое следующее число равно сумме двух предыдущих. Например, 1, 1, 2, 3, 5, 8, 13, 21, 34 и так далее. Эта последовательность названа в честь итальянского математика Леонардо Фибоначчи, который ввел ее в своей книге «Liber Abaci» в 1202 году. Но самое интересное, что если вы разделите каждое число этой последовательности на предыдущее, то вы получите приближенное значение золотого числа. Например, 8/5 = 1,6; 13/8 = 1,625; 21/13 = 1,615 и так далее.
Например, знаменитая картина Леонардо да Винчи «Мона Лиза» построена на принципе золотого сечения.
Таким образом, золотое сечение и пропорции Фибоначчи - это две стороны одной медали. Они связаны между собой математической закономерностью и обладают эстетической силой. Например, знаменитая картина Леонардо да Винчи «Мона Лиза» построена на принципе золотого сечения. Ее лицо, тело, фон и даже улыбка соответствуют золотым пропорциям. А великий архитектор Андреа Палладио использовал пропорции Фибоначчи в своих зданиях, таких как вилла Ротонда в Италии. Он считал, что эти пропорции создают идеальную гармонию и красоту.
Эти пропорции обладают особым визуальным очарованием и используются в архитектуре, живописи, дизайне и других видах искусства для создания гармоничного баланса и приятного восприятия. Пирамида Хеопса, Парфенон, Нотр-Дам, Тадж-Махал, Эйфелева башня и многие другие знаменитые сооружения построены с учетом золотого сечения и пропорций Фибоначчи, чтобы создать гармоничный и впечатляющий вид.
Возможно, вы удивитесь, но золотое сечение и пропорции Фибоначчи можно найти не только в искусстве, но и в природе. Вы когда-нибудь замечали, как растут листья на ветке, или как расположены лепестки на цветке? Это не случайно, а следствие математического закона, который определяет оптимальное распределение пространства и ресурсов. Не правда ли, это удивительно?
Тектоника - это принцип, который подразумевает, что форма определяется конструкцией. При этом конструкция становится средством формообразования с композиционными и пластическими свойствами. Тектоника позволяет выразить в форме вещи ее внутреннюю сущность, ее функциональное и технологическое назначение, ее прочность и устойчивость. Тектоника также способствует экономии материалов и энергии, а также упрощению производства и сборки вещи.
Другой распространенный метод — перспектива, которая также основана на математических принципах для создания иллюзии трехмерности на плоском холсте. Итальянский художник и архитектор эпохи Проторенессанса Джотто ди Бондоне был одним из первых, кто начал применять законы перспективы в работах.
Итальянский художник и архитектор эпохи Проторенессанса Джотто ди Бондоне был одним из первых, кто начал применять законы перспективы в работах.
Я надеюсь, что вы не заснули от моих умных рассуждений. Или, может быть, вы уже перестали читать этот текст, потому что он вам показался слишком асимметричным? Симметрия… Что это такое? Почему мы так любим все, что симметрично? На самом деле, симметрия очень часто встречается в нашей жизни. Мы сами создаем симметричные предметы, потому что они нам нравятся. Например, здания, мебель, одежда, украшения, логотипы и т.д. Мы думаем, что симметрия придает им гармонию, порядок, красоту.
Все зависит от того, с какой точки зрения мы смотрим на вещи.
Но не думайте, что симметрия – это абсолют. Нет, симметрия – это относительное понятие. Все зависит от того, с какой точки зрения мы смотрим на вещи. Например, если мы посмотрим на человеческое тело сбоку, мы увидим, что оно не симметрично. У нас есть одно сердце, одна печень, один желудок и т.д. Но если мы посмотрим на тело спереди, мы увидим, что оно почти симметрично. У нас есть два глаза, два уха, две руки, две ноги и т.д. То же самое можно сказать о лице. Если мы проведем по нему вертикальную линию, мы увидим, что левая и правая стороны похожи, но не идентичны. У каждого из нас есть свои особенности, которые делают нас уникальными.
