Горячее
Лучшее
Свежее
Подписки
Сообщества
Блоги
Эксперты
Войти
Забыли пароль?
или продолжите с
Создать аккаунт
Регистрируясь, я даю согласие на обработку данных и условия почтовых рассылок.
или
Восстановление пароля
Восстановление пароля
Получить код в Telegram
Войти с Яндекс ID Войти через VK ID
ПромокодыРаботаКурсыРекламаИгрыПополнение Steam
Пикабу Игры +1000 бесплатных онлайн игр Решайте головоломки три в ряд и отправляйтесь в приключение! Проходите красочные уровни и открывайте новые главы захватывающей истории о мышонке и его друзьях!

Мышонок Шон

Казуальные, Три в ряд, Головоломки

Играть

Топ прошлой недели

  • Oskanov Oskanov 9 постов
  • Animalrescueed Animalrescueed 46 постов
  • AlexKud AlexKud 33 поста
Посмотреть весь топ

Лучшие посты недели

Рассылка Пикабу: отправляем самые рейтинговые материалы за 7 дней 🔥

Нажимая «Подписаться», я даю согласие на обработку данных и условия почтовых рассылок.

Спасибо, что подписались!
Пожалуйста, проверьте почту 😊

Помощь Кодекс Пикабу Команда Пикабу Моб. приложение
Правила соцсети О рекомендациях О компании
Промокоды Биг Гик Промокоды Lamoda Промокоды МВидео Промокоды Яндекс Маркет Промокоды Отелло Промокоды Aroma Butik Промокоды Яндекс Путешествия Постила Футбол сегодня
0 просмотренных постов скрыто
338
CBunny
CBunny
2 года назад
Исследователи космоса

Продолжение поста «Как передвигаться по другим планетам»⁠⁠1

Выдвижная опора


ПРОП-ФП, источник

Оригинальный способ передвижения по Фобосу был придуман для советского посадочного аппарата “прибор оценки проходимости — Фобос” ПРОП-ФП. Фобос маленький, ускорение свободного падения на нем всего 0,0057 м/с2 и передвигаться на колесах, лыжах или другим привычным способом по нему невозможно. Поэтому ПРОП-ФП должен был быть сброшен на небольшой высоте со стабилизатором в виде хвоста волана. После успокоения стабилизатор сбрасывался бы, аппарат раскрывал усики-пружины, разворачивался опорой вниз и, резко выдвинув ее, подпрыгивал.



К сожалению, попрыгать по Фобосу аппаратам не довелось. “Фобос-1“ был потерян еще по дороге, 28 августа 1988, а “Фобос-2” окончательно сломался 27 марта 1989, за несколько дней до плановой даты сброса.

Эксцентрик


В аналогичных условиях астероида Рюгу, где сила тяжести составляет всего 1/80 000 “же”, японские и немецкие планетоходы использовали другой механизм. Когда ваш смартфон вибрирует, в нем вращается на небольшом моторчике смещенный в сторону груз. Аналогичный механизм использовали в немецком MASCOT и японских MINERVA-2-I, сброшенных на астероид.


Анимация из ролика DLR, рассказывающего о ровере

MASCOT массой 10 кг приземлился на Рюгу 3 октября 2018 вверх ногами, перевернулся при помощи этого же эсцентрика и затем начал прыгать, проработав 17 часов до исчерпания батарей. Два планетохода, входившие в контейнер MINERVA-2-I, были сброшены 2 октября 2018 и прыгали, очевидно, в автономном режиме. HIBOU проработал 36 земных суток, OWL — 3. Оба аппарата функционировали до тех пор, пока не оказались в более затененных местах, где уже не было достаточно света для солнечных батарей.

Аэростат


Аэростатный зонд “Вег” в музее, фото Geoffrey.landis/Wikimedia Commons

Если на небесном теле есть атмосфера, то логично попробовать передвигаться и с ее помощью. Впервые это сделали на Венере, в двух советских миссиях “Вега”, в составе которых был аэростатный зонд. Спускаемый аппарат, в котором были посадочный и аэростатный аппараты, тормозил в плотных слоях атмосферы и разделялся на высоте 65 км. Из нижней части посадочный аппарат спускался на парашюте и совершал мягкую посадку. А из верхней части сбрасывался аэростатный зонд. Специальный парашют вытягивал тефлоновую оболочку, которая затем надувалась гелием из баллона в шар диаметром 3,4 метра. Затем парашют и баллон сбрасывались, и аэростат оказывался на высоте примерно 54 км, в самом интересном, среднем слое венерианских облаков из серной кислоты.


Анимация из советского фильма о станциях

Из общей массы 120 кг аэростат весил 21,5 кг, а полезная нагрузка — 6,9 кг. Аэростат «Веги-1» проработал с 02:08 11 июня 1985 по 00:38 13 июня, «Веги-2» с 02:07 15 июня по 00:38 17 июня. Из-за огромной скорости венерианской атмосферы аэростаты двигались со средней скоростью 69 м/с и поставили рекорд по дальности перемещения, пролетев более одиннадцати тысяч километров. Пока не сели батареи, они передавали много интересных данных об атмосфере Венеры, которая оказалась гораздо более активно перемешивающейся, чем ожидалось. Сколько просуществовали аэростаты с севшими батареями, неизвестно, хотя, учитывая агрессивность венерианской атмосферы, вряд ли они летают до сих пор. В общем, “Веги” оказались последними успешно выполнившими программу советскими межпланетными миссиями.

Вертолет


Притяжение на Марсе составляет треть от земного. А атмосферное давление — в районе одного процента. Первое свойство несколько облегчает задачу полета, но вот второе является серьезным препятствием. Крылатые аппараты в экспедиции на Марс предлагались еще в плане фон Брауна от 1948 года, но на тот момент не было точных данных о марсианской атмосфере. Когда они появились, стало понятно, что летать на Марсе будет весьма непросто. И только в 21 веке на его поверхности оказался Ingenuity, целью которого является проверка возможности полета аппарата тяжелее воздуха.


Схема Ingenuity, иллюстрация NASA

Ingenuity весит всего 1,8 кг, имея размеры 121х49 сантиметров. 121 — это как раз размах лопасти. Соосные вращающиеся в противоположные стороны лопасти выполнены из углеродного волокна и должны вращаться со скоростью от 2400 до 2800 оборотов в минуту, чтобы аппаратик смог подняться в марсианский воздух. Поскольку это тестовый стенд, Ingenuity не несет специальной научной аппаратуры, только две камеры. Невозможность прямого управления означает, что дрону дают общие инструкции, которые выполняет бортовой компьютер. Для навигации используются инерциальная система и лазерный высотомер. Много компонентов бытового уровня, например инерциальная система сравнима с теми, которые стоят в обычных смартфонах.

