Горячее
Лучшее
Свежее
Подписки
Сообщества
Блоги
Эксперты
Войти
Забыли пароль?
или продолжите с
Создать аккаунт
Я хочу получать рассылки с лучшими постами за неделю
или
Восстановление пароля
Восстановление пароля
Получить код в Telegram
Войти с Яндекс ID Войти через VK ID
Создавая аккаунт, я соглашаюсь с правилами Пикабу и даю согласие на обработку персональных данных.
ПромокодыРаботаКурсыРекламаИгрыПополнение Steam
Пикабу Игры +1000 бесплатных онлайн игр Открой для себя волшебный мир реальной рыбалки. Лови реальную рыбу на реальных водоемах! Исследуй новые рыболовные места и заполучи заветный трофей.

Реальная Рыбалка

Симуляторы, Мультиплеер, Спорт

Играть

Топ прошлой недели

  • AlexKud AlexKud 38 постов
  • Animalrescueed Animalrescueed 36 постов
  • Oskanov Oskanov 7 постов
Посмотреть весь топ

Лучшие посты недели

Рассылка Пикабу: отправляем самые рейтинговые материалы за 7 дней 🔥

Нажимая кнопку «Подписаться на рассылку», я соглашаюсь с Правилами Пикабу и даю согласие на обработку персональных данных.

Спасибо, что подписались!
Пожалуйста, проверьте почту 😊

Помощь Кодекс Пикабу Команда Пикабу Моб. приложение
Правила соцсети О рекомендациях О компании
Промокоды Биг Гик Промокоды Lamoda Промокоды МВидео Промокоды Яндекс Директ Промокоды Отелло Промокоды Aroma Butik Промокоды Яндекс Путешествия Постила Футбол сегодня
0 просмотренных постов скрыто
Daro4ka
Daro4ka
2 года назад

Будущее уже рядом⁠⁠

[моё] Зелёная энергия Ветрогенератор Видео Вертикальное видео
16
4608
alenden
alenden
2 года назад
Истории из жизни

Ответ на пост «Тесла»⁠⁠3

У нас в СНТ есть мужичок, как узнал позже, погоняло у него - "Илонмаск": как ни проезжаю мимо, его старики на участке впахивают, а он все с проводками бегает, вертушки ставит, солнечные батареи на рогатины монтирует. Однажды разговорились - хочу, грит, добиться КПД близкий к 100%, чтобы от атмосферы и солнца на все нужды хватало, да ещё и про запас заряжало.

И однажды получилось-таки, получить ему гигават энергии - во время грозы молния жахнула точно в его домик, благо только крыша успела сгореть.

Последние пару лет наблюдаю, как он колдует над чем-то на пустыре рядом с участком, что-то новенькое готовит..

Ответ на пост «Тесла» Электричество, Не получилось, СНТ, Зелёная энергия, Ответ на пост
[моё] Электричество Не получилось СНТ Зелёная энергия Ответ на пост
171
233
scrbkv
2 года назад

Ответ на пост «Я такой эко»⁠⁠1

Пару слов о "зеленом" транспорте.
КПД бензинового двигателя около 30%. КПД дизельного двигателя с турбиной не более 55%. Это в наиболее мягком режиме эксплуатации - на стабильных оборотах, т.е. на длительных перегонах. В городе очевидно КПД снижается, иногда кратно.
КПД электродвигателя около 90-95%. Системы рекуперации позволяют не терять кучу энергии в условиях городской езды.
Электрический КПД ТЭЦ 30-35%, плюс куча тепла на отопление, суммарный КПД около 70%.
Итого, с учётом потерь при передаче электричества в 10%, имеем КПД электромобиля, равный 0.9×0.9×0.35=0.2835, т.е. около 28%. Без учёта дополнительно вырабатываемого тепла на ТЭЦ. Практически как в бензиновом двигателе. С учётом вырабатываемого на ТЭЦ тепла получаем 0.9×0.9×0.7=0.567, т.е. около 57%. Выше, чем в любом автомобильном ДВС.
Кроме того, на электростанциях устанавливают системы фильтрации и очистки, которые (в нормальных условиях) сводят вредные выбросы практически к нулю. В автомобилях же зачастую выпиливают даже химические катализаторы в выхлопной системе.
Да, производство аккумуляторов вредит экологии. Да, переработка аккумуляторов ещё недостаточно развита. Но не нужно говорить, что электромобили вредят экологии больше, чем бензиновые. Они вредят иначе, и уровень вреда во многом зависит как от норм производства компонентов, так и от сознательности водителей.