Но немного хаоса и уникальных черт не сделают его несовершенным. Они сделают его более очаровательным для нашего восприятия. Симметрия также широко встречается в природе. Мы можем найти ее во многих формах и проявлениях. Например, снежинки, кристаллы, падающие дождевые капли, которые имеют форму сферы, радужная оболочка мыльного пузыря, цветы, раковины, бабочки, звезды и многое другое.
Современный человек просто не в состоянии представить себе несимметричный (а значит, и нефункциональный) самолет или автомобиль. В этой связи показательны наблюдения известного летчика-испытателя, Героя Советского Союза Марка Галлая: "Я заметил, что красивая, ласкающая своими пропорциями взор машина обычно к тому же и хорошо летает. Эта, на первый взгляд, почти мистическая закономерность имеет, я думаю, свое вполне рациональное объяснение: дело, по-видимому, обстоит как раз наоборот - хорошо летающая машина начинает представляться "красивой". Эстетическое формируется под влиянием рационального".
Виды симметрии: Зеркальная, винтовая, центральная, по сдвыгу.
Симметричные и асимметричные элементы могут сочетаться в одной композиции. В этом случае она основывается на подчинении второстепенных, несимметричных частей главной симметричной форме. Такое подчинение обеспечивает визуальное равновесие всей композиции. Оно достигается, когда центральный элемент не совпадает с общей формой, а ее составляющие – совпадают, или наоборот.
Самый сложный случай – создание композиционного равновесия между элементами, у которых оси симметрии находятся в различных координатных плоскостях. Для того, чтобы сделать эти композиции гармоничными, нужно обладать глубоким чувством пропорций и знанием законов симметричного формирования.
Ритм и метр - это композиционные средства, которые часто используются в сочетании с пропорцией. Ритм - это повторение с изменениями, а метр - это повторение без изменений. Ритм и метр позволяют создавать динамичные и гармоничные формы, а также упорядочивать и структурировать пространство. Ритм и метр могут быть простыми, когда меняется одна характеристика (форма, цвет, расстояние между элементами и т.п.) и сложными, когда изменения затрагивают несколько характеристик одновременно.
Ритм и метр - это композиционные средства, которые часто используются в сочетании с пропорцией.
Основные виды ритмических рядов
Также важно, какой направленности ритм – горизонтальной или вертикальной. Развитие по вертикали упрощает композиционные задачи: обычно, изменения по вертикали сами по себе способствуют появлению зрительного завершения. А если ритм развивается по горизонтали, то возникает проблема завершения и начала композиции. Для создания простейшего метрического или ритмического ряда необходимо не менее трех-четырех элементов, образующих непрерывное ритмическое движение. Увеличение числа элементов усиливает наглядность ритма, однако при их большом количестве может возникнуть скучное однообразие.
Вероятно, из всех средств композиции ритм наиболее связан с психофизиологией восприятия, и это понятно: ведь нарушение ритмического ряда выглядит как явление явно негативное, как нарушение очень строгой закономерности. Будь то конструирование ажурной телебашни или простой вентиляционной решетки с постепенным уменьшением размеров колец и просветов, необходимо следить, чтобы ничто не нарушало закономерности ритма.
Эргономика (от греч. ergon — работа и nomos — закон) — научная теоретическая и научно-экспериментальная дисциплина, изучающая психофизиологические факторы взаимодействия человека и техники в рамках единой системы «человек-машина». Эргономика стремится минимизировать негативные воздействия условий труда на нервную систему человека и его работоспособность, а также повысить комфорт, безопасность и эффективность использования техники. Эргономика учитывает анатомические, физиологические, психологические и социальные особенности человека, а также его индивидуальные и групповые потребности.