Дрон был выгружен из-под брюха Perseverance 3 апреля 2021 и девятнадцатого совершил первый полет. К концу 2021 количество полетов составило 18, пройдено 3,82 км. Рекорды Ingenuity: высота 12 м, 5 м/с (18 км/ч) скорость, 625 м расстояние за один полет.


Четырнадцатый полет, видео с нижней камеры

Ingenuity является аналогом Sojourner: после экспериментального подтверждения возможности летать на Марсе, в том числе и зимой (когда давление ниже, и скорость вращения лопастей пришлось повышать), можно отправить на красную планету более тяжелый летающий аппарат с научной нагрузкой. Сам же Ingenuity продолжает работу и помогает Perseverance, предоставляя виды района работы марсохода с высоты.

Заключение


В обзор не попали не полетевшие проекты самых разных аппаратов, но в будущем мы можем увидеть запуск и работу каких-нибудь новых планетоходов. Например, буквально несколько дней назад появилась новость о проекте летающего над поверхностью астероида зонда, который будет отталкиваться электростатическими силами и выглядеть как летающая тарелка. Будет очень любопытно увидеть не только летающие, ездящие, прыгающие, но и левитирующие земные аппараты.

Источник

Показать полностью 7 1
Космонавтика Марсоход Луноход Гифка Длиннопост Видео YouTube Ответ на пост Без звука
7
59
CBunny
CBunny
2 года назад
Исследователи космоса

Как передвигаться по другим планетам⁠⁠1

Статья Филиппа Терехова aka lozga

В замечательном научно-популярном фильме “Луна” Павла Клушанцева был эпизод с хождением по Луне на лыжах. Якобы поверхность покрыта хрупким слоем разной толщины, который не держит человека. А на лыжах ходить можно, но неудобно. Предсказание оказалось верным, но для Марса — там есть самые настоящие песчаные ловушки, в худшем случае даже прикрытые безобидно выглядящей коркой. На Луне же люди обошлись галошами, а луноходы — вполне пропорциональных размеров колесами. Вы, кстати, не задумывались, почему так получилось — на Земле по бездорожью часто ездит гусеничная техника, колесная обычно имеет худшую проходимость и привязана к дорогам, но вот луноходы и марсоходы ездят не на гусеницах, а на колесах? Сегодня мы поговорим про самые разные способы передвижения по другим небесным телам, про аппараты прыгающие, ездящие, летающие.


Марсоход Perseverance с вертолетом Ingenuity на Марсе, фото NASA

Реактивные двигатели


Схема аппарата Surveyor, иллюстрация NASA

Исторически первым аппаратом, который уже после посадки управляемо переместился, стал Surveyor 6. Программа Surveyor предназначалась для мягкой посадки на Луну, проверки технологий и изучения условий на лунной поверхности. Первый же стартовавший аппарат благополучно прилунился 2 июня 1966 года, на четыре месяца позже советской “Луны-9”, совершившей первую в истории мягкую посадку. Но если у аппаратов советской программы Е-6 на поверхности оказывался небольшой шарик с антеннами и камерой, то здесь посадку совершал почти весь запущенный зонд с жидкостными двигателями малой тяги и остатками топлива в баках.

Штатная процедура посадки выглядела следующим образом: с низкой земной орбиты аппарат переводили на траекторию столкновения с Луной. На высоте 75,3 км сбрасывалась антенна радиовысотомера, которая стояла в сопле тормозного двигателя, и включался твердотопливный тормозной двигатель. После того как он выгорал, корпус сбрасывался. Аппарат шел на посадку на жидкостных двигателях малой тяги, которые выключались на высоте 4,3 метра и околонулевой скорости снижения. Затем аппарат падал, амортизируя удар тремя стойками.

У Surveyor 3 на расчетной высоте не выключились двигатели, поэтому аппарат два раза подпрыгнул, но все-таки в итоге совершил мягкую посадку. Но это получилось случайно. А у Surveyor 6 спустя неделю после посадки специально решили включить двигатели. Они проработали 2,5 секунды, подняв зонд на 4 метра вверх и сдвинув на 2,5 метра в сторону. На отснятой после второй посадки панораме отлично видны три вмятины от посадочных опор и потревоженный выхлопом двигателей грунт.


Фрагмент панорамы Surveyor 6, NASA / Philip Stooke, University of Western Ontario

В последующие годы этот способ перемещения на других аппаратах не применялся. С одной стороны, он удобен тем, что, если мы садимся на Луну или другое тело без атмосферы, то нам потребуются и двигатели и система амортизации, которые затем можно использовать повторно. С другой — топливо для двигателей в очень большом дефиците, и чем больше притяжение на небесном теле, тем больше его будет расходоваться. Но сама концепция подпрыгивающих зондов является перспективной, и в истории реализовывалась, пусть и на других небесных телах и другим способом.

Галоши


Скафандр Нила Армстронга, справа лунные галоши, фото NASA

Исследования поверхности Луны, в том числе и манипуляторами Surveyor’ов, показали, что вполне можно обойтись без лыж. Также не сбылось предсказание из “Космического рейса” 1935 года: “старик мой на Луну собрался, холод там -270°, а валенки забыл”. Но вот дополнительная обувь, которую вполне можно назвать галошами, на Луне использовалась. Подошва скафандров была сравнительно мягкой и тонкой, к тому же на нее был нанесен слой липучки велкро, так что для дополнительной защиты от абразивного действия лунной пыли и температуры (стоит отметить, что астронавты садились утром, когда поверхность еще не успевала прогреться) были разработаны дополнительные ботинки, редкий элемент скафандра, который назывался просто “лунные галоши” без хитрых аббревиатур.

Конструктивно они были сделаны многослойными, можно отметить подошву из силиконовой резины, слои бета-ткани (стекловолокно, покрытое тефлоном) и хромеля-р (тканые нити из хромоникелевого сплава). На “Аполлоны” с 15 по 17 конструкцию изменили, хотя внешне они выглядели так же.