Мемы Зелёная энергия Экология Картинки Повтор Ответ на пост Текст
272
7778
QwertyQwarty
QwertyQwarty
2 года назад

Я такой эко⁠⁠1

Я такой эко
Мемы Зелёная энергия Экология Картинки Повтор Зашакалено
960
29
DELETED
2 года назад
Энергетика
Серия Настоящая "зелёная" энергетика (атом, термояд)

Легчайший газ, незаменимый реагент и трудное топливо: все, что вы хотели знать про водородную экономику, но боялись спросить⁠⁠

В научно-популярной литературе за водородом закрепилась слава основы экономики будущего. Хотя в промышленности его активно используют едва ли не больше века. Он незаменим в нефтехимии, производстве удобрений и синтетического топлива, а также в энергетике. Но не в качестве энергоносителя — эту роль водороду пока только обещают. Naked Science рассказывает, насколько важное, хоть и не слишком заметное, место занимает в жизни каждого землянина легчайший газ и какое у него будущее.

Легчайший газ, незаменимый реагент и трудное топливо: все, что вы хотели знать про водородную экономику, но боялись спросить Россия, Водород, Мирный атом, Зелёная энергия, Длиннопост

Водород — первый элемент в периодической таблице. Его атом состоит всего из одного протона и одного электрона (самый распространенный из изотопов, еще есть дейтерий и протий, у которых есть дополнительно один и два нейтрона в ядре соответственно). При нуле градусов Цельсия газообразный водород имеет плотность всего около 90 граммов на кубический метр, а в сжиженном состоянии (минус 253 градуса Цельсия) — 70 килограммов на кубический метр. Это самый распространенный химический элемент во Вселенной (порядка 88,6 процента от всех атомов). На фото: в 2020 году Олимпийский огонь в Токио впервые питался от полностью «зеленого» водорода вместо природного газа, что стало одним из символов будущего / ©Associated Press

В чистом виде водород удалось получить ко второй половине XVII века воздействием кислот на металлы. Бесцветный газ без запаха и вкуса легко сгорал с характерным щелчком, в результате этой химической реакции образовывалась вода. За такое очевидное свойство газ и получил свое название. К 1930-м годам большинство свойств водорода уже были известны ученым. Благодаря его простоте — атом H состоит лишь из протона и электрона — с его помощью удалось изучить множество явлений в мире элементарных частиц. Однако и за рамками теоретических исследований у водорода нашлось немало применений.

До конца XIX века водород в чистом виде либо в смеси с другими газами использовали как топливо для осветительных приборов, экспериментальных двигателей внутреннего сгорания и наполняли им воздушные шары. Последняя роль принесла ему всемирную известность благодаря расцвету дирижаблей. Но по-настоящему незаменимым для мировой экономики водород стал в результате работы двух великих немецких химиков Фрица Габера и Карла Боша. Созданный ими химический процесс позволял в промышленных масштабах получать аммиак — основное сырье для производства удобрений.