Цвет - это не только визуальный, но и образно-ассоциативный и эмоциональный феномен. Цвет оказывает влияние на настроение, восприятие, память, внимание, мышление, поведение человека. Цветовые гармонии - это закономерности сочетания цветов, которые создают приятное, красивое и согласованное впечатление. Цветовые гармонии могут быть основаны на контрасте, аналогии, монохромии, комплементарности, триаде и т.д. Цветовая система, которую в начале XX века разработал немецкий ученый Вильгельм Оствальд, состояла из 8 цветовых оттенков, основанных на четырех основных цветах: желтом, ультрамариновом синем, красном и зеленом (цвете морской волны). Из этих цветов получался цветовой круг из 24 цветов – цветовой круг Оствальда, где он искал математические принципы цветовой гармонии, основываясь на геометрических соотношениях между цветами внутри круга. По мнению Оствальда, гармоничными были все цвета, в которых присутствовало одинаковое количество белого или черного цвета, а среди тех, в которых такого количества не было, наибольшую гармонию имели те, которые находились в цветовом круге на равном расстоянии друг от друга.
Симметрия, пропорции, ритм, контраст, цельность - составляющие гармонии объективно связаны с природой, с движением и развитием материи. Наши эстетические взгляды тесно связаны с этими понятиями. Однако, социальное существование человека в разные эпохи под разным углом зрения рассматривало категории гармонии и это определяло их роль в общественной жизни и в искусстве. Представление о прекрасном эволюционировало, изменялось. Гармония стала рассматриваться не как количественный, а как качественный принцип, соединяя физическое и духовное начала. Если древние греки считали прекрасным только упорядоченное и всякое нарушение симметрии и пропорций находили безобразным, то в последующие эпохи проявления прекрасного стали обнаруживать и в нарушении порядка, в диссонансах, в кажущейся дисгармонии, ибо они свойственны жизни и, следовательно, являются частью какой-то иной гармонической системы, в которой обретают логику и смысл. «Прекрасное - есть жизнь»,- писал Чернышевский. И она не стоит на месте. Появления гармонии в природе и жизни шире, чем это может охватить любой канон, любая гармоническая система. И человечество никогда не перестанет искать новых гармонических отношений, сочетаний, искать проявления иных гермонических закономерностей. Однако, это не значит, что классическая гармония потеряла свое значение. То, что уже открыто, те найденные закономерности, их математическое обоснование, остаются вечным достоянием человечества, из которого будут черпать все последующие поколения.
Геометрические Формы.
Вы, наверное, знаете, что геометрия - это наука о формах и их свойствах. Вы, наверное, помните, как в школе рисовали окружности, треугольники, квадраты и другие фигуры. Думаете, что это было скучно и бесполезно. Знайте, что геометрические формы - это не только учебный материал, но и художественный инструмент. Многие художники и инженеры дизайнеры используют геометрические формы, такие как окружности, треугольники, квадраты и спирали, для создания уникальных композиций и узнаваемого стиля. Эти формы часто имеют математическую основу и помогают добиться определенного эстетического эффекта. Выбирают определенные формы, чтобы передать определенное настроение, идею или эмоцию. Например, окружность - это символ совершенства, целостности, единства и бесконечности. Треугольник - это символ стабильности, силы, направления и динамики. Квадрат - это символ порядка, равновесия, симметрии и рациональности. Он часто используется в геометрическом абстракционизме, таком как кубизм, и в минимализме, таком как супрематизм.
Василий Кандинский — "Композиция VIII", 1923 год
Я лично очень люблю геометрические формы в искусстве инжиниринге, потому что они создают ощущение порядка и симметрии. Но не думайте, что это означает скучность или однообразие. Наоборот, геометрические формы могут быть очень разнообразными и творческими, если их комбинировать и изменять. Например, посмотрите на эти работы художника Василия Кандинского, который считается одним из основоположников абстрактного искусства. Он использовал простые геометрические фигуры, такие как окружности, треугольники и квадраты, но придал им разные цвета, размеры и положения, создавая уникальные композиции, полные динамики и эмоций.
Фракталы.
Фракталы - это сложные геометрические фигуры, которые могут быть построены с использованием математических алгоритмов. Они часто встречаются в современном искусстве и могут создавать потрясающие визуальные образы с бесконечной детализацией.
И вы не поверите, но они везде вокруг нас. В природе, в искусстве, в технологии, в музыке, в литературе. Да, да, вы не ослышались. Фракталы есть и в литературе.