Багги


Ровер “Аполлона-15”

Миссии “Аполлонов” с 15 по 17 были увеличенной длительности, трое суток на поверхности вместо одних. Естественно, возникла идея добавить мобильности передвигающимся пешком астронавтам. Проблема — на лунном модуле был только один свободный угол в виде трехгранной призмы, куда этот ровер можно было поставить. Поэтому конкурс выиграли “Боинг” с “Дженерал Моторс”, инженеры которых изначально продумали, как упаковать в нишу и разложить на Луне ровер.



Конструктивно это был четырехколесный электромобиль весом 210 кг и запасом хода на примерно 92 км. Кроме того, что все остальные планетоходы имели шесть или восемь колес, ровер отличался уникальной конструкцией колеса. Поскольку резину в лунных условиях использовать невозможно, инженеры изготовили конструкцию обладающую свойствами обычного земного колеса, но из металла. Аналогом покрышки выступало полотно из сотканных вручную оцинкованных рояльных струн. Для лучшего сцепления с поверхностью по периметру полотна шли грунтозацепы в виде шевронов из титановых пластин. А прогиб полотна ограничивала металлическая конструкция внутри. “Покрышка” крепилась на сплошном алюминиевом диске. Колесо имело диаметр 81 см и ширину 23 см, на сегодняшний день это самые большие колеса, ездившие по другим небесным телам.


Колесо ровера в Национальном музее воздухоплавания и астронавтики в Вашингтоне, фото Tyrol5/Wikimedia Commons

Колеса крепились к корпусу поперечной индивидуальной торсионной подвеской. Все четыре колеса были ведущими, и все четыре могли поворачиваться. Это сильно помогло в первом же испытании ровера на “Аполлоне-15”, когда оказалось, что передние колеса поворачиваться не хотят. Для охлаждения батарей и электроники была создана очень остроумная и легкая по весу система. В процессе движения тепло отводилось в находящихся в отсеках батарей и электроники воск, который плавился и грелся. На остановке астронавты открывали радиаторы, которые излучали тепло, воск охлаждался и застывал обратно. Перед началом движения радиаторы закрывали, чтобы их не засыпало пылью. В первых двух высадках астронавтам запрещали удаляться на расстояние, с которого они бы не могли вернуться пешком, только в последней миссии, на “Аполлоне-17”, этот запрет был снят. Роверы проехали 27, 26 и 35 километров по поверхности соответственно. Еще одной особенностью была камера, которой можно было управлять из ЦУПа, и, благодаря которой, мы смогли увидеть старт взлетной ступени лунного модуля с Луны. А уже в 21 веке технологии стабилизации изображения дали нам возможность посмотреть на покатушки астронавтов (в данном случае “Аполлона-16”).



В общем, роверы доставили массу удовольствия астронавтам и прекрасно показали себя, позволяя разгоняться до 18 км/ч. По итогам эксплуатации самым слабым местом оказались крылья — неосторожные движения астронавтов их ломали. На “Аполлоне-15” проблему игнорировали, а на семнадцатом сообразили эрзац из подручных материалов.

Лунный трактор




Когда советские конструкторы из ВНИИТрансмаш стали проектировать луноход, было разработано как минимум четыре варианта шасси — гусеничные с двумя и четырьмя гусеницами, четырехколесное и восьмиколесное. И можно найти информацию, что изначально гусеничное шасси было фаворитом. Гусеницы позволяют сильно снизить давление на грунт (поэтому-то их и используют на танках), однако для планетохода у них обнаруживается множество недостатков. Прежде всего, гусеницы банально тяжелые. Далее, они обладают множеством точек, отказ которых приводит к потере всей гусеницы — ведущая звездочка, каждый палец между траками и каждый трак. Если гусеница порвалась или слетела — все, приехали, можно только поворачиваться на месте на оставшейся. А еще при обычном повороте на месте забившийся сбоку грунт может банально заклинить гусеницу. Так что по итогам испытаний оказалось, что лучше всего подходит восьмиколесное шасси.


Колеса лунохода в музее ВНИИТМ, источник. Если вы туда заглянете, то увидите, что аналогичные роверам колеса тоже исследовались

Каждое колесо имело диаметр 51 см и ширину 20 см. На трех титановых ободах была натянута стальная сетка, на которой закреплены грунтозацепы. На жестком грунте работали ободы, на мягком площадь касания увеличивалась за счет сетки, а грунтозацепы помогали движению. Обод соединялся с осью спицами. Внутри оси располагался электромотор с редуктором, все восемь колес были ведущими. На случай отказа мотора в каждой оси располагался пиропатрон — его подрыв разобщал мотор и редуктор с осью, чтобы не было сопротивления вращению. Колеса крепились на индивидуальной продольной торсионной подвеске.

Особенностью луноходов было прямое управление. Сигнал до Луны идет чуть больше секунды, что позволяет отдавать команды напрямую после некоторой тренировки. Хотя это было нелегкой работой, приходилось учиться думать на несколько секунд вперед. Экипаж луноходов состоял из пяти человек — водителя, командира, оператора остронаправленной антенны, штурмана и бортинженера. У луноходов было две скорости — 0,8 и 2 км/ч.


Луноход-1

“Луноход-1” совершил мягкую посадку 17 ноября 1970 и стал первым колесным аппаратом, катящимся по Луне (“Аполлон-15” был позже, в 1971). Он проработал 302 суток, проехал 10,5 километров и не проснулся после очередной лунной ночи. В последнем сеансе связи 14 сентября 1971 было зафиксировано падение температуры и давления в герметичном корпусе — для бортового радиоизотопного источника тепла и электроэнергии был выбран изотоп с очень коротким периодом полураспада, и он ожидаемо деградировал.

“Луноход-2” по конструкции не особо отличался от предшественника, самым большим новшеством была третья телекамера на высоте человеческого роста. Аппарат прилунился 15 января 1973, а последний сеанс связи с ним произошел 11 мая. Луноход погиб из-за ошибки наземного персонала — выезжая из кратера задним ходом не закрыли крышку, которая зачерпнула грунт, осыпавшийся потом на верхнюю часть герметичного отсека и нарушивший теплообмен. По современным подсчетам “Луноход-2” проехал 39 км.

Эксплуатация показала, что проблемой луноходов являлось знание окружающей обстановки — им бы не помешали панорамные камеры или камеры на манипуляторе. А вот к системе движения замечаний не было, конструкция благополучно справлялась с непростым лунным рельефом.

