Решил попробовать озвучить старые НАСАвские видео про Марс. Их всего 13. Хочу озвучить весь плейлист и посмотреть, будет ли прогресс между первым и тринадцатым видео. Если будет — может, еще что-нибудь озвучу в будущем.
Пост просто о том, что наса и другие сайты публикуют очень занимательные и красивые фотки галактик, газовых скоплений, звёзд и т.д.
Лично у меня на рабочем столе компьютера стоит такая заставка, как давно? Даже не помню, около 10 лет наверно. В самом наилучшем качестве, естественно. На старом компе и старой ос и ссд, конечно притормаживало отображение при включении, но сейчас нету такого.
Но сейчас не об этом, давайте просто посмотрим на эти красивые изображения. Первое, это мне полюбившееся, которое на рабочем столе. И я немного соврал в комментарии, там разрешение фото чуток побольше..
Поехали.
Туманность Киля (Carina Nebula, NGC 3372)
"Mystic Mountain" (Мистическая Гора). Эта скалистая вершина горы, окутанная тонкими облаками, похожа на причудливый пейзаж из «Властелина колец» Толкиена.
Столпы Творения
Это изображение пары взаимодействующих галактик под названием Arp 273 было выпущено в честь 21-й годовщины запуска космического телескопа Хаббл NASA/ESA.
Широкоугольное изображение, показывающее южную часть Млечного Пути и область, где находится NGC 1672 в созвездии Золотой Рыбы (в правой части изображения).
Галактика Андромеды
Изображение шарового скопления NGC 6397
Область вокруг NGC 2525
Это компактная область звездообразования в созвездии Лебедя. Sh 2-106, или сокращенно S106
Туманность «Сердце» IC 1805
Эта пыльная область формирует звезды. Часть расползающегося комплекса молекулярных облаков, который напоминает буйного бабуина. Глаза NGC 6726, 6727, 6729 и IC 4812, рот ветится светом, излучаемым водородным газом. Слева от головы находится NGC 6723
Когда Луна садится, воздух и аэрозоли в атмосфере Земли преимущественно рассеивают синий свет, из-за чего отражающий Солнце спутник кажется красноватым, когда находится вблизи горизонта. Было сделано на острове Сонева-Фуши, Мальдивы
Популярное название для полнолуния в январе в северном полушарии — Полная Луна Волка. Снимок был сделан с помощью телеобъектива на пересеченной местности в чилийской пустыне Атакама на расстоянии около 9 миль от обсерватории Лас-Кампанас в Чили
NGC 602
Очень много всего красивого там можно найти и посмотреть, а фото той девушки не увидел, возможно, они опубликовали просто на своей странице в инсте.
Аналемма - это кривая в форме восьмёрки, которую описывает Солнце, если фотографировать его положение в одно и то же время в одном и том же месте в течение года.
Как пправило, большинство фотографий анналема выполненны способом, где последовательные цифровые экспозиции суммируются в одно итоговое изображение.
Однако, эта фотография получена аналогоаым методом. Чтобы получить это изображение была изготовлен самодельная камера-обскура из канализационный трубы диаметром 17*9 см с отверстием, диаметр которого составлял 0.28 мм. В качестве затвора использовался программируемый электропривод,открывающийся 10 раз в сутки ровно на одну минуту.
Сам сснимок, посредством камеры-обскуры, сформировался на одном листе черно-белой фотобумаги. Камера была направлена на юг в период с 16 апреля 2024 по 10 июня 2025 года. Видимые разрывы в кривых вызваны облачными днями.
Почти 50 лет назад марсианские посадочные аппараты «Викинг» впервые провели эксперимент по поиску внеземной жизни — и, возможно, нашли её! Однако сенсационные результаты вызвали волну скепсиса, а сами данные на десятилетия оказались в тени. Эта статья — попытка разобраться, что же произошло на самом деле. Что если первая встреча с внеземной жизнью уже состоялась — и мы просто не готовы были её признать?
Посадочный модуль Викинг на поверхности марса (компьютерная графика)
В июле 1976 года на Марс приземлились два американских аппарата — "Викинг-1" и "Викинг-2". Эти миссии не были первыми попытками достичь поверхности Марса: ещё в 1971 году советский аппарат "Марс-3" осуществил первую мягкую посадку, но прекратил передачу данных спустя 14 секунд. В отличие от него, "Викинги" стали первыми, кто успешно передал научные данные и цветные фотографии с поверхности Марса, аппараты вместе с орбитальными модулями предоставили около 500 мегабайт научных данных, что для 1970х было совершенно немыслимый объем информации. Следующие 21 год вплоть до посадки Mars Pathfinder в 1997 году, это были все данные о поверхности марса, которыми располагало человечество.
Места посадки АМС Викинг-1 и Викинг-2
"Викинг-1" совершил посадку 20 июля в районе Chryse Planitia (Равнина Хриса) — это плоская, пыльная равнина в субэкваториальной зоне, расположенная недалеко от устьев древних долин, предположительно сформированных потоками воды.
"Викинг-2" сел 3 сентября значительно севернее — в районе Utopia Planitia (Равнина Утопия), расположенной в самой крупной ударной котловине Марса. Это была также ровная, но более каменистая местность с признаками древней геологической и, возможно, климатической активности.
Интересно, что расстояние между двумя местами посадки составляло около 6 460 километров, что позволило исследовать два геологически и климатически разных региона Красной планеты.
Фотография места посадки Викинг-2 видны траншеи забора образцов грунта.
Однако этот рассказ не столько об аппаратах и их уникальной миссии по изучению Марса, сколько об одном из самых спорных и поразительных научных экспериментов в истории космических исследований эксперименте по обнаружению внеземной жизни, проведённом на борту посадочных модулей "Викинг-1" и "Викинг-2". И его результатов и интерпретации.