А сейчас давайте определим, что же такое фракталы. Слово «фрактал» происходит от латинского «fractus», что означает «сломанный» или «раздробленный». И это очень точно отражает суть фракталов. Фрактал - это геометрическая фигура, которая состоит из множества частей, каждая из которых является уменьшенной копией целого. То есть, если вы возьмете фрактал и разобьете его на кусочки, то каждый кусочек будет выглядеть так же, как исходный фрактал, только меньше. И так можно продолжать до бесконечности, получая все более мелкие и мелкие копии. Это называется самоподобием, и это одна из основных характеристик фракталов.
Но самоподобие не единственное, что делает фракталы такими уникальными. Еще одна важная особенность фракталов - это их размерность. Вы, наверное, знаете, что в обычной геометрии есть три размерности: длина, ширина и высота. И вы, наверное, знаете, что линия имеет одну размерность, плоскость - две, а тело - три. Но что, если я вам скажу, что есть фигуры, которые имеют нецелые размерности? То есть, они не линии, не плоскости, и не тела, а что-то среднее. Например, 1,5 или 2,7. Звучит странно, не правда ли? Но это именно так. Фракталы имеют фрактальную размерность, которая может быть любым дробным числом.
Фракталы - это сложные геометрические фигуры, которые могут быть построены с использованием математических алгоритмов.
Но откуда они взялись и как их можно построить? Для этого нам нужно обратиться к истории математики и встретиться с одним из ее гениев - Бенуа Мандельбротом.
Бенуа Мандельброт - это французский математик, который родился в 1924 году в Польше, а потом переехал во Францию, а затем в США. Он известен тем, что ввел термин «фрактал» и разработал теорию фрактальной геометрии.
Мандельброт был очень любознателен и интересовался разными явлениями, которые не поддавались обычной математике. Он заметил, что многие объекты в природе имеют сложную и неправильную форму, которая не может быть описана простыми уравнениями. Например, облака, горы, берега моря, деревья, листья, сосуды, легкие и т.д. Он задался вопросом: можно ли создать математическую модель, которая бы могла описать эти объекты?
Для этого он начал изучать разные математические конструкции, которые имели свойство самоподобия. Одна из них - это множество Кантора, которое было открыто в 1883 году немецким математиком Георгом Кантором. Множество Кантора - это пример фрактала, который можно построить следующим образом:
Возьмите отрезок единичной длины и разделите его на три равные части.
Удалите среднюю часть, оставив два отрезка длины 1/3.
Повторите этот процесс для каждого из оставшихся отрезков, разделяя их на три части и удаляя среднюю.
Продолжайте этот процесс до бесконечности.
В результате вы получите множество Кантора, которое состоит из бесконечного количества точек, расположенных на отрезке единичной длины. Это множество имеет несколько удивительных свойств:
Оно имеет нулевую площадь, то есть оно не занимает никакого места на плоскости.
Оно имеет бесконечную длину, то есть если вы попытаетесь измерить его, вы никогда не закончите.
Оно имеет фрактальную размерность, равную логарифму 2 по основанию 3, то есть примерно 0,63. Это означает, что оно не является ни линией, ни плоскостью, а что-то между ними.
Оно имеет свойство самоподобия, то есть если вы возьмете любой его кусочек, он будет выглядеть так же, как и целое множество.
Мандельброт был восхищен множеством Кантора и другими подобными конструкциями, которые называются множествами Жюлиа, множествами Фату, кривыми Коха, треугольниками Серпинского и т.д.
Треугольник Серпинского
Он понял, что эти фракталы могут быть использованы для моделирования разных объектов в природе, которые имеют сложную и неправильную форму. Он также понял, что эти фракталы могут быть созданы с помощью компьютера, который может выполнять бесконечные итерации и рисовать полученные фигуры на экране.