Одна конструкция на всех


Всех следующих наших героев объединяет одно технологическое решение — разработанная в Лаборатории реактивного движения NASA подвеска типа Rocker-Bogie. Bogie — это “тележка”, а rocker — “балансир”. То есть буквальный перевод — система “балансир-тележка”. Конструкция имеет массу достоинств — жесткая, без упругих элементов подвеска обеспечивает практически постоянный контакт с поверхностью всех шести колес и уменьшает наклон корпуса. Типовым решением также является поворот крайних колес, среднее поворачиваться не может.


Схема работы подвески, на анимации неточность, синий прямоугольник корпуса будет поворачиваться, но на половину между поворотами балансиров, анимация Maxxl2/Wikimedia Commons


Роверы Sojourner, MER и MSL, фото NASA

Первым, экспериментальным, аппаратом с этой подвеской стал марсоход Sojourner, севший на Марс в составе миссии Mars Pathfinder 4 июля 1997. Его масса составляла всего 11,5 кг. Для перемещения использовались маленькие колеса диаметром 13 см из алюминия со стальными шипами.


Анимация из фотографий посадочной платформы Mars Pathfinder, изображение NASA

Аппарат проработал 95 земных суток, последний сеанс связи был проведен 27 сентября 1997. За это время, двигаясь со скоростью до одного сантиметра в секунду (0,036 км/ч), Sojourner проехал примерно 100 метров, не удаляясь от посадочной платформы дальше двенадцати метров. Небольшая скорость связана не только с малыми размерами и мощностью, задержка связи до Марса составляет от 4 до 20 минут, поэтому прямое управление невозможно. Специальная группа готовила инструкции бортовому компьютеру, проверяла их правильность на наземном оборудовании, передавала на борт, и только потом они выполнялись. Аналогичный процесс использовался и на последующих аппаратах. Ровер показал пригодность выбранных технологий, и в полет стали готовить два более тяжелых аппарата Mars Exploration Rover — Spirit (A) и Opportunity (B).


Ровер MER, иллюстрация NASA

Платформа MER весила 185 кг и использовала колеса диаметром 25 см. Интересной особенностью было то, что в поперечном сечении колеса были выгнуты и напоминали не цилиндр, а бочку. Единственными амортизирующими элементами подвески были спиральные металлические спицы в колесе. Максимальная скорость движения составляла 50 миллиметров в секунду (0,18 км/ч), а реальная находилась в районе 10 мм/с (0,036 км/ч). Оба аппарата должны были проработать не менее 90 солов, но на порядки превзошли эти сроки.

Севшему первым 4 января 2004 “Спириту” повезло меньше. 16 марта 2006 отказало правое переднее колесо, и роверу пришлось начать ехать задом наперед. В каком-то смысле эта авария принесла и пользу — отказавшее колесо нарушало верхний слой грунта и иногда приносило научные сюрпризы. А 1 мая 2009 ровер въехал в “песчаную ловушку” — слой мягкого песка под коркой безобидно выглядящей поверхности, и застрял. Последующие многомесячные попытки вытащить засевший марсоход успехом не увенчались, даже несмотря на внезапно начавшее вращаться правое переднее колесо.


Spirit буксует, видео по фото с камеры ровера

В итоге марсоход объявили неподвижной научной станцией. Ситуацию осложнял тот факт, что Spirit застрял в неудачном месте. Оба марсохода на зиму старались ставить на южные склоны неровностей рельефа, чтобы солнечные панели, к тому времени уже серьезно запыленные, получали больше света. А вот наклон к Солнцу панелей “Спирита” был далеко не оптимальным. Последний сеанс связи провели 22 марта 2010, и затем уже ровер не откликался. Скорее всего, электроника замерзла и вышла из строя зимой.

Opportunity сел 25 января 2004, и уже первые метры стали посылать тревожные звоночки адекватности расчета системы передвижения — марсоход не смог выехать перпендикулярно стенке кратера Игл, в который приземлился, пришлось выезжать под углом. За последующие годы неоднократно были случаи, когда на пробуксовку терялось больше 90% оборотов колес, но марсоход все-таки преодолевал неприятный участок.



Opportunity на сегодняшний день является рекордсменом по пройденному расстоянию, которое составило 45,16 км. Последний сеанс связи состоялся 10 июня 2018 года. На Марсе в тот момент начиналась необычно мощная пыльная буря, которую марсоход не пережил. Миссию официально завершили 13 февраля 2019, спустя 5498 суток, когда стало ясно, что ровер не ответит.

С одной стороны, то, что аппараты смогли проработать до 60 раз дольше первоначально рассчитанного, говорит о высоком качестве инженерных решений. С другой, неоднократные случаи пробуксовывания и тот факт, что Spirit в итоге застрял, не может говорить о том, что система движения оказалась идеально приспособленной к местным условиям.


Curiosity на Марсе, селфи-панорама из снимков с камеры на манипуляторе, отлично видны столбики двигателей поворота на передних колесах

Следующим, третьим поколением марсоходов, стали Curiosity и Perseverance. Пусть их посадку и разделяют почти девять лет, платформа у них одна. Curiosity совершил посадку 6 августа 2012 года и активен до сих пор, проехав уже более 26 км. Его масса составляет 899 кг, максимальная скорость 90 метров в час (0,09 км/ч), средняя — 30 метров в час (0,03 км/ч). Более тяжелый ровер едет на колесах диаметром 50 сантиметров. Полотно “покрышки” выполнено из алюминия толщиной 0,7 мм (семь листов бумаги) и поэтому эластично. В качестве грунтозацепов и элементов жесткости используются выступы в форме шевронов. Полотно связано с осью титановыми спицами сложной формы.


Въезд в Хиддэн Вэлли

Серьезно забуксовать марсоход пока что не успел. В 2014 году он въехал было в место, названное Хиддэн Вэлли (“Потаенная долина”), и на фотографиях навигационных камер стало видно, что начинается та самая песчаная ловушка. Операторы не стали рисковать и тут же дали команду выходить задним ходом на твердую поверхность.