Газ, без которого не было бы современного мира

Несмотря на то что в земной атмосфере азот трудно назвать дефицитным, этот обязательный компонент биологических молекул большинству живых существ недоступен: они не способны его усваивать в газообразном виде. В естественных условиях биосфера пополняется соединениями азота в основном благодаря почвенным бактериям. Но до верхних ступеней пищевой цепочки доходит лишь малая их часть. Поэтому без удобрений сельское хозяйство просто не способно обеспечить сколь-нибудь развитое общество необходимым количеством калорий.

Пока на помощь человечеству не пришло изобретение Габера, усовершенствованное Бошем, сырьем для азотных удобрений служили гуано (останки помета птиц) и природный нитрат натрия (натриевая, или чилийская, селитра). С этими ресурсами — две проблемы: во-первых, их запасы конечны, да и богатые месторождения есть не везде; а во-вторых, добывать их приходилось фактически рабским трудом в нечеловеческих условиях (рабочие руки очень быстро заканчивались). Все возрастающий спрос на удобрения во время индустриализации резко поднял важность и гуано, и чилийской селитры. Результатом стали даже несколько войн из-за древнего птичьего помета (например, Вторая тихоокеанская война 1879-1883 годов, в ходе которой Чили силой забрала месторождения гуано у Боливии).

Зато в 1910 году мир изменился навсегда. Химическая промышленность получила экономически выгодный способ выработки аммиака. Для этого требуется азот, водород, катализатор, а также высокие температура и давление. С тех пор вклад процесса Габера в процветание человечества можно назвать едва ли не определяющим для нынешней цивилизации. По некоторым оценкам, до половины атомов азота в телах жителей развитых стран попали в пищевую цепочку исключительно благодаря промышленно синтезированным азотным удобрениям. Не менее двух пятых современного человечества без этого изобретения не существовало бы. Естественно, чудо не бесплатно: на производство аммиака уходит около двух процентов всей потребляемой в мире первичной энергии.

Легчайший газ, незаменимый реагент и трудное топливо: все, что вы хотели знать про водородную экономику, но боялись спросить Россия, Водород, Мирный атом, Зелёная энергия, Длиннопост

Упрощенная схема современного химического завода, применяющего процесс Габера—Боша для производства аммиака. Фиолетово-розовый овал — первичный риформер, на который подается метан (CH4) и вода (H2O), здесь происходит частичное разложение природного газа на молекулярный водород (H2) и оксид углерода (CO). Затем в систему подается очищенный воздух (кислород и азот), которые во вторичном риформере (горчичный овал) смешиваются с продуктами первичного и помогают дополнительно разложить метан. Далее смесь поступает в реактор, где при помощи катализатора и с добавлением воды метан окончательно расщепляется, а угарный газ окисляется до углекислого. На выходе получается синтез-газ из азота, водорода и CO2, его сжимают и отправляют на очистку от углекислоты в скруббер. После него азот и водород уже снова под давлением дополнительно нагреваются и идут непосредственно в реактор производства аммиака (второй горчичный овал). Выход продукта не стопроцентный, поэтому непрореагировавшие азот с водородом после охлаждения и сепарации аммиака снова поступают в реактор / ©Francis E Williams, Wikimedia

Обогащение нефтепродуктов

Нефтехимическая отрасль — второй основной потребитель водорода в мире. Он используется для целого ряда процессов, позволяющих повышать качество нефтепродуктов и природного газа. В их числе — гидроочистка, гидрокрекинг, гидродеалкилирование. Если не вдаваться в детали, то все эти процедуры представляют собой ту или иную реализацию гидрогенолиза. То есть расщепления в присутствии водорода связей между двумя атомами углерода либо атомом углерода и примесями. В качестве последних, например, выступают сера или соединения азота. Они не только становятся сильными загрязнителями при сгорании, но и отравляют катализаторы на последующих этапах нефтепереработки. Можно смело сказать, что без использования водорода такого качества и разнообразия углеводородов никогда бы не получилось.