Одним из самых известных фракталов, которые Мандельброт создал с помощью компьютера, является множество Мандельброта. Это множество состоит из точек на комплексной плоскости, которые удовлетворяют определенному условию. Комплексная плоскость - это система координат, в которой каждая точка имеет две составляющие: действительную и мнимую. Действительная составляющая соответствует горизонтальной оси, а мнимая - вертикальной. Комплексные числа - это числа, которые имеют действительную и мнимую часть. Например, 2 + 3i, где i - это мнимая единица, такая, что i^2 = -1.
Множество Мандельброта определяется следующим образом:
Возьмите любое комплексное число c и начните с нуля: z_0 = 0.
Вычислите следующее число по формуле: z_1 = z_0^2 + c.
Повторите этот процесс, используя предыдущее число: z_2 = z_1^2 + c, z_3 = z_2^2 + c и т.д.
Если последовательность z_n не стремится к бесконечности, то число c принадлежит множеству Мандельброта. Если же последовательность z_n уходит в бесконечность, то число c не принадлежит множеству Мандельброта.
Множество Мандельброта - это множество всех таких чисел c, которые не приводят к бесконечности. Если вы нарисуете это множество на комплексной плоскости, вы получите очень красивую и сложную фигуру, которая имеет форму сердца с бесконечным количеством усиков, изгибов и дырок. Эта фигура имеет свойство самоподобия, то есть если вы увеличите любую ее часть, вы увидите, что она повторяет форму целого множества, но с некоторыми изменениями. Эта фигура также имеет фрактальную размерность, которая равна примерно 2, несмотря на то, что она нарисована на плоскости.
Множество Мандельброта - это один из самых известных и красивых фракталов, который поражает своей сложностью и гармонией.
Оно стало символом фрактальной геометрии и вдохновило многих художников на создание своих произведений, используя фракталы как основу или элемент дизайна. Например, вы можете увидеть фракталы в работах таких художников, как Макс Эрнст, Сальвадор Дали, Эшер, Кинкейд, Хардинг и других. Они использовали фракталы для создания абстрактных, сюрреалистических или реалистических изображений, которые отражают их внутренний мир, фантазии или восприятие реальности.
Но фракталы не только в живописи. Они также присутствуют в других видах искусства, таких как скульптура, архитектура, музыка, литература и даже кино. Да, вы не ошиблись, фракталы есть и в кино. Вы когда-нибудь смотрели фильм «Матрица»? Если да, то вы наверняка помните сцену, когда главный герой Нео видит мир в виде зеленых цифр, которые складываются в разные формы. Это тоже фракталы. Или, например, фильм «Аватар», в котором показана планета Пандора с ее удивительной флорой и фауной. Вы заметили, как многие растения и животные имеют фрактальную структуру? Это не случайно. Это результат того, что создатели фильма использовали фракталы для генерации компьютерной графики, которая выглядит очень реалистично и красиво.
Вы когда-нибудь смотрели фильм «Матрица»? Если да, то вы наверняка помните сцену, когда главный герой Нео видит мир в виде зеленых цифр, которые складываются в разные формы.
Вы уже захотели попробовать сами создать что-то с помощью математики и искусства? Тогда я рекомендую вам посетить online fractal creator, где вы можете научиться делать фракталы с помощью простых алгоритмов. Фракталы - это удивительные геометрические фигуры, которые повторяются на разных масштабах и имеют бесконечную детализацию. Они могут выглядеть как снежинки, деревья, облака или даже галактики.
ПО Ultra Fractal предлагает уникальный подход к созданию 2D-фракталов с использованием тысяч видов фракталов и алгоритмов окрашивания, а также с 64-битной поддержкой для глубокого масштабирования и возможностью комбинирования нескольких фракталов в одно изображение с помощью нескольких слоев, добавляя цвета с помощью градиентов. Не обязательно быть математиком, чтобы работать с этим инструментом, поскольку он предоставляет интуитивные средства для достижения желаемого результата.
Множество Мандельброта является одним из самых известных фракталов, в том числе за пределами математики, благодаря своим цветным визуализациям.
Фрактальные структуры могут сделать изделия неповторимыми и придать им оригинальный облик.
Кодирование, Инженерные Решения и Интерактивное Искусство.