Самой большой проблемой системы движения Curiosity пока что является износ колесного полотна. На сегодняшний день на самом поврежденном среднем колесе не просто дыры, а потерян еще и один из девятнадцати шевронов. Пока что это не угрожает движению, и инженеры JPL считают, что критическое количество в 14 шевронов сломается примерно к 2034 году, но на будущее уже придумано решение: когда износ колеса станет критическим, Curiosity подъедет колесом к камню, включит мотор и обдерет полотно о камень, оставшись с узкой полоской, к которой прилегают спицы. Что любопытно, участок колеса для одометрии (измерения пройденного пути), тот самый, который отпечатывает морзянкой название лаборатории-изготовителя “JPL”, оказался прочнее, чем остальное полотно колеса.


Слева наиболее поврежденное колесо, справа наземные испытания аварийного сброса части колеса, фото NASA/JPL

18 февраля 2021 на Марс совершил посадку второй марсоход этого же типа — Perseverance. Основное изменение в системе движения — колеса. Их диаметр еще увеличили, до 52 см, заменили шевроны на волнообразные грунтозацепы, а расстояние между грунтозацепами уменьшили. Также убрали одометрическую “фичу” с морзянкой. Еще можно заметить, что стали шире спицы колеса. Аппарат проехал по Марсу пока что немногим больше 2 км, и говорить что-либо об успешности изменений рано.


Старые и новые колеса, иллюстрация NASA


Чжужун, фото со сброшенной камеры

22 мая 2021 на поверхность Марса совершил мягкую посадку спускаемый аппарат станции “Тяньвэнь-1” с марсоходом “Чжужун” (китайский бог огня). И здесь мы тоже видим уже знакомую нам подвеску типа Rocker-Bogie.

Посадка китайских луноходов и марсоходов, без сомнения, блестящее достижение Китая, но с инженерной точки зрения, если говорить о системе движения, оригинальных решений здесь, увы, не заметно. Учитывая, что по характеристикам марсоход близок к платформе MER — солнечные панели, масса 240 кг, такой же расчетный срок работы в 90 солов, будет интересно, как покажет себя китайский марсоход, будет ли он меньше буксовать и сколько времени сможет проработать.

Амбиции


Rosalind Franklin, рендер ESA

А вот европейские инженеры слишком амбициозны, чтобы повторять, пусть и хорошо работающую, подвеску. На марсоходе “Розалинд Франклин”, единственном герое нашего рассказа, который еще не стартовал, установлена оригинальная система движения из трех независимых тележек. Приглядитесь к изображению выше, хорошо видны три тележки: правая, левая и задняя, каждая с двумя колесами. Особенностью подвески являются также моторы на колесных колоннах, которые используются и при раскрытии подвески и позволяют уникальный, шагающий, способ движения.


Гифка из видео ESA, там еще много интересного

Одним из недостатков подвески Rocker-Bogie является значительная масса приводов, которые используются только один раз — при раскрытии подвески из транспортного положения в рабочее. Здесь же выполняющие аналогичную функцию моторы в режиме шагания дают возможность передвигаться по песчаным ловушкам без пробуксовывания. Аппарат должен стартовать в сентябре 2022 года в совместной российско-европейской миссии “Экзомарс”, в ее второй части. Марсоход доставит на поверхность российская платформа “Казачок”, которая после высадки марсохода должна будет проработать год стационарной научной станцией.

Лыжи все-таки были


ПРОП-М, источник

Аппараты, которые должны были передвигаться на лыжах, в истории космонавтики все-таки были. Это советские мини-марсоходы, названные “прибор оценки проходимости — Марс” — ПРОП-М. Они стартовали на аппаратах “Марс-2” и “Марс-3”. Небольшие, весом всего 4,5 килограмма, аппаратики были соединены с посадочной станцией кабелями длиной 15 метров. Из-за того, что прямое управление с задержкой сигнала до Марса невозможно, у них были элементы автономности — аппаратик проезжал полтора метра и ожидал дальнейших команд. На передней части были два датчика препятствий, если марсоход натыкался на камень, то пытался его объехать.



Увы, поездить по Марсу аппаратикам не пришлось — “Марс-2” разбился 27 ноября 1971, а “Марс-3” совершил мягкую посадку, но связь с ним пропала через 14,5 секунд.

Продолжение поста «Как передвигаться по другим планетам»

Показать полностью 25
Космонавтика Марсоход Луноход Гифка Длиннопост
11
16
anf770
anf770
2 года назад

Кто охотился за луноходом?⁠⁠

Кто охотился за луноходом?

Сорок с лишним лет тому назад, 17 ноября 1970 года, на Луну опустилась советская межпланетная станция «Луна-17», привезшая «Луноход-1». И вскоре он проложил по поверхности Селены первую в истории человечества «космическую колею».

Но знаете ли вы, с чего началась история «лунного трактора» и какие приключения с ним случались?

Кто придумал лунную танкетку? Долгое время имена инженеров, сконструировавших и построивших «Луноход-1» и «Луноход-2», держались в секрете. Правда, теперь мы знаем – первое транспортное средство для Луны было создано в конце 60-х годов XX века в бывшем «почтовом ящике», что базируется в подмосковных Химках, под руководством Г.Н. Бабакина.

А вот изобретено оно было еще раньше, в середине 50-х годов прошлого столетия. Звали человека, придумавшего луноход, Юрий Сергеевич Хлебцевич. Во время войны работал в засекреченном конструкторском бюро. А потом перешел на работу в Московский авиационный институт, где у него появилась возможность заняться проектами не только сегодняшнего, но и завтрашнего дня.

В ту пору журнал «Знание – сила» предложил своим авторам, среди которых был и Хлебцевич, посмотреть на мир как бы из года 1974-го. Вот тогда в печати и появилось первое упоминание о луноходе.

Появилось и… вскоре исчезло. Все публикации о «танкетке Хлебцевича» были изъяты из свободного доступа. Почему? Об этом ныне остается лишь догадываться. Скорее всего, запрет последовал потому, что где-то в недрах «королевского хозяйства» примерно в то время были начаты работы по созданию реальных луноходов. И шум в прессе на эту тему прекратили во избежание случайных утечек информации. У нас же любят всяческие секреты.

Но если это так, почему не пригласили к сотрудничеству самого Юрия Сергеевича? Объяснение этому может быть такое: Хлебцевич был не «из той системы». Возможно, С.П. Королев даже хотел привлечь специалиста, но сделать этого без согласия «компетентных органов» он не смог. И поручил освоение Луны Георгию Николаевичу Бабакину.