🧪 Как искали жизнь в 1976 году Достаточно непростой задачей было постановка самого эксперимента: как убедительно обнаружить или опровергнуть наличие внеземной жизни, если мы до сих пор не пришли к единому определению, что такое жизнь? Что считать живым, а что просто результатом химических процессов?
Жизнь как метаболический процесс? Поглощение и расщепление органических элементов с выделением энергии и продуктов обмена веществ? Но ведь химические реакции тоже могут расщеплять вещества с выделением энергии. Мы не считаем горение жизнью, хотя по формальному признаку оно полностью укладывается в это определение. А вот, скажем, вирусы - напротив, не имеют собственного метаболизма, но всё же считаются формой жизни или, по крайней мере, её пограничным проявлением.
Определение последовательности ДНК на современно секвенаторе.
Если бы мы попытались поставить такой эсперимент сегодня, то возможно, искали ДНК или РНК и поискали бы знакомые биомаркеры жизни. Но в начале 1970-х биотехнологии были радикально ограничены по сравнению с современными возможностями. Секвенирование ДНК только-только начинало развиваться, первая методика Сэнгера появилась в 1977 году, уже после запуска "Викингов", а технология полимеразной цепной реакции ПЦР и вовсе была открыта в 1983 году. И даже если бы тогда существовали молекулярные методы, они вряд ли уместились бы в жесткие рамки массы, объёма и энергопотребления посадочного модуля. Даже микроскоп не подходил по габаритам и ограничениям и передачи данных, к тому же не было уверенности в размерах Марсианской жизни она могла быть значительно меньше земных бактерий невидимой в световой микроскоп.
Пакет эксприментов по обнаружению жизни на Марсе.
Все эксперименты по обнаружению жизни размещались в корпусе 30 см3
Над экспериментами работали три комманды из университетов: Джонса Хопкинса (Гилберт Левин и Патрисия Страас), Рочестерский Университет (Вольф Вишняк) и MIT (Клаус Биман).
⚛️Labeled release (LR) - эксперимент с помеченной культурой
Патрисия Страат работает над экспериментальным макетом эксперимента LR. Университет Джонса Хопкинса, Балтимор, 1974 год.
В итоге, в условиях ограничений миссии, эксперимент по поиску жизни, разработанный Гилбертом Левином и Патрисией Страас, был построен на универсальном принципе выявлении признаков метаболизма, который не зависит от конкретной биохимии. Эксперимент, основанный на введении питательной среды, содержащей набор радиоактивно помеченых органических соединений, и последующем измерении выделенного радиоактивного газа как возможного признака биологической активности.
Питательная среда для марсианской жизни Стерильная питательная среда состояла из семи простых органических веществ, каждое из которых было помечено изотопом ¹⁴C (обладало слабой радиактивностью). В состав среды входили: глюкоза, молочная кислота, глицин, формат, глицерин, серин и аланин. Все они были растворены в буферном растворе с pH около 6.5–7.0, что соответствовало нейтральной среде, благоприятной для большинства земных микроорганизмов.
Если максимально упростить объяснение радиактивных меток Представте, что вы даёте некоему животному еду, и каждый кусочек этой еды светится особым образом (обладает радиокативностью). Пока радиоактивный углерод остаётся в составе "еды", датчики его не фиксируют. Как только он перерабатывается кем-то в газ - начинают фиксировать. Если животное начнёт её есть и переваривать — оно начнёт выдыхать газ, оксид углерода, который тоже будет светится так как будет включать в себя помеченные молекулы углерода которые животное съело. Так можно увидеть: кто-то живой в камере был и ел эту еду.
Молекулы D-глюкозы и L-глюкозы являются зеркальными отражениями друг друга. D-глюкоза — основной источник энергии для земных организмов, тогда как L-глюкоза полностью метаболически инертна для земной жизни. А для марсианской?
Учитывая возможность, что марсианская жизнь может обладать иной хиральностью, чем земная (на Земле живые организмы используют L-аминокислоты и D-сахара), разработчики эксперимента включили в состав среды оба типа изомеров (D-аминокислоты и L-сахара), чтобы охватить максимально возможный спектр потенциальных форм метаболизма.
Была идея создать несколько экспериментов, в которых питательная среда содержала бы только изомеры определённого типа — тогда можно было бы определить, какой тип изомеров предпочитает марсианская жизнь. Но поскольку у команды не было уверенности, что жизнь на Марсе существует в принципе, а также из-за ограничений по массе и ресурсам, от экспериментов с раздельной хиральностью отказались.
Питательная среда объёмом около 0.115 мл помещалась в герметичную ампулу, где она смешивалась с примерно 500 мг марсианского грунта, доставленного в биологическую камеру посадочного модуля. Давление внутри камеры устанавливалось на уровне 1 атмосферы газовый состав этой атмосферы повторял композицию газов атмосферы Марса, высокое (с точки зрения Марса) давление было вынужденным шагом ,чтобы предотвратить закипание воды. В эксперименте не использовалось освещение, исключая фотосинтетические формы жизни.
Labeled Release - обнаружение радиактивного газа Суть метода заключалась в том, что, если в марсианском грунте присутствуют живые организмы, они будут метаболизировать внесённые питательные вещества, в процессе чего будет выделяться радиоактивный газ углекислый газ или метан. Его концентрация измерялась с высокой чувствительностью счётчиком радиации. Чем выше была бы метаболическая активность, тем больше радиоактивного газа накапливалось бы в камере. Радиоактивность питательной среды была достаточной для обнаружения, но безопасной для земных бактерий. В качестве контрольного эксперимента так же использовался марсианский грунт, но стерилизованный нагреванием в печи до 160 градусов в течении 3 часов.
