20 января 2025 года китайский экспериментальный термоядерный реактор EAST установил новый рекорд по удержанию электронной плазмы. Реакция поддерживалась 1066 секунд, что без малого в три раза дольше предыдущего рекорда. Почти всё это время температура плазмы была в районе 100 млн °C, что в шесть раз больше, чем в ядре нашей звезды. Недавно реактор завершил очередной этап модернизации и готов к новым рекордам.
Предыдущий рекорд реактор EAST (Experimental Advanced Superconducting Tokamak или токамак HT-7U), расположенный в городе Хэфэй провинции Аньхой, установил в апреле 2023 года. Тогда термоядерная реакция на установке поддерживалась 403 секунды с температурой плазмы 100 млн °C. Увеличение времени непрерывной работы реактора до 1000 секунд считается ключевым для достижения последующих целей как по увеличению времени поддержки высочайшей температуры плазмы, так и по повышению верхнего предела температуры.
Для запуска термоядерной реакции в Солнце сверхвысокие температуры не нужны. В ядре звезды «всего» 15 млн °C. Для сближения ионов водорода и запуска синтеза гелия ядра атомов должны сблизиться до включения в работу сильного ядерного взаимодействия, преодолев электрическое отталкивание. Кроме температуры в этом помогает сильная гравитация — масса самого Солнца (это воздействие также эквивалентно давлению). На Земле в камере реактора развить такое давление невозможно, поэтому приходится «давить» на ядра повышением температуры. И заявленные китайскими учёными 100 млн °C мало для запуска реакции на Земле.
Во всех предыдущих случаях речь шла о температуре электронной плазмы. В связи с рекордами китайских термоядерных установок об ионной плазме никогда отдельно не сообщалось. В то же время до 100 млн °C необходимо нагреть именно ионную плазму — это лишённые электронов ядра, которые, собственно, и вступают в реакцию синтеза. По каким-то причинам китайская сторона не спешит рассказывать о рекордах в разогреве ионной плазмы.
И всё же, новая планка высоты взята. Почти 18 минут реактор EAST поддерживал в камере температуру 100 млн °C. Это важно как с точки зрения поддержания стабильности установки (плазмы), так и с позиций отработки технологий и поиска новых методов работы с реактором, материалами и прочим, без чего невозможно движение вперёд.
Источник: 3dnews.
Upd: Так как для запуска термоядерной реакции необходима температура более 100 млн. градусов, то возможно мы станем свидетелями первого запуска термоядерного реактора 🤔
UPD:
Зачем вообще нужен этот термоядерный реактор какое у него практическое применение?
Термоядерный синтез давно будоражит умы. В теории такие электростанции могут быть вчетверо эффективнее современных атомных, при этом гораздо чище и безопаснее. У них нет проблем с неконтролируемыми цепными реакциями и сильно радиоактивными отходами, а топливом может служить морская вода.
#comment_338008665
Какой материал применяется для сдерживания такой большой температуры?
Ни какой материал не способен выдержать такую температуру, поэтому стенки токомака защищены сверсильным магнитным полем.
#comment_337972951
А не взорвётся?
Термоядерные реакторы безопасны. При любой катастрофе термоядерная реакция попросту прекратится без каких-либо серьезных последствий для окружающей среды или персонала, так как нечему будет поддерживать реакцию синтеза: уж слишком тепличные условия ей необходимы.
#comment_337953123
Как измеряют такую высокую температуру?
Для измерения температуры в токамаке используют различные методы, например:
Косвенные расчёты по магнитным свойствам плазмы. Этот метод основан на том, что с повышением температуры нагретой плазмы сопротивление уменьшается, и омический нагрев становится менее эффективным. Максимальная температура плазмы, достигаемая при омическом нагреве в токамаке, составляет 20–30 млн °C.
Использование лазера для прямого измерения температуры объёмных электронов с помощью томсоновского рассеяния. Для этого применяют лазер, который позволяет измерять температуру объёмных электронов, не прибегая к косвенным расчётам.
Инжекция нейтрального пучка. Этот метод предполагает введение высокоэнергетических (быстро движущихся) атомов или молекул в плазму, удерживаемую магнитным полем внутри токамака. Как только нейтральный пучок попадает в токамак, происходят взаимодействия с основными ионами плазмы. Этот вид нагрева не имеет внутренних ограничений по энергии (температуре), в отличие от омического метода.
#comment_337938155
Как вынуть полезную энергию с токомака?
Магнитное поле удерживает плазму в вакууме, не давая заряженным частицам вылетать за пределы "шнура" плазмы. А нейтроны наоборот не задерживаются и отдают энергию внутренним стенкам токамака, которые охлаждают водой. Поэтому пар можно направлять в турбину, как на электростанциях.
http://nrcki.ru/product/media-portal-nauchnaya-rossiya/-4562...
Вообще, есть какие-нибудь работы над способами альтернативного отбора энергии у горячих предметов, кроме как преобразовать воду в пар?
Например, для преобразования тепловой энергии в электрическую можно использовать эффект Пельтье. Он заключается в перепаде температур при взаимодействии термопар двух различных типов проводников (p-типа и n-типа) при прохождении через них постоянного тока. Разницу температур создают за счёт нагрева одной стороны (от печи или пламени) и охлаждения другой (вода в ковше). Чем больше разница, тем эффективнее работа модуля.
Также существует ряд проектов, позволяющих преобразовать в электричество свет, звук, вибрацию, трение, температуру, колебания температуры, электромагнитные волны и другие низкопотенциальные энергетические источники. Однако у этих решений два ключевых недостатка: энергии они дают мало и она дорогая.