Кстати, в музее Научно-производственного объединения, которое ныне носит имя Г.Н. Бабакина, вам могут показать уникальный в своем роде экспонат – «Луноход-3». Два первых лунохода, как известно, остались на Луне. А вот «Луноход-3» туда не долетел. Потому как был спроектирован совсем для другой цели. Если бы на Луну, как намечалось, ступили наши космонавты – Валерий Быковский или Алексей Леонов, – они бы не только ходили, но и катались на специализированном транспорте. Для этого на «Луноходе-3» предусматривалась площадка, на которую мог стать человек в скафандре подобно тому, как располагаются водители на электрокарах. Однако советская лунная программа была свернута, и «Луноход-3» отправился в музей.

Однако мы несколько забежали вперед…

В поход, луноход! Сам же «Луноход-1» под руководством Бабакина был разработан в рамках секретной программы и представлял собой герметичный приборный отсек, смонтированный на 8-колесном самоходном шасси, изготовленном во ВНИИ «Трансмаш».

Как рассказывали мне конструкторы, были опробованы различные варианты шасси – на гусеницах, даже на механических ногах, но остановились, в конце концов, на привычных колесах с «баллонами» из металлической сетки. Хотя общая опорная площадь колес составляла всего 0,25 кв. м, а весил «Луноход-1» на Земле 756 кг, в условиях лунного притяжения, которое в 6 раз меньше земного, они обеспечили достаточную проходимость по лунному грунту.

Исследовательская аппаратура требовала поддержания температурного режима от 0 до 40 °C. Выдерживать его, когда на лунной поверхности –150 °C ночью и +120 °C днем, было непросто. Поэтому верхняя часть открывающейся крышки приборного отсека использовалась как радиатор охлаждения. В качестве испарителя применялась вода, а в воздушном контуре – азот. Источником же тепла служил ядерный подогреватель, работавший на изотопах. А электричество давала солнечная батарея, которая могла поворачиваться под разными углами для точного ориентирования на Солнце.

В передней части «космического джипа» располагались датчики и оптико-механические телекамеры для управления движением и фотографирования лунной поверхности.

Управляло «Луноходом-1» специальное подразделение Центра дальней космической связи в Крыму. В оперативную смену входило пять офицеров: водитель лунного аппарата, штурман, инженеры, следившие за работой антенны и бортового оборудования, а также командир расчета. Вместе с техническими специалистами и научными консультантами одна рабочая смена командования «Луноходом» составляла 30 человек.

Сложность управления заключалась в долгом прохождении радиосигнала; оператор наблюдал обстановку с опозданием в 2 секунды. Кроме того, из-за слишком низкой установки телекамер дальность видения «лунной трассы» составляла только 8 м, а потому скорость движения «Лунохода» не превышала 140 м/ч.

Тем не менее программа исследований лунной поверхности была успешно выполнена. Вместо запланированных трех месяцев «Луноход-1» проработал на Луне десять с половиной. За это время он проехал расстояние в 10 540 м и исследовал площадь в 80 тыс. кв. м.

Опыт создания и эксплуатации «Лунохода-1» затем пригодился для «Лунохода-2», а также был использован и на Земле. Во время ликвидации последствий взрыва на Чернобыльской АЭС позарез оказался нужен аппарат, способный работать в условиях жесткой радиации. В кратчайшие сроки специалисты из ВНИИ «Трансмаш» изготовили на основе лунохода безотказного робота, благодаря которому остались в живых многие ликвидаторы аварии.

Кому нужен «лунный джип»? Нынешний виток интереса к луноходам связан не только с приближающейся знаменательной датой, но и некоторыми примечательными фактами в истории луноходов.

Вспомним хотя бы, как в повести «Омон Ра» Виктор Пелевин рассказал жуткую историю о безногих камикадзе, которые, пройдя тренировки в подвалах Лубянки, отправились на Луну прямо в своих ватниках и катались там на луноходах, пока хватило сил. И воздуха…

Только улегся шум, поднятый этой фантастической историей, как по страницам СМИ прокатился очередной «девятый вал». Дескать, луноходы и впрямь оказались транспортом для прогулок. Только не людей, а тех «зеленых человечков», которые издавна приглядывают за нами с Луны. Ведь Селена-то на самом деле внутри полая и издавна служит им базой.

Именно лунатики, дескать, и содержат наши луноходы в идеальном порядке. В чем американцы недавно убедились с помощью новейшего лунного зонда Lunar Reconnaissance Orbiter, с высоты 50 км рассмотревшего, что «космический джип» в полной исправности стоит на поверхности Селены.

Правда, на снимках «Луноход-1» выглядит всего лишь как некая букашка величиной меньше муравья. А потому о том, что это именно наш «джип», профессор Том Мерфи и его студенты из Калифорнийского университета определили лишь с помощью уголкового отражателя – этакой открытой коробочки с тремя металлическими зеркалами, закрепленными перпендикулярно друг другу. Особенность отражателя состоит в том, что лазерный луч, попавший на зеркала, отражается в ту точку, из которой был выпущен.

На нашем самоходном аппарате был установлен французский уголковый отражатель. И первые эксперименты с его помощью были проведены в 1971 году одновременно в СССР и во Франции. Потом долгое время луноходом никто не интересовался. А когда три года назад американцы из NASA попытались его отыскать, то сразу сделать этого не смогли.

Дело в том, что точное местоположение лунохода было неизвестно ученым – в 70-х годах навигационная техника была развита хуже, чем сейчас. И отыскать аппарат, размер которого сравним с автомобилем «Ока», на расстоянии в 384 тыс. км – задача посложнее, чем отыскать иголку в стоге сена.

Все изменилось в 2009 году, когда американцы запустили аппарат Lunar Reconnaissance Orbiter (LRO), оснащенный камерой LROC, специально предназначенной для фотографирования объектов размером до нескольких метров. На одном из присланных им снимков специалисты и заметили подозрительный светлый объект. Определить, что пятнышко, которое запечатлела камера, – это автоматическая станция «Луна-17», помогли уходящие от объекта колеи. Их мог оставить только «Луноход-1». И, проследив, куда ведет след, ученые обнаружили аппарат.

Нужен же он оказался исследователям не более и не менее как для проверки теории относительности! Собственно, сам луноход как таковой специалистов не интересует. Единственная деталь, ради которой они годами разыскивали аппарат, – это установленный на нем уголковый отражатель.

Причем «Луноход-1» – не единственный аппарат на Луне, снабженный уголковым отражателем. Еще один установлен на «Луноходе-2», а три других были доставлены на спутник в ходе 11, 14 и 15-й экспедиций «Аполлон».