Экспериментальные ячейки Каждая ячейка называемая "циклом" была одноразовой на каждом из посадочных модулей их было 9. Все ячейки LR эксперимента были использованы на Викинге-1, на Викинге-2 одна из LR ячеек успешно не запустилась и после 7 циклов, на аппарате возникли перебои с питанием биологического пакета и эксперименты по обнаружению жизни были прекращены.
Оригинальные результаты эксперимента LR, циклы 1–3, проведённого на «Викинге-1». Циклы 1 и 3 использовали необработанный марсианский грунт, тогда как в цикле 2 применялся грунт, стерилизованный при температуре 160 °C в течение трёх часов.
Изначальные результаты на Викинге-1 за первые 140 часов показали типичную логарифмическую кривую роста бактерий, которую я видел много раз в моих биологических экспериментах. Идентичные результаты были получены и в LR-эксперименте Викинга-2 на другой стороне Марса. Опять же результат типичный для Земли, где в самых экстремальных условиях — эксперимент показывал схожий график бактериального роста.
Скорость удвоения клеток в культуре По этому графику можно подсчитать скорость удвоения клеток в культуре (TD) — порядка 20 часов. То есть каждые 20 часов количество бактерий в культуре будет удваиваться. Это значительно медленнее большинства земных бактерий. Кишечная палочка E. coli имеет скорость удвоения около 20 минут, но, например, арктическая бактерия Colwellia psychrerythraea, которая живёт при температуре около 0 градусов в вечной мерзлоте, имеет скорость удвоения 24–48 часов.
Симуляция кривых роста бактерий на основании времени удвоения (TD). Кишечная палочка E. coli — 20 минут (зелёная кривая), Colwellia psychrerythraea — TD 36 часов (синяя кривая), предположительная марсианская бактерия — TD 20 часов (красная кривая).
Эти результаты не могли быть объяснены химической процессами, они как правило не формируют логарифмических кривых, более того, стерилизованный грунт никакой активности не показал.
⚠️ Загадка второй инъекции
Результаты наземного аналога эксперимента LR, проведённого с использованием образца почвы из Калифорнии (образец "Aiken"). После повторного введения питательных веществ наблюдается усиленный рост бактерий. Контрольный образец стерилизован 160С.
Странности с экспериментом начались после так называемой "2nd injection" повторного введения питательной среды. Согласно изначальной логике, если в грунте действительно присутствовала жизнь, то введение дополнительного количества питательных веществ должно было привести к ещё большей метаболической активности, как это наблюдается у земных бактерий, что проявляется увеличением количества радиактивного газа в ячейке.
Однако на Марсе всё пошло иначе. Сразу после повторной инъекции уровень радиоактивного газа в камере резко снизился, а затем активность практически полностью прекратилась. Этот эффект оказался неожиданным и противоречил ожидаемой модели поведения живых систем. Причем данный результат наблюдался во всех экспериментах с повторным введением пиатательной среды.
Продолжение LR эксперимента цикла 1 на «Викинге-1» с повторным введением питательных веществ. Вместо ожидаемой активизации роста наблюдается спад выделения радиоактивного газа и прекращение активности.
Повторный эксперимент цикла 1 LR на «Викинге-2» с двойным введением среды. Показал идентичные результаты с «Викингом-1». В середине графика отражается температура ячейки и сенсора.
Возможно, питательные вещества были добавлены слишком поздно, и бактериальная культура за восемь дней успела истощить ресурс среды и погибла. Эксперимент не фиксирует наличие или отсутствие живых клеток — он лишь измеряет уровень радиоактивного газа. Поэтому вполне возможно, что культура погибла ещё до введения новой порции питательной среды, когда кривая выделения газа достигла плато.
Мы нашли марсианскую жизнь — и, возможно, убили её водой. Вторая инъекция могла также содержать слишком высокую концентрацию активных веществ и нарушить слабый биоценоз сформировался в ячейке. Возможно, марсианские организмы извлекают воду из химических соединений, например, солей как это делают некоторые земные бактерии в засушливых районах и дополнительный объём воды оказался для них губителен. Подобное поведение наблюдается и на Земле, например, в почвах пустыни Атакама, населённых экстремальной микрофлорой и выпадение осадков вызывает гибель до 80% почвенной микрофлоры.
Воспроизведение результатов эксперимента «Викинга-1/2» с повторной инъекцией питательной среды было выполнено с использованием щелочной почвы с pH 7.8 из пустыни Юнгай. В этом случае наблюдалось резкое падение уровня CO₂ в камере (красная кривая). Интересно, что более кислотная почва с pH 6.5 продемонстрировала типичный "земной" ответ на повторную инъекцию — уровень CO₂, наоборот, резко увеличился (синяя кривая). Эти данные можно интерпретировать как гибель земных экстремофилов в более щелочной почве после повторного увлажнения, что полностью воспроизводит картину, наблюдавшуюся в LR-эксперименте на Марсе.
Схожий результат отсутсвия активного ответа на повторную иньекцию питательных веществ с данными полученными на Марсе получен в щелочном образце антарктической почвы группой Левина в 1986 году. Контрольный образец стерилозован запеканием при 160 градусах.
