Горячее
Лучшее
Свежее
Подписки
Сообщества
Блоги
Эксперты
Войти
Забыли пароль?
или продолжите с
Создать аккаунт
Регистрируясь, я даю согласие на обработку данных и условия почтовых рассылок.
или
Восстановление пароля
Восстановление пароля
Получить код в Telegram
Войти с Яндекс ID Войти через VK ID
ПромокодыРаботаКурсыРекламаИгрыПополнение Steam
Пикабу Игры +1000 бесплатных онлайн игр Классика карточных игр! Яркий геймплей, простые правила. Развивайте стратегию, бросайте вызов соперникам и станьте королем карт! Играйте прямо сейчас!

Дурак подкидной и переводной

Карточные, Настольные, Логическая

Играть

Топ прошлой недели

  • Oskanov Oskanov 9 постов
  • Animalrescueed Animalrescueed 46 постов
  • AlexKud AlexKud 33 поста
Посмотреть весь топ

Лучшие посты недели

Рассылка Пикабу: отправляем самые рейтинговые материалы за 7 дней 🔥

Нажимая «Подписаться», я даю согласие на обработку данных и условия почтовых рассылок.

Спасибо, что подписались!
Пожалуйста, проверьте почту 😊

Помощь Кодекс Пикабу Команда Пикабу Моб. приложение
Правила соцсети О рекомендациях О компании
Промокоды Биг Гик Промокоды Lamoda Промокоды МВидео Промокоды Яндекс Маркет Промокоды Отелло Промокоды Aroma Butik Промокоды Яндекс Путешествия Постила Футбол сегодня
0 просмотренных постов скрыто
5
MZTA
MZTA
8 месяцев назад
Автоматизация
Серия ПЛК

Виртуальные и программные ПЛК – тенденции рынка и прогноз развития до 2033 года⁠⁠

Приводим данные двух аналитических агентств Global Market Insights (GMI) и Global Insight Services (GIS) о рынке виртуальных (vPLC) и программных (Soft PLC) программируемых логических контроллеров. В обзоре разобраны вопросы преимуществ и недостатков данных типов контроллеров в сравнении с традиционными аппаратными ПЛК, указываются основные рыночные игроки, показывается географическая сегментация, приводятся тенденции рынка и прогноз развития до 2032 года.

Определения:

Программные ПЛК (Soft PLC) – это программная версия контроллера, запускаемая на устройствах и операционных системах общего назначения (чаще всего промышленные мини ПК или ПЛК на Linux с runtime-ядром) и превращающая такое устройство в полнофункциональный программируемый контроллер автоматизации (PAC). В отличие от традиционных «хард» ПЛК с закрытой системой и заданным фиксированным набором функций, программные ПЛК обеспечивают высокую степень персонализации и гибкость в процессе создания системы управления автоматизацией. Большая часть современных ПЛК – это Soft PLC, например, под CODESYS 3.5.

Виртуальные контроллеры (virtual PLC или vPLC) – это расширение концепции SoftPLC, который работает на виртуальной машине, управляемой гипервизором реального времени на сервере или многоядерном промышленном ПК. Виртуальные ПЛК не привязаны к конкретному оборудованию, их можно развернуть в существующей ИТ-инфраструктуре и легко масштабировать путем увеличения или уменьшения количества экземпляров виртуальных ПЛК в зависимости от потребностей в вычислительной мощности. Это особенно полезно для ресурсоёмких задач, таких как машинное обучение и искусственный интеллект.


Данные агентства GMI

Глобальный рынок виртуальных и программных ПЛК в 2023 году оценивался в $ 865 млн и, по прогнозам, будет расти в среднем на 13% в год в период с 2024 до 2032 года.

Внедрение технологий Индустрии 4.0 стимулирует спрос на виртуальные и программные ПЛК. Поскольку практически все отрасли вовлечены в цифровую трансформацию, данные виды ПЛК, интегрированные с существующими промышленными системами, облачными платформами и устройствами Интернета вещей (IoT), обеспечивают необходимый уровень коммуникаций и контроля на различных этапах производства. А гибкость и масштабируемость делают их незаменимыми для так называемых smart-производств (умных заводов), стремящихся повысить свою производительность, сократить время простоя и оптимизировать использование ресурсов за счет интеллектуальной автоматизации.

Растущая тенденция удаленного управления в промышленности является еще одним ключевым фактором роста. Виртуальные ПЛК, реализованные посредством облачных платформ, позволяют инженерам и операторам управлять и устранять неполадки в АСУ ТП из любого места. Эта возможность особенно ценна для отраслей с территориально распределенными сетями, например, в нефтегазовой промышленности, коммунальном хозяйстве и любых крупных холдингах. Осуществление удаленных операций в реальном времени может значительно повысить эффективность работы и сократить время простоя, способствуя ускоренному принятию данных продуктов на рынке.

Тенденции рынка виртуальных и программных ПЛК

Одной из самых значимых тенденций на рынке виртуальных и программных ПЛК является растущая интеграция с экосистемами промышленного интернета вещей (IIoT). Отрасли всё больше используют IIoT, где виртуальные ПЛК обеспечивают бесшовную связь между заводским оборудованием и облачными системами для обеспечения мониторинга, управления и аналитики в реальном режиме времени. Виртуальные ПЛК с поддержкой IIoT могут взаимодействовать с несколькими датчиками, устройствами и системами, обеспечивая централизованное управление и лучшее принятие решений, на основе полученных данных.