Мерфи и его сотрудники в своих исследованиях регулярно использовали их все пять отражателей. И ныне для проведения полноценных экспериментов ученым не хватало именно отражателя «Лунохода-1». Как объяснил Мерфи, все дело в местоположении аппарата, которое идеально подходит для проведения опытов по изучению характеристик жидкого ядра Луны и определения ее центра масс. Жидкие же «внутренности» Луны влияют на характер движения спутника (попробуйте вращать на столе вареное и сырое куриные яйца, и вы сразу увидите, как проявляется это влияние), и поэтому для получения точной картины необходимо выяснить, как именно Луна отклоняется из-за особенностей своего ядра.

Исследователям повезло – они «попали» в отражатель лунохода со второй попытки. К удивлению Мерфи и его команды, пришедший от «Лунохода-1» сигнал был очень интенсивным – в 2,5 раза сильнее, чем сигналы второго лунохода.

Таким образом, история «Лунохода-1», прервавшаяся 40 лет назад, получила неожиданное продолжение в наши дни. Такое вот техническое чудо…

«100 великих достижений в мире техники», Станислав Николаевич Зигуненко, 2008г.

Показать полностью 1
СССР Космос Луноход Виктор Пелевин США Длиннопост
1
14
leonnhome
2 года назад

Где-то я уже это видел...⁠⁠

Toyota и JAXA работают над управляемым луноходом для лунной программы «Артемида»

Тем временем 30 лет назад мы уже играли вот в это:

Показать полностью 1
Новости Детство 90-х Игрушки Космос Луна Артемида (космическая программа) Космонавтика Луноход
5
29
Tech.Talks
2 года назад
SpaceX

Mitsubishi присоединилась к проекту «Лунный крейсер»⁠⁠

Mitsubishi присоединилась к проекту «Лунный крейсер». Она вместе с Toyota, Honda и Bridgestone разработает передовой луноход
Согласно предварительным данным, габариты лунохода составят 6000 х 5200 х 3800 мм, площадь внутреннего пространства будет примерно равняться 13 м2. Внутри будут два посадочных места, а тяговая батарея нового поколения позволит проехать до 1000 км по поверхности Луны на одной полной зарядке.

Запустить пятилетнюю миссию на Луну с использованием передового лунохода планируют в 2029 году.
еще больше технологий тут - https://t.me/TechTalksZone

Показать полностью 1
[моё] SpaceX Технологии Луна Луноход Машина
1
260
H2OAsian
H2OAsian
2 года назад

Узбекский казан⁠⁠

Узбекский казан

БМ молчал, но это выбило из меня смех

Казан Узбекская кухня Космонавтика Юмор Повтор Картинка с текстом Луноход
13
160
bamperby
bamperby
2 года назад
Исследователи космоса
Серия Полезности:cоветы на все случаи жизни автолюбителя

Из чего делают колеса для космоса⁠⁠

Космические программы различных стран предполагают не только полеты человека в космос и его высадку на ближайших к Земле планетах и спутниках, но и транспортировку разной исследовательской техники, чьей задачей является сбор данных об иных мирах. К таковым относятся не только спутники, но и различная колесная техника вроде автономных роверов, высаженных на Луне и Марсе. Но так как среда на этих планетах сильно отличается от земной, колеса для луноходов и марсоходов сделаны по-иному принципу. Рассказываем…

Высадка на Луну

По состоянию на сегодняшний день Луна является единственным астрономическим объектом, на котором побывал человек. Это достижение стало результатом миссии «Аполлона-11» – американского пилотируемого корабля, в ходе полета которого с 16 по 24 июля 1969 года жители Земли впервые в истории совершили посадку на поверхность другого небесного тела. Это сделали астронавты Нил Армстронг и Эдвин Олдрин, которые оставались на лунной поверхности 2 часа 31 минуту 40 секунд.

Предтечей события стала успешная посадка советской исследовательской автоматической межпланетной станции «Луна-2», а также беспилотный облет земного спутника автоматической межпланетной станцией «Луна-3», сумевшей сфотографировать обратную сторону планетоида.

В результате данных экспедиций было установлено, что атмосфера и гидросфера на Луне практически отсутствуют, а поверхность спутника представляет собой смесь тонкой мелкодисперсной пыли и скалистых обломков, называемых реголитом, которые образовались в результате столкновений метеоритов с лунной поверхностью. Подобные ударно-взрывные процессы способствовали взрыхлению и перемешиванию грунта, одновременно спекая и уплотняя его частицы. Толщина слоя реголита составляет до десятков метров.

На основе полученной информации Научно-производственное объединение имени Лавочкина разработало конструкцию первого в мире планетохода, который был успешно доставлен на поверхность земного спутника 17 сентября 1970 года. Аппарат под названием 8ЕЛ № 203, также известный как «Луноход-1», был предназначен для изучения особенностей лунной поверхности, радиоактивного и рентгеновского космического излучения на спутнике, химического состава и свойств его грунта. Он проработал 302 суток и проехал 10.540 метров, после чего связь с аппаратом прервалась.

В 1971-м автоматическая межпланетная станция «Луна-21» доставила на спутник Земли «Луноход-2». За четыре месяца работы он прошел 42 километра (это расстояние оставалось рекордным до 2015 года, когда его превзошел марсоход Opportunity), передал на Землю 86 панорам и около 80 тысяч кадров телесъемки, но его дальнейшей работе помешал перегрев аппаратуры внутри корпуса.

Колеса обоих аппаратов состояли из трех титановых ободов, покрытых сеткой из нержавеющей стали и соединенных грунтозацепами. При этом сами колеса работали независимо друг от друга и не соединялись мостами. Такая конструкция оправдывала себя и была разработана с учетом борьбы с непреодолимыми препятствиями: в случае столкновения с таковым неспособное дальше двигаться колесо просто отбрасывалось, а луноход продолжал свое движение. К слову, данная способность ни одному советскому луноходу так и не пригодилась.

Любопытно, что каждое колесо данной техники имело собственный автономный электродвигатель, энергию для которого вырабатывали бортовые источники – полониевый радиоизотопный тепловой генератор и солнечная батарея на внутренней стороне крышки лунохода. Разворачиваясь, крышка одновременно открывала радиатор, необходимый для охлаждения приборов в герметичном контейнере.