Современные художники и программисты все чаще объединяют математику и искусство, создавая интерактивные инсталляции и алгоритмические произведения, которые реагируют на зрителя. Программирование и математические расчеты позволяют им создавать удивительные перформансы и визуальные эффекты.
Например, проект "Rain Room" дизайн-студии Random International использует код и датчики, чтобы создать впечатляющую арт-инсталляцию, позволяющую посетителям перемещаться в помещении, избегая дождя. "Комната дождя" представляет собой уникальную комнату площадью около 100 квадратных метров, оснащенную сотнями форсунок на потолке, из которых идет искусственный дождь объемом 1000 литров в минуту. Несмотря на обильный ливень, люди могут свободно проходить по комнате, не промокая. Это возможно благодаря использованию 3D камер, которые распознают человеческий контур и отключают форсунки над ним. Кроме того, установка Rain Room включает в себя литьевые плитки, электромагнитные клапаны, регуляторы давления, трехмерные камеры слежения, деревянные рамки, стальные балки и гидравлическую систему управления.
Проект "Rain Room" дизайн-студии Random International
Еще один пример - Morphogenetic Creations, компьютерная выставка цифрового искусства с использованием программируемых алгоритмов Энди Ломаса, в Центре искусств Watermans, Лондон. Произведения, созданные с использованием математических алгоритмов и программирования, привносят в искусство цифровую интерактивность и динамику.
Еще один пример - Morphogenetic Creations, компьютерная выставка цифрового искусства с использованием программируемых алгоритмов Энди Ломаса, в Центре искусств Watermans, Лондон.
Таким образом, математические вычисления и художественные приемы тесно переплетаются в мире искусства, открывая новые возможности для творческого выражения и вдохновляя художников и инженеров на создание удивительных произведений.
Конечно, вы можете подумать, что инжиниринг, математика и искусство - это совершенно разные вещи, и что у них нет ничего общего. Но это не так. На самом деле - это две стороны одной медали, которая называется креативность. Да, да, не удивляйтесь, математика тоже может быть креативной, если вы знаете, как ее применять. И наоборот, искусство тоже может быть логичным, если вы знаете, как его анализировать. Так что не спешите делить мир на черное и белое, а попробуйте увидеть все цвета радуги.
Когда мы видим какой-то предмет, мы обычно обращаем внимание на его форму, цвет, текстуру, материал, функциональность. Но за этими внешними характеристиками скрывается целый процесс инженерного проектирования, который учитывает множество факторов, связанных с жизненным циклом вещи: от ее производства до утилизации. Инженерный дизайн - это не просто создание вещей, а создание вещей с умом.
Инженерный дизайн основывается на комплексном системном подходе к проектированию каждой вещи. Это значит, что вещь рассматривается не изолированно, а в контексте ее взаимодействия с другими вещами, с человеком, с окружающей средой. Каждая вещь должна удовлетворять не только требованиям полезности и красоты, но и всем аспектам ее функционирования: эргономике, нагрузкам, транспортировке, упаковке, размещению, уходу, включению и т.д. Кроме того, каждая вещь должна соответствовать вкусам множества людей, так как инженерный дизайн создает предметы, производимые промышленно в больших количествах на станках.
Исследование подтвердило гипотезу о том, что природные законы влияют на проектирование объектов (предметов) с рациональной и эстетичной структурой. Если при создании не соблюдать систематические законы, то это негативно повлияет на психоэмоциональное восприятие человека, и, в результате, у него не будет почти никакого интереса к спроектированному объекту (предмету), что приведет к отрицательному спросу.
Вы, наверное, думаете, что я какой-то сумасшедший фанат математики, который видит ее во всем и везде. Но это не так. Я просто люблю инженерное дело и искусство и хочу показать вам, как оно связано с математикой, и как они взаимодействуют друг с другом. Не говорю, что вы должны стать инженерами или художниками, чтобы наслаждаться этими науками. Я говорю, что вы должны быть открытыми и любознательными, чтобы расширить свой кругозор и узнать что-то новое. И, конечно, чтобы получить удовольствие от процесса.