Снижение Ph в атмосфере углекислого газа Моя интерпретация этой аномалии связана с условиями внутри экспериментальной камеры, в частности — с использованием атмосферы с высоким содержанием CO₂ при давлении, близком к земному. Такое решение было технически необходимо, чтобы предотвратить закипание и испарение воды в условиях низкого давления на поверхности Марса. Поскольку CO₂ является основным компонентом марсианской атмосферы, он был выбран для моделирования условий среды. Однако CO₂ — химически активный газ, способный легко растворяться в воде, образуя угольную кислоту (H₂CO₃), что приводит к резкому снижению pH среды. Особенно ярко этот эффект проявляется при повторной инъекции: если в первой фазе объём жидкой фазы был минимален и связывался с грунтом, то при добавлении новой порции раствора появилась свободная водная фаза, в которой CO₂ из атмосферы начал активно растворяться. Это хорошо видно на графиках по резкому падению уровня радиоактивного CO₂ сразу после инъекции. Простые расчёты показывают, что падение pH в таких условиях могло составлять более 2.5 единиц Ph.
Если предположить, что гипотетические марсианские микроорганизмы адаптированы к слабощелочной или нейтральной среде — как это предполагается на основе pH марсианского грунта (~7.5–8) — то такое резкое закисление могло стать смертельным стрессом, вызвавшим гибель или инактивацию клеток. Таким образом, спад активности после повторной инъекции может быть следствием не отсутствия жизни, а её чувствительности к кислотному шоку точно так же, как это наблюдается у земных экстремофилов из пустыни Атакама или Юнгай в эксперименте с щелочной почвой (pH 7.8). Намного лучшим решением было бы использовать инертный газ — например, азот или аргон.
И всё-таки, на сегодняшний день нет однозначного мнения, что именно произошло. Но именно этот эпизод — внезапное прекращение активности после второй инъекции, эффект, который наблюдался на обоих аппаратах, стал одним из главных аргументов против биологической интерпретации результатов в 1976 году.
Возможно эти результаты не активность бактерии, а особенности химического состава марсианского грунта?
Небиологическая интерпретация результатов предполагала наличие неизвестного химического катализатора или окислителя в марсианском грунте, который при взаимодействии с питательной средой вызывал выделение радиоактивного газа. Однако все попытки воспроизвести кривую "Викинга" с использованием химических веществ на Земле не смогли достоверно воспроизвести логарифмическую кривую, обнаруженную на Марсе.
Симуляция кривых выделения радиактивного газа при реакции грунта с перикисью водорода H2O2 и проекция кривой потенциальной марсианской жизни на основе данных скорости дупликации TD 20 часов.
Например, в экспериментах с перекисью водорода и другими окислителями наблюдалось очень быстрое, линейное увеличение уровня радиоактивного газа в течение первых минут или часов, за которым следовало плато, связанное с исчерпанием реагента.
Эксперименты с разными температурами
LR-эксперименты, проведённые на «Викинге-2» (циклы 1–5): 1 — активный образец марсианского грунта; 2 — термическая обработка при 51 °C; 3 — образец, извлечённый из-под камня в темноте; 4 — термическая обработка при 46 °C; 5 — образец, хранившийся 84 сола.
Группа Гилберта Левина и Патриции Страат провела дополнительную серию экспериментов на борту Викинга-2, в которой вместо полной стерилизации марсианский грунт подвергался воздействию умеренных температур — 46 °C и 51 °C. Целью этих тестов было определить, обусловлен ли выброс радиоактивного газа биологической активностью или неорганической химией.
Если в образцах присутствовали живые бактерии, то даже такой умеренный тепловой шок должен был их частично повредить, что привело бы к снижению метаболической активности и, как следствие, к ослаблению сигнала. Именно такой эффект и был зафиксирован: при нагревании образца до 46 °C в течение трёх часов интенсивность выброса радиоактивного газа снизилась примерно на 60%. При температуре 51 °C сигнал практически исчез, что указывает на возможную гибель всей микрофлоры.
Подобная чувствительность укладывается в поведение холодолюбивых экстремофилов, обитающих в антарктических и арктических условиях Земли, для которых температуры выше 45–50 °C приводят к денатурации белков и потере жизнеспособности. Преимущество этого подхода заключается в том, что температурный диапазон был биологически значимым — достаточно мягким, чтобы сохранить любые неорганические катализаторы, но губительным для биологических структур. Если бы выброс газа объяснялся действием какого-либо химического или минерального вещества, оно не должно было терять активность при 51 °C, ведь разложение большинства неорганических соединений происходит только при гораздо более высоких температурах (например, выше 150–180 °C).
Исключение Ультра-фиолетового излучения
Восход на Марсе снятый камерой «Викинг-1»
Среди дополнительных экспериментов, проведённых командой Левина, было культивирование образца марсианского грунта, извлечённого из-под камня. Аргументы сторнников небиологической природы результатов эксперимента приводили аргументы в пользу выделение газа как реакции на некий окислитель формирующийся под воздействием УФ излучения в почве Марса. Чтобы ответить на данную критику комманда Левина взяла образец VL2-3 из под камня который всегда был скрыт от УФ излучения. Сбор образца проводился перед рассветом и удалось полностью избежать облучения образца прямыми солнечными лучами. Как и в остальных экспериментах образец VL2-3 цикл 3, показал эволюцию радиактивного газа схожую с остальными пробами грунта.
Эксперимент с пробой грунта которая хранилась в камере для сбора образцов Последний эксперимент, цикл 5, включал в себя образец, собранный для выполнения цикла 4 (обработка температурой 46 °C), но для цикла 5 образец 4 хранился в камере коллектора посадочного модуля в течение 84 солов. Образец хранился в темноте, но с доступом к марсианской атмосфере. Главным отличием был температурный режим образца, так как в посадочном модуле сохранялась температура около 10-20 °C. Данные условия показали полную инактивацию образца в цикле экспериментов 5. В то же время температуры на Марсе в данном регионе могли достигать 10 °C и в естественных условиях, поэтому инактивацию активности образца во время хранения однозначно объяснить не удалось.