Лунный ровер

Во время успешных экспедиций «Аполлон-15», «Аполлон-16» и «Аполлон-17», предпринятых американцами, данный вездеход, называвшийся Lunar roving vehicle, или LRV, использовался для более развернутого исследования местности. Этот транспорт представлял собой четырехколесный планетоход на электротяге, рассчитанный на двух пассажиров. Сконструировал его Ференц, а генеральным подрядчиком выступила компания Boeing.

Этот лунный электромобиль весил 210 кг и мог в условиях силы тяжести земного спутника перевозить груз в 490 кг. Рама его шасси достигала в длину 3 метра (колесная база – 2,3 м) и была сварена из алюминиевых труб.

Американский луноход оснащался четырьмя тяговыми двигателями постоянного тока производства Delco (по одному на каждое колесо) мощностью 190 Вт при совершаемых оборотах до 10.000 в минуту. В роли источника электроэнергии выступали две серебряно-цинковые батареи напряжением 36 вольт и емкостью 121 А*ч каждая. К слову, ввиду примитивности технологии по сравнению с современностью эти батареи не заряжались. Зато конструкция предусматривала возможность питания от этих элементов устройства связи или телекамеры. Кроме того, батареи и вся электроника были подключены к системе пассивного охлаждения.

При таком оснащении средняя скорость LRV по лунным ландшафтам составляла 13 км/ч. Однако это не было пределом возможностей данной техники: в ходе экспедиции «Аполлон-16» был установлен рекорд скорости передвижения по Луне, составивший 18 км/ч. Сами участники экспедиции признали, что такая скорость оказалась чрезмерной для спутника с иной силой притяжения, ведь малейший наезд на препятствие сопровождался сильной тряской и взбиванием больших фонтанов лунной пыли.

Также отметим, что максимальное удаление LRV от лунного модуля из соображений безопасности ограничивалось ресурсами индивидуальных систем обеспечения астронавтов, которых должно было хватить для пешего возвращения к модулю в случае поломки луномобиля. В итоге максимальное расстоянии во время экспедиций «Аполлон-15» и «Аполлон-16», преодоленное этим транспортом, составило 28 и 27 км соответственно (в обе стороны). В ходе этих исследований и лунный автомобиль, и скафандры астронавтов показали свою надежность, так что данное ограничение было смягчено. Во время экспедиции «Аполлон-17» это позволило группе исследователей удалиться от лунного модуля на максимальное расстояние 7,6 км, а общая протяженность пути составила 36 км, что до сих пор является рекордом среди планетоходов, пилотируемых человеком.

Покрышки для космоса

Колеса луномобиля были разработаны компанией General Motors. В основе их конструкции применялся алюминиевый диск, на который устанавливалась своеобразная покрышка диаметром 810 мм и шириной 230 мм. Она была выполнена из плетеной стальной проволоки (волокон) толщиной 0,84 мм с цинковым покрытием. При этом около половины площади такой покрышки занимал специальный титановый протектор для обеспечения более надежного контакта с грунтом. Над колесами луномобиля также устанавливались пылевые щитки, которые неоднократно доказывали свою эффективность, не позволяя экипажу и органам управления техники покрыться за считаные минуты мелкодисперсной пылью.

Данная технология полностью оправдала себя, ведь использовать традиционный при изготовлении колес каучук за пределами нашей планеты возможностей не было. Температурные перепады на поверхности Луны составляют от -170°C до +120°C, а дополнительное высокоэнергетическое радиационное излучение еще больше ускоряет деградацию резиновых элементов. Словом, выдержать длительное использование вне условий Земли никакая резина не может.

Также лунный автомобиль был оборудован собственной системой радио- и телевизионной связи. На его борту имелась остронаправленная сетчатая параболическая антенна для прямой связи с Землёй, а также ненаправленная антенна. На борту были установлены цветная телекамера, 16-миллиметровая кинокамера, а также 70-миллиметровая фотокамера, для которых имелся запас пленок в кассетах.

Интересно: цветная телевизионная камера с 6-кратным объективом-трансфокатором, установленная на луномобиле, была оснащена электроприводом для поворота в горизонтальной и вертикальной плоскостях и изменения фокусного расстояния, благодаря чему ею могли управлять не только астронавты, но и оператор с Земли. Это значительно расширило возможности видеосъемок и даже позволило заснять старт лунного модуля с Луны. Для выполнения такой съемки луномобиль пришлось заранее оставить на спутнике в нужной позиции и на таком расстоянии от модуля, чтобы в поле зрения его телекамеры он попадал целиком.

Детали: для второго пришествия американцев на спутник Земли спроектирован луноход VIPER, цельнометаллические колеса которого успешно прошли все тесты на симуляторе имитации лунного грунта. Учеными моделировалось передвижение по разным склонам и камням, проскальзывание колес – всего было применено 196 различных сценариев. Луноход VIPER разработан Исследовательским центром Эймса и будет использоваться для поиска полезных ископаемых и водяного льда в затененных областях Южного полюса Луны. Его планируют доставить на поверхность спутника спускаемым модулем Griffin в конце 2023 года.

***

Вот такое получается занимательное материаловедение во внеземных условиях. Надеемся, вам было интересно. В следующем материале на эту тему мы расскажем об особенностях колес марсоходов.

Показать полностью 10
[моё] Космический корабль Космос Научная фантастика Космонавты Марс Луна Космическая фантастика Планета МКС Планета Земля Спутники Галактика Космонавтика Техника Данные Колесо Луноход Марсоход Познавательно Интересное Длиннопост
19
2
Dernichtraucher
2 года назад

Spaceship⁠⁠

Показать полностью 4
[моё] Арт Луна Луноход Звезды Звездное небо Космос Длиннопост
1
Посты не найдены
О нас
О Пикабу Контакты Реклама Сообщить об ошибке Сообщить о нарушении законодательства Отзывы и предложения Новости Пикабу Мобильное приложение RSS
Информация
Помощь Кодекс Пикабу Команда Пикабу Конфиденциальность Правила соцсети О рекомендациях О компании
Наши проекты
Блоги Работа Промокоды Игры Курсы
Партнёры
Промокоды Биг Гик Промокоды Lamoda Промокоды Мвидео Промокоды Яндекс Маркет Промокоды Отелло Промокоды Aroma Butik Промокоды Яндекс Путешествия Постила Футбол сегодня
На информационном ресурсе Pikabu.ru применяются рекомендательные технологии