Исследование показало, что волнообразные доменные границы управляют переключением поляризации в скользящих сегнетоэлектриках
В скользящих сегнетоэлектриках скорость движения доменных стенок аномально растет при понижении температуры, что указывает на уникальный механизм переключения поляризации с низкой диссипацией и сверхтекучей структурой доменных границ.
Скользящие сегнетоэлектрики представляют собой тип двумерного (2D) материала, который образуется при укладке неполярных монослоев — слоев толщиной в один атом, не имеющих электрического диполя. Когда такие слои накладываются друг на друга, они формируют сегнетоэлектрические материалы с самопроизвольной поляризацией, которая может переключаться под воздействием внешнего электрического поля, перпендикулярного слоям.
Исследование механизмов переключения поляризации в скользящих сегнетоэлектриках стало важной целью для учёных в области физики и материаловедения, поскольку это может открыть новые горизонты в разработке наноразмерной электроники и квантовых технологий.
Недавняя работа исследователей из Вестлейкского университета и Университета электронных наук и технологий Китая, опубликованная в журнале Physical Review Letters, выявила новый механизм, управляющий переключением поляризации в скользящих сегнетоэлектриках. В отличие от предположений, что переключение происходит за счёт синхронных сдвигов всех слоев, исследование показало, что это связано с волнообразными перемещениями доменных границ — границами между областями с противоположной поляризацией.
"Скользящие сегнетоэлектрики привлекли внимание благодаря своему потенциалу расширить семью ван-дер-ваальсовых сегнетоэлектрических материалов", — отметил старший автор статьи Ши Лю. Основная идея заключается в создании внеплоскостной поляризации в двумерных структурах путём наложения неполярных монослоев с тщательно настроенными смещениями.
Целью исследования было выяснить, как внеплоскостное электрическое поле может изменять поляризацию в скользящих сегнетоэлектриках. Лю и его команда использовали моделирование молекулярной динамики (MD) и разработали модель глубокого потенциала (DP), обученную на данных квантово-механических расчетов.
"Модель DP позволяет фиксировать сложные атомные взаимодействия, необходимые для реалистичного моделирования", — сказал Лю. Исследователи успешно смоделировали переключение поляризации, выявив, что внеплоскостное электрическое поле само по себе не может изменить поляризацию отдельного домена. Переключение происходит за счёт нарушения симметрии доменных границ, что обусловлено тензорной природой эффективных зарядов.
Кроме того, они обнаружили новый тип динамики доменных границ с аномальной температурной зависимостью: скорость их движения увеличивается при понижении температуры, что противоположно тому, что наблюдается в обычных сегнетоэлектриках. Это явление получило название "движение сверхтекучей доменной стенки", проводя аналогию с состоянием сверхтекучести в механических системах без трения.
Эти результаты могут послужить основой для дальнейших исследований скользящих сегнетоэлектриков и их применения в различных технологиях, включая наноразмерные устройства в криогенных средах. В будущих работах команда планирует изучить кинематику доменных границ при низких температурах, чтобы понять влияние квантовых эффектов на структурную динамику в этих материалах.