⚛️Gas Exchange (GEX) – Эксперимент по газообмену
В рамках эксперимента GEX (Gas Exchange) в марсианский грунт добавлялась вода без каких-либо питательных веществ или радиоактивных меток. Вместо этого использовался газоанализатор, который отслеживал изменение концентраций газов в атмосфере камеры — таких как кислород (O₂), углекислый газ (CO₂), азот (N₂) и водород (H₂).
После увлажнения марсианского реголита было зафиксировано резкое повышение уровня кислорода в камере. Этот результат оказался ожидаемым и, по мнению большинства исследователей, объясняется разложением перекисей или других окислителей, присутствующих в марсианском грунте. Однако никаких существенных изменений по другим газам CO₂, N₂ или H₂ — зафиксировано не было.
Поскольку GEX разрабатывался независмой научной группой, условия и методология эксперимента были утверждены независимо. Руководителем проекта GEX был Вольф Вишняк (Wolf Vishniac) — микробиолог из Рочестерского университета, один из пионеров изучения экстремофилов. Его подход основывался на идее, что влага сама по себе может «пробудить» потенциальную жизнь, которая затем начнёт выделять или поглощать газы, измеримые газоанализатором. Судьба Вольфа сложилась трагически. В 1973 году, за год три года до посадки «Викингов», Вишняк погиб во время научной экспедиции в Антарктиде провалившись в расщелину во льду. Его часть экспериментов дорабатывалсь остальными участниками его лаборатории. В его честь позже был назван кратер Vishniac на Марсе.
Философские различия между командами GEX и LR были принципиальными: Гилберт Левин и Патрисия Страас, автор LR, считал, что необходимо активно «кормить» возможную жизнь следуя подходу лабораторной бактериальной культуры, в то время как Вишняк был убеждён, что достаточно "Просто добавить воды", чтобы жизнь проявила себя.
Интересно как и в ситуации с LR больший объем воды и отсуствие буфферного раствора вызвало закисление марсианского грунта раствором угольной кислоты ещё больше, чем при повторной инъекции питательных веществ в LR эксперименте из за отсутствия буферных компонентов в растворе.
На мой взгляд, эксперимент был сконструирован некорректно. В нём следовало использовать ту же питательную среду, что и в эксперименте LR, чтобы создать аналогичные условия для возможной метаболической активности. Более того, результаты газоанализа необходимо было сопоставлять с уровнем радиоактивности в атмосфере ячейки, что позволило бы более точно выявить источники газов и их природу.
Этот эксперимент был более простым и заключался в обнаружении органических соединений в марсианском грунте в первую очередь углерода. Его разработала комманда под руководством Клауса Бимана, пионера технологии масс спектрометрии. Суть эксперимента заключалась в нагревании грунта до 200C градусов, затем 350C и 600C цельсия. Как в режиме пиролитической очистки грязной духовки углерод в марсинаском грунте (если мы исходим что марсианская жизнь является углеродной) должен был перейти в газ при нагревании и именно его должна была обнаружить в масс спектрометре. Никаких органических молекул, типичных для жизни, обнаружено не было. Более того показатели органики в масс спектрометрии были значительно ниже показателей масс спектрометрии Лунного грунта, и это должно было исследователей насторожить, так как сейчас мы знаем, что органические соединения встречаются на инопланетных объектах в достаточно больших объемах, но сами по себе не являются показателями жизни, но в 1976 году это укладывалось в общую идею стерильности Марса.
Единственная органика, которая была обнаружена следы хлорированных углеводородов (например, хлорбензол), которые тогда посчитали загрязнением с Земли, как следы растворов которыми стерилизовали посадочный модуль перед запуском. Сейчас мы знаем, что тонкий слой поверхностного грунта на марсе содержит перхлораты (ClO₄⁻) соединения хлора в реакции с ултрафиолетом солнца, в быту вам подобные соединения хорошо знакомы по отбеливателю. При нагревании перхлораты разлагают органику на хлорированные углеводороды которые и обнаружил масс спектрометр.
Марсоход "Curiosity" на поверхности Марса.
Это был единственный эксперимент программы «Викинг», который впоследствии был независимо повторён на марсоходе Curiosity. Он впервые подтвердил наличие органических молекул в марсианском грунте - среди них были обнаружены бензол, тиофен и хлорбензол. При этом содержание органического углерода значительно варьировалось между разными образцами. В почвенном образце, взятом в зонах Cumberland и John Klein, концентрация органики составила около 10 ppm (частей на миллион). В другом образце — глинистом слое из района Yellowknife Bay — содержание органических веществ оказалось значительно выше и достигало 200–273 ppm.
Подобные значения уже невозможно объяснить исключительно геологическими или химическими процессами, особенно с учётом плохой долгосрочной сохранности органики в марсианской среде. Для сравнения: аналогичный эксперимент, проведённый в почвах пустыни Атакама на Земле — одном из наиболее стерильных природных регионов планеты показал содержание органики на уровне около 50 ppm. При этом грунт Атакамы даёт положительный результат в эксперименте Labeled Release, аналогичный тому, что был получен на Марсе. Для сравнения в плодородной почве на Земле соддержние органики намного выше свыше 10,000 ppm.
Сезонные вариации метана в атмосфере Марса
Обнаружение повышенной концентрации метана в атмосфере Марса в летнее время.