И многое-многое другое

Оставшиеся после нефтепереработки и производства аммиака 10 процентов всего потребляемого человечеством водорода уходят почти полностью на химическую и пищевую промышленность. В первую очередь — для гидрирования. Это реакция присоединения водорода к той или иной молекуле. Если гидрировать углекислый газ, получится метанол. А он, в свою очередь, чрезвычайно востребованное сырье для производства полимеров (точнее, из него делают формальдегид, необходимый для этого) и широко используемая добавка в бензин. К тому же метанол сам по себе — перспективное экологичное топливо для ДВС. Сейчас для этого предназначения его производят в основном из биологического сырья, но в перспективе предпочтительнее техпроцесс на основе водорода.

Еще один продукт, который немыслим без водорода, — маргарин. Его делают из смеси растительных жиров (масел), которые сгущаются (насыщаются) гидрированием. В последние годы на волне борьбы с трансжирами эта сфера использования водорода плавно сходит на нет.

Остальные области применения водорода потребляют менее пяти процентов от общего его производства в мире. Среди них одна из наиболее любопытных, но при этом малоизвестных — в качестве теплоносителя систем охлаждения мощных электрогенераторов (от 60 мегаватт и выше). А самая зрелищная — как ракетное топливо, например в носителях Delta IV Heavy, Space Launch System и «Чанчжэн-5». Кроме того, сравнительно много водорода потребляет микроэлектронная индустрия, использующая его для стабилизации аморфного кремния, производство и обработка особо чистых металлов, а также фармацевтика. Эти ниши по объемам потребляемого водорода незначительны, но их роль в современной экономике колоссальна.

Легчайший газ, незаменимый реагент и трудное топливо: все, что вы хотели знать про водородную экономику, но боялись спросить Россия, Водород, Мирный атом, Зелёная энергия, Длиннопост

В космонавтике и ракетостроении водород нашел свое место и в качестве горючего, и в качестве энергоносителя. Кислород-водородные двигатели «Спейс шаттла» отправили в космос 355 астронавтов из 16 стран (многих по несколько раз) и почти 1600 тонн грузов, включая львиную долю конструкционных элементов и модулей МКС. Аналогичная топливная пара использовалась или используется на некоторых американских, индийских, японских и китайских ракетах, а также в советской «Энергии». Для выработки электричества водородные топливные элементы применялись в программе «Аполлон» и разрабатывались для «Бурана». На фото: упрощенная версия двигателя «Спейс шаттла» (SSME, RS-25) — AR-22 — в ходе испытаний на возможность быстрого повторного использования для проекта космоплана XS-1 / ©Aerojet Rocketdyne

Потенциальный энергоноситель будущего

Получается, водород уже давно и прочно закрепился в мировой экономике и промышленности. В основном, конечно, как сырье для химических процессов. Но у него есть огромный потенциал в качестве энергоносителя и накопителя энергии. Килограмм водорода при сжигании в идеальных условиях и без учета потерь высвободит более 140 мегаджоулей энергии. Для сравнения: килограмм дизельного топлива содержит около 45 мегаджоулей, бензина — 46, а природного газа (метана) — 53,6 мегаджоуля. При этом водород можно получать с помощью электричества из полностью возобновляемых источников энергии. А при его горении не возникает вредных веществ — только водяной пар. Некоторые количества оксидов азота в выхлопе водородного ДВС возможны, если смесь с воздухом не стехиометрическая (оптимальная для сгорания топлива).

Эти два свойства водорода: высокая удельная энергия и потенциальная «зеленость» — не дают покоя инженерам и ученым, стремящимся сделать мир лучше. Идея водородной экономики, то есть такого уклада энергетики и промышленности, в котором роль основного энергоносителя выполняет водород, впервые была сформулирована еще в 1923 году британским ученым Джоном Холдейном (J. B. S. Haldane). Но до 1970-х развития она не получала и лишь к 1990-м оформилась в виде хорошо проработанной концепции.

