Исследователи применили инструмент MIRI, установленный на космическом телескопе Джеймса Уэбба (JWST), для выявления ультрафиолетового излучения вокруг пяти молодых звёзд в регионе Змееносца и оценки его вклада в процесс звездообразования. Выявление такого излучения вблизи протозвёзд и его заметного воздействия на окружающее вещество представляет серьёзную проблему для теоретических моделей, объясняющих формирование звёзд.
Работа опубликована в издании Astronomy & Astrophysics, а среди участников команды были Ясон Скретас, аспирант Института радиоастрономии Макса Планка (MPIfR), и доктор Агата Карска (Центр современных междисциплинарных технологий при Университете Николая Коперника в Торуне, Польша, и MPIfR в Бонне, Германия).
"Наша цель заключалась в более детальном изучении протозвёзд — тех звёзд, которые ещё находятся в стадии формирования внутри родительских молекулярных облаков. По мере роста массы протозвёзды они извергают часть материала наружу в форме потоков", — объясняет Скретас. Эти потоки, известные как оттоки, служат самым ярким индикатором звездообразования. Специалисты продемонстрировали, что для точного понимания химических и физических процессов в этих молекулярных оттоках от молодых звёзд необходимо учитывать присутствие ультрафиолетового излучения.
"Это первое неожиданное открытие. Молодые звёзды неспособны генерировать излучение; они не могут 'создавать' радиацию. Поэтому мы не ожидали этого. Тем не менее, мы доказали, что ультрафиолетовое излучение появляется рядом с протозвёздами. Откуда оно берётся, является ли источник внутренним или внешним? Мы решили разобраться", — дополняет Карска.
JWST направил свои инструменты на молодые звёзды в созвездии Змееносца, используя прибор среднего инфракрасного диапазона MIRI. Молекулярное облако Змееносца, удалённое от нас на 450 световых лет, включает несколько звёзд типа B, которые очень молоды, горячи и интенсивно излучают в ультрафиолетовом спектре. Для подробного анализа были выбраны пять объектов, находящихся на различных расстояниях от этих массивных звёзд.
MIRI даёт возможность наблюдать космические объекты в диапазоне длин волн от 2 до 28 микрометров, включая множество линий молекулярного водорода (H₂), которые недоступны для наземных наблюдений из-за атмосферы Земли. JWST незаменим для таких исследований, позволяя регистрировать эти линии даже от слабых источников с высоким разрешением.
Для астрономов H₂ — ключевая молекула в космосе. Во-первых, она наиболее распространена, поскольку её количество в среднем в 10 000 раз превышает содержание монооксида углерода — второй по численности молекулы во Вселенной.
При этом структура H₂ сильно осложняет её наблюдение в молекулярных облаках, так как температуры там слишком низки для возбуждения молекулы. Однако выбросы молодых звёзд генерируют ударные волны, которые сжимают и нагревают вещество, вызывая яркое свечение H₂. Поэтому сочетание JWST и MIRI идеально подходит для исследования потоков от протозвёзд.
Анализ данных JWST из Змееносца чётко подтверждает присутствие ультрафиолетового излучения возле протозвёзд и их оттоков, обусловленное воздействием этого излучения на молекулярный водород. Это поднимает вопрос: откуда оно исходит? Связан ли источник с процессами непосредственно у протозвёзды? Например, с толчками, возникающими при падении вещества на протозвезду (аккреционные толчки), или с толчками вдоль звёздной струи?
"Одним из возможных объяснений было то, что ультрафиолетовое излучение приходит от соседних массивных звёзд, освещающих места рождения следующего поколения звёзд, поэтому мы начали с проверки этой идеи", — говорит Фридрих Выровски, также из MPIfR. Учёные использовали два подхода для оценки внешнего ультрафиолетового излучения. Первый опирался на характеристики окружающих звёзд и их удалённость от наблюдаемых источников. Второй основывался на свойствах пыли, способной поглощать ультрафиолет.
"С помощью этих методов мы установили, что ультрафиолетовое излучение с точки зрения внешних факторов сильно варьируется для наших протозвёзд, и потому мы должны были бы замечать различия в молекулярном свечении. Но этого не произошло", — добавляет Скретас.
"Таким образом, мы были вынуждены отвергнуть версию о внешнем источнике. Однако с уверенностью можно утверждать, что ультрафиолетовое излучение присутствует возле протозвёзды, поскольку оно явно влияет на наблюдаемые молекулярные линии. Значит, его происхождение должно быть внутренним", — заключает Карска.
Результаты работы подчёркивают необходимость интеграции механизмов генерации ультрафиолетового излучения в модели звездообразования. Дальнейший анализ данных JWST сосредоточится не только на газе, но и на составе пыли и льдов, предлагая дополнительные способы определения источника ультрафиолетового излучения вокруг протозвёзд.
Расширение числа наблюдаемых объектов, включая измерения на всех масштабах выбросов, станет ключевым этапом для установления более жёстких ограничений на зоны производства ультрафиолетового излучения.