В 2012 году орбитальный модуль и ровер Curiosity обнаружил устойчивый фоновый уровень метана в атмосфере, составляющий в среднем около 0.4 частей на миллиард по объёму (ppbv). Эти наблюдения подтвердили и анализом данных с телескопов с Земли. Поскольку метан является крайне нестабильным в условиях Марса и быстро разлагается под действием УФ излучения, его постоянное присутствие указывает на существование активного источника. Более того, концентрация метана в атмосфере демонстрирует чёткие сезонные колебания: зимой она снижается до 0.24 ppbv, а летом возрастает до 0.65 ppbv. Помимо этого, были зафиксированы внезапные локальные всплески выброса метана с концентрацией от 7 до 21 ppbv.
Сезонные циклы измнения метана в атмосфере Марса на на протяжении 3 лет измерений.
Эти изменения соответствуют сезонной динамике, характерной для активности бактериальной жизни, которая на Земле проявляется в виде метаногенных анаэробных микроорганизмов, потребляющих воду и органические вещества и выделяющих метан в качестве побочного продукта метаболизма. Альтернативной, небиологической гипотезой является высвобождение метана из подповерхностных марсианских льдов, однако она не объясняет стабильную и повторяющуюся сезонность, тогда как биологическая модель с участием микрофлоры вполне укладывается в наблюдаемые закономерности.
Итоги миссии и дальнейшая позиция NASA по проблеме поисков внеземной жизни Однако всё это стало известно гораздо позже. В 1976 году, сразу после первых сенсационных результатов эксперимента Viking, идея обнаружения жизни на Марсе подверглась жёсткой критике со стороны научного сообщества. В частности, эксперимент Labeled Release был обвинён в антропоцентризме, недостаточной проработке, отсутствии убедительных доказательств существования жизни и, по мнению критиков, неспособности их получить в принципе.
Несмотря на значительный объём собранных данных, их интерпретация не получила широкого признания в рецензируемой научной литературе. Сама идея обнаружения жизни на Марсе казалась многим слишком радикальной, поскольку поднимала сложные философские вопросы о положении человечества во Вселенной и происхождении жизни. Большинство учёных участвовавших в проекте впоследствии ушли из академической науки вовсе или жили в научной изоляции и впоследствии практически не публиковались. Исключение Клаус Биман, хотя его данные о полной стерильности Марса были подтверждены как ошибочные его ошибка сделала его самым академически "успешным" участником миссии.
Никто из участников проекта "Викинг" так и не узнал, стали ли они первыми людьми, обнаружившими внеземную жизнь, или же с ними сыграли злую шутку причуды необычной химии Красной планеты. Ответ на эту загадку предстоит найти нам.
NASA также дистанцировалось от темы прямого поиска жизни: все последующие марсианские миссии сосредоточились на поиске воды, оценке потенциальной обитаемости в прошлом, но миссия Викинг стала первым и последним проектом NASA с пакетом биологических экспериментов направленных на прямое обнаружение инопланетной жизни.
Симуляция возможного внешнего вида марсианских бактерий экстремофилов в образце грунта в снимке сканирующего электронного микроскопа (изображение сгенерировано ChatGPT на основе текста статьи).
Моё личное мнение и интерпретация результатов Для меня, как молекулярного биолога с почти двадцатилетним опытом, уже имеющихся экспериментальных данных достаточно, чтобы сделать вывод: на Марсе присутствует инопланетная бактериальная жизнь. Эти микроорганизмы, по всей видимости, анаэробны (не используют кислород в метаболизме) и выделяют метан как побочный продукт, что делает их функционально схожими с земными экстремофилами и почвенными бактериями. Эти бактерии адаптированы для жизни при низкой температуре и минимальной влажности и обитают в диапазоне темератур ниже нуля, но выдерживают кракосрочное нагревание до 46 градусов. Определение генома этой формы жизни должно стать одной из приоритетных задач современной космической биологии.
Насколько такая жизнь может быть опасна для Земли в случае успеха миссии по доставке марсианского грунта или высадки пилотируемой экспедиции на Марс - сказать сложно. Анаэробные, метан-продуцирующие экстремофилы с медленной кривой роста, скорее всего, не представляют серьёзной опасности для экосистемы Земли или астронавтов, на Земле таких бактерий и так предостаточно. В то же время, если марсианская жизнь использует альтернативную хиральность, то она может быть полностью неуязвима для иммунной системы земных организмов и, с этой точки зрения, представлять определённую опасность.
В любом случае, к будущим пилотируемым миссиям на Марс следует подходить с большей осторожностью и, по крайней мере, учитывать потенциальную возможность существования инопланетной микробиологии.
Настоящая статья написана на основе следующих источников:
📚Levin, G.V., & Straat, P.A. (2016). The Case for Extant Life on Mars and Its Possible Detection by the Viking Labeled Release Experiment. Astrobiology, 16(10), 798–810. https://doi.org/10.1089/ast.2015.1464
📚Decomposition of aqueous organic compounds in the Atacama Desert and in Martian soils November 2007Journal of Geophysical Research Atmospheres 112(G4) DOI: 10.1029/2006JG000312
📚Straat, P.A. (2019). To Mars with Love. BookBaby.
📚Публичные архивные данные NASA (включая материалы по миссиям Viking, Curiosity и Mars Science Laboratory)
Я ничего не понял или мне лень было читать статью: Эксперименты на Викингах однозначно показали на марсе наличие бактериальной жизни, но научное сообщество было не готово к столь радикальной идее и решило, что результатов экспериментов недостаточно для подтврждения наличия жизни. Впоследствии результаты миссии забылись, учёные в составе миссии или уволились или стали заниматься другими проектами, а на новых миссиях на Марс NASA больше биологические эксперименты не проводила.
🗓 02.06.1955 - Основан космодром Байконур [вехи_истории]
🚀 Самый первый и крупнейший в мире космодром — Байконур — был официально основан в Казахстане 2 июня 1955 года. Его строительство началось в условиях строжайшей секретности: в документах он значился как «НИИ-5», а для дезинформации была выбрана ложная точка на карте рядом с одноимённым посёлком в сотнях километров от реального местоположения.