Одна из ключевых ролей водорода в ней — накопитель энергии: когда генерация избыточна, ее направляют на выработку газа, в пики потребления его расходуют. Нынешнюю экономику в каком-то смысле можно назвать водородной, ведь этот газ уже играет исключительно важную роль. Однако он используется почти полностью как реагент для химических процессов и почти не задействован в энергетике. В перспективе же требуется уйти от ископаемого топлива, чтобы снизить нагрузку на окружающую среду, минимизировать выбросы парниковых газов и микрочастиц сажи.

Водород имеет все шансы заместить углеводороды в тех отраслях, где не справится одно лишь зеленое электричество: там, где энергоноситель трудно заменим, — и сделать более экологичными критически важные высокотехнологичные отрасли вроде микроэлектроники. Например, в металлургии, производстве цемента и на транспорте, в первую очередь грузовом наземном и водном. Перед этим придется решить несколько инженерных проблем. Так, ни один современный массовый двигатель внутреннего сгорания не может работать на чистом водороде. У этого газа низкая энергетическая плотность (количество энергии в литре объема), поэтому через камеру сгорания его необходимо нагнетать больше (втрое больше, чем метана для выполнения той же работы). Кроме того, водород горит с очень высокой скоростью, на грани детонации — с этим его свойством, кстати, связан простейший способ его обнаружения в продуктах реакции на уроках физики: он вспыхивает с характерным хлопком. Сейчас идут разработки многотопливных двигателей, способных в числе прочего работать на чистом водороде.

Альтернатива прямому сжиганию — топливные элементы, вырабатывающие электричество из водорода и кислорода воздуха. Это такие электрохимические ячейки, в которых горючее окисляется без пламени, только за счет присутствия катализатора. Но их эффективность пока едва превышает 60 процентов, а стоимость высока, плюс водород должен быть максимально чистым, иначе малейшие примеси быстро отравят катализатор. Поэтому в качестве первого этапа постепенного перехода от углеродной экономики к водородной применяется добавление этого газа в метан. Получившуюся смесь можно без радикальных изменений в существующем оборудовании использовать как газомоторное топливо, а также для отопления, приготовления пищи и выработки электричества.

Легчайший газ, незаменимый реагент и трудное топливо: все, что вы хотели знать про водородную экономику, но боялись спросить Россия, Водород, Мирный атом, Зелёная энергия, Длиннопост

Топливные элементы подкупают своей простотой и высочайшим теоретическим КПД (более 90 процентов). Как концептуально, так и в изготовлении — их буквально можно сделать дома из доступных каждому материалов. Однако эффективность такого изделия будет весьма скромной. Для промышленного применения требуются дорогие катализаторы из металлов платиновой группы и немало труда исследователей, которые ищут оптимальную их конфигурацию. Массово производимые топливные элементы едва преодолели порог 60 процентов КПД и стоят очень дорого. Поэтому тепловые ДВС, пусть и неспособные преодолеть «проклятье цикла Карно» (даже в теории — не более 44 процентов КПД), все равно у них выигрывают. На фото: водородный топливный элемент из набора для образовательных игр выходной мощностью 0,27 ватта и стоимостью порядка 280 долларов / ©Horizon Educational

Такое, безусловно, «половинчатое» решение лишь незначительно озеленяет промышленность, частично снижая ее углеродный след и выбросы других загрязнений в атмосферу. Тем не менее этот план неплохо сработает в том случае, если источник водорода сам по себе возобновляемый и не повышает содержание углекислого газа в природе.

«Серо-буро-малиновый» водород

Чтобы просто и легко различать водород по источнику энергии для его выработки или непосредственно техпроцессу, придумали схему цветового кодирования. По идее она должна сделать определение «экологичности» и «безуглеродности» энергоносителя удобнее, однако существующих и перспективных промышленных способов получения водорода довольно много. Так что в результате образовалась целая палитра.

Зеленый. Наиболее дружелюбный по отношению к окружающей среде, обладает самым незначительным углеродным следом (даже если считать выбросы в ходе производства оборудования). Водород в этом случае получают путем электролиза воды, а необходимую энергию поставляют возобновляемые источники — ветряки, солнечные панели, гидро-, приливные и геотермальные электростанции. Главная проблема такого водорода заключается в его высокой стоимости, из-за низкой эффективности электролиза (60-80 процентов), энергозатрат (на килограмм продукта нужно потратить порядка 50 киловатт-часов электричества) и дороговизны зеленых генераторов. На этот метод приходится меньше пяти процентов всего производимого водорода. Существенный плюс электролиза — на выходе получается газ без примесей, любые другие методы требуют дополнительной очистки.

Серый. Самый широко используемый метод получения водорода (свыше половины всех объемов в мире) — паровая конверсия (риформинг) метана. По сути, это первый этап процесса Габера—Боша. В результате атмосфера пополняется изрядными количествами углекислоты, а также метана и угарного газа (из-за утечек). Такой водород невероятно дешев, ни один другой метод не может соревноваться с ним по цене. Если применяется система улавливания углекислого газа (CCS) на выходе из установки, то получается голубой водород. Он чуть более дружелюбен к окружающей среде (улавливается примерно 60 процентов углекислого газа), но цена возрастает вдвое.

Черный и коричневый. Старейший и по-прежнему массовый (порядка трети от всех объемов в мире) способ промышленной выработки водорода — газификация угля. В результате получается синтез-газ (генераторный газ) — смесь монооксида углерода, водорода, углекислого газа, метана и водяного пара. Несмотря на меньшую продуктивность по водороду, чем в результате риформинга метана, газификация угля используется в тех регионах, где его в избытке. Процесс позволяет получать сразу несколько видов промежуточного сырья для химической промышленности, чем и удобен.

Бирюзовый. Один из самых многообещающих методов — пиролиз метана. Технологий множество, в лабораториях и на небольших производствах разные их вариации показали себя отлично. В ближайшие годы должен пройти проверку более крупными масштабами. Среди неоспоримых плюсов — практически отсутствующие выбросы парниковых газов и привлекательная расчетная стоимость. А углерод на выходе получается в твердой форме, так что его можно либо пустить на изготовление нанотрубок, либо продать (что повышает экономику процесса). Но большую часть все равно придется где-то захоронить, потому что при массовом производстве бирюзового водорода такие объемы технической сажи некуда девать. Зато твердую форму углерода прятать под землю проще, чем газ.

Оттенки красного (оранжевый, розовый, красный) — атомная энергетика, питающая электролизеры или установки термохимического разложения воды (этот вариант пока экспериментальный).

Желтый — получен путем электролиза с питанием от смешанных источников генерации (в некоторых вариантах классификации обязательно с преобладанием АЭС).

Без своего цвета — водород, получаемый как побочный продукт при производстве хлора, вырабатываемый из биомассы или с помощью ряда экспериментальных технологий.

Легчайший газ, незаменимый реагент и трудное топливо: все, что вы хотели знать про водородную экономику, но боялись спросить Россия, Водород, Мирный атом, Зелёная энергия, Длиннопост

Это может показаться неочевидным, но для производства водорода в перспективе у всех остальных цветов однозначно выигрывает зеленый. Да, его себестоимость высока, но зато установки для электролиза могут быть компактными и мобильными. Их можно установить там, где водород необходим в качестве энергоносителя или накопителя энергии. А электричество брать из местных возобновляемых источников — ветряков или солнечных панелей. Таким образом сразу нивелируются расходы на транспортировку водорода, которые существенно увеличивают его цену для потребителя. На фото: контейнерные электролизеры, питающиеся электричеством от ветряков / ©MAN Energy Solytions, H-TEC SYSTEMS