🧑🚀🛰 Именно с Байконура в 1957 году был запущен первый в мире искусственный спутник Земли, а в 1961 году — Юрий Гагарин отправился в первый в истории пилотируемый полёт в космос.
🌍🚀 Сегодня космодром остаётся важнейшей стартовой площадкой для пилотируемых миссий. Байконур — это не просто военный объект или технический комплекс, это культурный символ начала космической эры.
📼 А как разрабатывали тот самый спутник - видео уже на канале: Как ИНЖЕНЕРЫ СССР совершили НЕВОЗМОЖНОЕ. История первого спутника YouTube | RuTube
👇👇Наш канал на других площадках👇👇 YouTube | RuTube | Telegram | Pikabu =====================================
Больше 40 лет назад в мир космонавтики ворвался передовой и лучший в своем роде американский спейс шаттл. Первый запуск этого космического корабля состоялся 12 апреля 1981 года. Тогда он вызвал фурор во всем мире. Оно и понятно, ведь этот корабль мог выполнять различные задачи на околоземной орбите. Благодаря своему объемному грузовому отсеку и установленному там манипулятору, шаттл выводил на орбиту спутники, а астронавты могли, вообще, заниматься их починкой прямо на орбите. Но самую важную роль он сыграл при строительстве МКС (Международной космической станции).
Но в 2011 году эпоха спейс шаттлов ушла в прошлое. Было решено отказаться от них. Причин было много. Это и моральное устаревание самих шаттлов, построенных еще в 1970-1980-х гг. Несколько кораблей было потеряно: при старте в 1985 году был потерян "Челленджер", а в 2003 году при спуске на Землю в плотных слоях атмосферы была потеряна "Колумбия". Кроме того, сам запуск одного корабля был очень дорог: порядка 450 миллионов долларов. Тем не менее, на случай внештатной ситуации с запущенным на орбиту шаттлом, всегда был наготове второй шаттл.
На следующий год будет уже 45 лет первому полету шаттла и 15 лет с момента закрытия программы. Думаю, что мы можем порассуждать на тему, которая заявлена в заголовке материала. Действительно, прошло достаточно времени, чтобы сделать хоть какие-то выводы. Стоит подметить, что после закрытия программы, американцы около 10 лет не имели своих кораблей, для доставки своих астронавтов на МКС. В этом до 2020 года американцам помогала Россия, доставлявшая астронавтов на космических корабля "Союз". В 2020 году SpaceX провела удачный полет своего космического корабля Crew Dragon, что открыло новую страницу в истории американской пилотируемой космонавтики.
Схема запуска использования и посадки спейс шаттла
Теперь попробую ответить, нужны ли современному космосу корабль масштаба спейс шаттла. Но чтобы ответить, нужно понимать задачи данного класса кораблей. Ведь, изначальная задумка шаттлов была куда масштабнее. В 1960-х гг. космическая сфера США была охвачена энтузиазмом и надеждами освоения околоземной орбиты и, даже самой Луны. Подметим, что в СССР в те годы было то же самое. Поэтому обе страны строили грандиозные планы. Так вот, шаттл был только небольшой составляющей целой космической программы. Дання программа рассматривала строительство околоземной и окололунной космических станций. Шаттл в ней играл связующую роль доставщика грузов.
Но все планы разбились в реальность бюджета, способности и желания самого Конгресса США на выделения колоссальных средств для развития данного проекта. Стоит напомнить, что параллельно развивалась программа "Аполлон", а это уже непосредственно программа по доставке астронавтов на Луну. Две дорогие по бюджету программы бюджет США просто не потянул бы. Поэтому, когда закрыли программу "Аполлон", было решено ограничиться созданием только самих шаттлов. Но роль, которая задумывалась для шаттлов была огромной - создание в течение 1980-х гг. американской околоземной космической станции.
Конечно, у шаттлов были свои недостатки. Они были дорогими в обслуживании. Их нужно было тщательно проверить и подготовить к новому полету. Ведь корабли, на минуточку, были многоразовыми. Так что, безопасность была превыше всего. Что и требовало огромных финансовых затрат. Но все же, от шаттлов было много пользы. Те же запуски и ремонт спутников и проведение научных экспериментов. Сейчас такие корабли, конечно же, понадобились бы. Но для этого необходим был бы повод. Как не странно, таким поводом может стать строительство новой околоземной космической станции, которая должна прийти на смену МКС, которой уже больше 25 лет.
Подготовка спейс шаттла к запуску
В следующем материале попробуем разобраться какие именно виды работ сделали шаттлы в строительстве МКС, чтобы понять масштаб и значение этих кораблей в истории и становлении современной космонавтике.
Если Вам понравилась статья - поставьте лайк. Много наших материалов вы найдете на нашем сайте. Будем рады, если вы его посетите. Ваша подписка очень важна нам: Пикабу, канал в Телеграмм, сообщество в ВК, YouTube, а также сообщество в Пикабу "Все о космосе". Всё это помогает развитию нашего проекта "Журнал Фактов".
Эта шестипанельная иллюстрация события приливного разрушения вокруг сверхмассивной черной дыры показывает следующее: 1) Сверхмассивная черная дыра дрейфует внутри галактики, ее присутствие можно обнаружить только с помощью гравитационного линзирования;
2) Своенравная звезда попадает под сильное гравитационное притяжение черной дыры; 3) Звезда растягивается или "превращается в спагетти" из-за гравитационно-приливных эффектов; 4) Остатки звезды образуют диск вокруг черной дыры; 5) Существует период аккреции черной дыры, изливающей излучение по всему электромагнитному спектру, от рентгеновских лучей. до радиоволн; и 6) Галактика-хозяин, видимая издалека, содержит яркую вспышку энергии, которая смещена от ядра галактики, где обитает еще более массивная черная дыра.