Комментируя перспективы методов производства водорода, генеральный директор ООО «Водородные технологии» АФК «Система», научный руководитель К НТИ при ИПХФ РАН Юрий Анатольевич Добровольский отметил важный нюанс:

— При взгляде на среднюю себестоимость производства водорода тем или иным способом важно учитывать, что это не окончательный ценник для потребителя. Очистка, хранение и транспортировка поднимают цену, как минимум, вдвое, а то и вчетверо. Поэтому кажущийся самым дорогим электролиз запросто может быть наиболее выгодным, если он используется прямо рядом с потребителями от местного источника электроэнергии. Промышленные процессы — паровая конверсия с улавливанием углекислого газа (голубой) и пиролиз (бирюзовый) — не могут «переехать» в каждый удаленный район или автобусный парк, а электролизер там установить можно.

Кроме того, при выборе доминирующего метода получения водорода в экономике все зависит от целеполагания. Если приоритет — экология, то любой подходящий по местным условиям метод, кроме серого, черного и коричневого, приемлем. Потому что они позволят радикально снизить нагрузку на окружающую среду от транспорта и промышленности. Что касается долгосрочного планирования (то есть, борьбы с глобальным потеплением), то необходимо минимизировать добычу и использование полезных ископаемых (при этом все равно будут выделяться парниковые газы), и электролиз становится пока безальтернативным.

Получается, что основой безуглеродной экономики может стать далеко не любой водород, а только зеленый, бирюзовый и, возможно, какой-то из красных. При этом важно учитывать, что он всегда будет вторичным энергоносителем, то есть переносить меньше энергии, чем было потрачено на его получение. Следовательно, вся промышленность и сфера потребления энергии должны стать гораздо эффективнее. К тому же придется радикально нарастить выработку электричества, чтобы покрыть те нужды, которые прежде закрывались углеводородами напрямую, в первую очередь выработку тепла.

Ложка дегтя в бочке светлого будущего

Но проблемы с водородом на его статусе вторичного энергоносителя не заканчиваются. Химические свойства самого распространенного во вселенной и легчайшего элемента превращают в настоящий кошмар его транспортировку и хранение. По этой самой причине, кстати говоря, почти весь используемый в современной промышленности водород производится прямо на месте потребления (фактически — в той же установке, где используется). А его носителем чаще всего выступает природный газ, он же метан.

Перво-наперво водород взрыво- и пожароопасен. Он легко улетучивается через мельчайшие трещины и прорехи в уплотнениях. Иногда просачивается через кристаллическую решетку материалов. Такие утечки без специального оборудования (газоанализаторов) обнаружить практически невозможно. Водород не имеет цвета и запаха, а горит невидимым пламенем, которое может приобрести окрас только в случае попадания в него посторонних примесей. Добавить одорант, как в случае с метаном, чтобы утечку можно было банально унюхать, на практике можно далеко не всегда. Любые загрязнения водорода приводят к отравлению катализаторов топливных элементов или тех промышленных установок, где он используется.

Создание отдельной водородной инфраструктуры для его хранения и транспортировки потребует существенных затрат, поскольку для работы с ним подходят далеко не все материалы: многие металлы в присутствии этого газа могут разрушаться, явление известно как «водородное охрупчивание». А требования к уплотнителям, вентилям и предохранительным клапанам жестче, чем для природного газа. Наконец, из-за наиболее низкой плотности водорода среди всех газов для его транспортировки нужно больше энергозатрат на сжатие или сжижение. Это решаемые инженерные задачи, но их необходимо учитывать.

Легчайший газ, незаменимый реагент и трудное топливо: все, что вы хотели знать про водородную экономику, но боялись спросить Россия, Водород, Мирный атом, Зелёная энергия, Длиннопост

Отдельная история — термоядерная энергетика, которая тоже основана на водороде, а точнее на его изотопах дейтерии и тритии. Исследования в этой области, безусловно, критически важны для современной физики и двигают прогресс. Но насчет практического использования управляемого термоядерного синтеза для выработки тепла и электричества оптимизм тает с каждым десятилетием все больше и больше. Слишком сложная затея оказалась, при этом еще и с не самыми ясными перспективами эффективности. На фото: горящая плазма в корейском токамаке KSTAR, наиболее яркие области — самые холодные, при температуре около 150 миллионов градусов плазма не излучает свет в видимом диапазоне / ©National Fusion Research Institute

Реальные перспективы

Самая высокая удельная энергия среди всех энергоносителей, доступных человечеству в промышленных масштабах, безусловно, делает водород очень привлекательным. Его сравнительно легко использовать в качестве накопителя энергии, а также производить с использованием возобновляемых источников энергии.

Дальнейшее развитие экономики, как Naked Science уже отмечал в материале, посвященном накопителям энергии, невозможно без радикального повышения эффективности энергетики и промышленности. Мир неуклонно движется в сторону все более глубокой переработки ресурсов, рециклинга и более полного использования первичной энергии. Параллельно с этим развиваются высокотехнологичные отрасли. Все это — сферы, где водород обязательно найдет себе место или уже давно нашел и его роль только увеличивается.

Но у водорода есть серьезные минусы, обусловленные его физическими и химическими свойствами. На пути хотя бы к частичному замещению углеводородов в качестве энергоносителей водород можно сделать зеленым — необходимые технологии разрабатываются, и даже сравнительно дешевым, если эти технологии станут широко используемыми. Но по себестоимости в масштабах всей экономики водород будет неизбежно проигрывать метану. Потому что он — вторичный энергоноситель и не может запасать больше энергии, чем было потрачено на его получение (по крайней мере, пока), особенно с учетом затрат на добычу первичной энергии (газа для пиролиза метана). Зато по сравнению с природным газом водород способен удобно накапливать энергию, синтезировать метан сложнее.

Источник

Показать полностью 6
Россия Водород Мирный атом Зелёная энергия Длиннопост
5
4
Аноним
Аноним
2 года назад

Зелёная энергетика⁠⁠

На фотографии крыша завода голландского производителя всяких консерв HAK. С Января они останавливают на 6 недель производство некоторых продуктов из-за высокой стоимости энергии.


https://hak.nl/pers/hak-last-deze-winter-productiepauze-in-w...

Зелёная энергетика Нидерланды (Голландия), Солнечная энергия, Зелёная энергия
Нидерланды (Голландия) Солнечная энергия Зелёная энергия
11
4245
SSID
SSID
3 года назад
Видеохостинг на Пикабу

Ветер дует из России...⁠⁠

Политика Санкции Зелёная энергия Ветрогенератор Видео Вертикальное видео Повтор
209
DELETED
3 года назад

«Дрова из будущего»⁠⁠

Древесина ивы может стать альтернативным источником энергии в ближайшие годы, так как ивы только предстоит вырастить.

«Дрова из будущего» Политика, Молдова, Альтернатива, Зелёная энергия, СМИ и пресса

https://tv8.md/2022/02/08/salciile-o-sursa-alternativa-de-en...

Политика Молдова Альтернатива Зелёная энергия СМИ и пресса
0
Посты не найдены
О нас
О Пикабу Контакты Реклама Сообщить об ошибке Сообщить о нарушении законодательства Отзывы и предложения Новости Пикабу Мобильное приложение RSS
Информация
Помощь Кодекс Пикабу Команда Пикабу Конфиденциальность Правила соцсети О рекомендациях О компании
Наши проекты
Блоги Работа Промокоды Игры Курсы
Партнёры
Промокоды Биг Гик Промокоды Lamoda Промокоды Мвидео Промокоды Яндекс Директ Промокоды Отелло Промокоды Aroma Butik Промокоды Яндекс Путешествия Постила Футбол сегодня
На информационном ресурсе Pikabu.ru применяются рекомендательные технологии