Учёные сделали революционное открытие в области астрофизики — впервые удалось точно определить положение блуждающей сверхмассивной чёрной дыры в далёкой галактике. 2
Это достижение стало возможным благодаря точным измерениям космического телескопа «Хаббл» НАСА и рентгеновской обсерватории «Чандра».
Обнаруженная чёрная дыра примерно в миллион раз массивнее нашего Солнца и находится на расстоянии около 600 миллионов световых лет от Земли.
Уникальность этого открытия заключается в том, что чёрная дыра расположена не в центре галактики, как обычно бывает, а смещена от него на значительное расстояние — всего 2600 световых лет от центральной сверхмассивной чёрной дыры.
Это изображение далёкой галактики, полученное космическим телескопом «Хаббл», на котором видна характерная подпись блуждающей сверхмассивной чёрной дыры.
Для сравнения, это составляет всего одну десятую расстояния между нашим Солнцем и центральной чёрной дырой Млечного Пути.
Открытие было сделано благодаря наблюдению за событием приливного разрушения звезды (TDE), когда звезда приближается слишком близко к чёрной дыре и подвергается воздействию её мощных гравитационных сил. Из примерно 100 зарегистрированных событий TDE это первое, в котором чёрная дыра находится за пределами центра галактики. Остальные случаи всегда связаны с центральными чёрными дырами галактик.
Это совместное изображение, полученное космическим телескопом «Хаббл» и рентгеновской обсерваторией «Чандра», далёкой галактики, в которой находится сверхмассивная чёрная дыра.
В центре той же галактики находится ещё более массивная чёрная дыра, масса которой в 100 миллионов раз превышает массу Солнца. Эта более крупная чёрная дыра активно поглощает падающий на неё газ и выбрасывает энергию, что делает её активным галактическим ядром. Несмотря на близкое расположение, две сверхмассивные чёрные дыры не образуют двойную систему и не связаны друг с другом гравитационно. В будущем меньшая чёрная дыра может постепенно приблизиться к центру галактики и слиться с большей чёрной дырой, но пока она находится слишком далеко для гравитационного взаимодействия.
«Чандра» — космическая рентгеновская обсерватория NASA, запущенная в космос 23 июля 1999 года.
Это открытие имеет важное значение для астрономии, поскольку оно подтверждает существование популяции блуждающих чёрных дыр, которые ранее были лишь теоретическими предсказаниями.
«Хаббл» автоматическая обсерватория на орбите Земли, названная в честь американского астронома Эдвина Хаббла.
Как отметил ведущий автор исследования Юхан Яо из Калифорнийского университета в Беркли, «AT2024tvd — это первое смещённое TDE, зафиксированное с помощью оптических обзоров неба, и оно открывает возможность обнаружения этой неуловимой популяции блуждающих чёрных дыр с помощью будущих обзоров неба».
Открытие также показало эффективность совместной работы различных космических телескопов, включая «Хаббл», который благодаря своей точности смог определить местоположение TDE с высокой точностью.
Рентгеновские снимки: NASA/CXC/SAO, NASA/JPL/Caltech/NuStar; оптические снимки: NASA/STScI/HST; инфракрасные снимки: NASA/STScI/JWST, NASA/JPL/CalTech/SST; обработка изображений: NASA/CXC/SAO/J. Шмидт, Н. Волк и К. Аркан
В недавнем прорывном открытии астрономы НАСА сделали удивительное открытие с помощью космического телескопа Джеймса Уэбба.
В остатках сверхновой была обнаружена загадочная структура, получившая название «Зелёный монстр», а также сложная сеть частиц, напоминающая паутину, состоящую из материала, богатого кислородом.
Это открытие стало возможным благодаря уникальной способности телескопа Уэбба видеть в инфракрасном диапазоне света, что позволяет исследовать ранее невидимые детали космических объектов.
Объединение данных телескопа Уэбба с рентгеновскими снимками обсерватории Чандра дало учёным беспрецедентное понимание природы этого явления. Анализ показал, что «Зелёный монстр» представляет собой результат столкновения ударной волны от взорвавшейся звезды с окружающим веществом. Этот процесс нагревает газ до десятков миллионов градусов, делая его видимым в рентгеновском излучении. Особенно интересно то, что телескоп Уэбб может видеть даже те участки вещества, которые не были затронуты ударными волнами, что даёт представление о первоначальном материале сверхновой.
3D-модель Кассиопеи A «Зелёный монстр»
Исследование также раскрыло новые подробности самого взрыва, который произошёл примерно 340 лет назад с точки зрения наблюдателей на Земле. Ученые смогли сравнить данные о «чистом» веществе, полученном Уэббом, с картами радиоактивных элементов, полученными с помощью обсерватории NuSTAR. Это сравнение показало, как радиоактивные материалы повлияли на формирование внутренней структуры остатков сверхновой, создавая полости и сложные узоры в обломках.
Одним из наиболее важных результатов исследования стала возможность создания трехмерных моделей для изучения последних этапов жизни звезд. Как и в случае с туманностью Лебедя, обсерватория «Чандра» предоставила 3D-модель, которую можно распечатать и изучить в реальности. Эти модели основаны на современных теоретических моделях и вычислительных алгоритмах, дополненных данными наблюдений с космических телескопов. Такой подход позволяет глубже понять эволюцию звезд и их заключительные стадии существования, делая сложные астрофизические процессы более доступными для изучения и восприятия.