Облачные и периферийные вычисления меняют подход к промышленной автоматизации, а виртуальные ПЛК находятся в центре этих изменений. Облачные виртуальные ПЛК снижают зависимость от физической инфраструктуры и предлагают большую гибкость в масштабировании операций, а также обеспечивают быструю обработку данных и снижают задержки в критически важных приложениях. Такое сочетание стимулирует интерес к виртуальным ПЛК, особенно в отраслях, требующих управления в реальном времени, таких как автомобилестроение, интеллектуальное производство и коммунальные услуги, где локальная и удаленная обработка данных играют важную роль.

Еще одной новой тенденцией на рынке виртуальных и программных ПЛК является переход к платформам с открытым исходным кодом и стандартизации в автоматизации. Традиционные системы ПЛК часто привязывают пользователей к проприетарным решениям, а виртуальные и программные ПЛК все чаще разрабатываются на платформах с открытым исходным кодом, поддерживая взаимодействие между различными устройствами и системами. Эта тенденция позволяет отраслям кастомизировать решения автоматизации, снижать зависимость от поставщиков и достигать бесшовной интеграции между различными технологиями. Усилия по стандартизации, такие как принятие OPC UA (Open Platform Communications Unified Architecture), также способствуют совместимости между виртуальными ПЛК и различным промышленным оборудованием, еще больше ускоряя их принятие во многих секторах.

Анализ рынка виртуальных ПЛК и программных ПЛК

Одной из основных проблем, связанных с виртуальными и программными ПЛК, является повышенный риск кибератак, поскольку эти системы часто интегрируются с облачными платформами и подключаются к интернету. Зависимость от виртуальных систем делает их более уязвимыми для взлома, вредоносного ПО и других сетевых угроз. Отрасли, работающие с конфиденциальными данными или критической инфраструктурой, могут не спешить внедрять эти решения без надежных мер кибербезопасности. Эта уязвимость может замедлить темпы внедрения, особенно в секторах, где безопасность данных имеет первостепенное значение.

Распределение виртуальных и программных ПЛК по типу управления

Распределение виртуальных и программных ПЛК по типу управления

На основе типа уровня управления рынок виртуальных ПЛК и программных ПЛК делится на полевой уровень, уровень обработки, уровень контроля, уровень предприятия. Ожидается, что в течение прогнозируемого периода сегмент полевого уровня зарегистрирует совокупный среднегодовой темп роста (CAGR) более 13%.

  • Полевой уровень относится к физическому уровню, где датчики, исполнительные механизмы и другие устройства напрямую взаимодействуют с оборудованием и производственными процессами. Виртуальные и программные ПЛК соответственно управляют и контролируют эти устройства, обрабатывая данные в онлайн.

  • Конкуренция в этом сегменте сосредоточена на создании надежной связи в реальном режиме времени между программными системами управления и полевыми устройствами, что обеспечивает точность, скорость и гибкость системы. На рынке уже существует ряд компаний предлагают решения, которые обеспечивают бесшовную интеграцию с промышленным IoT, сочетая интеллектуальное производство с минимальной зависимостью от оборудования.

Виртуальные и программные ПЛК по типу размещения

Виртуальные и программные ПЛК по типу размещения

По типу развертывания данный рынок делится на On-premises и Cloud-based, т.е. на физические контроллеры, устанавливаемые на объектах и облачные ПЛК. Прогнозируется, что к 2032 году объем облачного сегмента составит $1 млрд.

  • Сегмент Cloud-based представляет собой будущее виртуальных и программных решений ПЛК, где программное обеспечение размещается и управляется на облачных платформах, предлагая такие преимущества, как масштабируемость, экономическая эффективность и удаленный доступ. Облачные PLC-системы позволяют осуществлять онлайн мониторинг, управление и анализ из любой точки мира, обеспечивая гибкость глобальных операций и предиктивную аналитику.

На рынке уже существует конкуренция между компаниями, предлагающими облачные решения, интегрируемые с промышленным интернетом вещей и аналитикой, предоставляя заказчикам возможность оптимизировать операции удаленно, одновременно сокращая расходы на инфраструктуру. Облачные решения особенно выгодны для организаций, стремящихся к быстрому масштабированию и внедрению аналитических данных в процессы автоматизации.

Региональные данные

Прогноз объема рынка виртуальных и программных ПЛК в США на 2024-2032 годы

Прогноз объема рынка виртуальных и программных ПЛК в США на 2024-2032 годы

Северная Америка доминировала на мировом рынке виртуальных ПЛК (vPLC) и программных ПЛК (soft PLC) в 2023 году с долей более 35%. США являются ключевым игроком на рынке, причем ведущие в стране секторы производства, энергетики и автомобилестроения стимулируют спрос на передовые технологии автоматизации. США наиболее активно развивают Индустрию 4.0, и виртуальные ПЛК все чаще внедряются на заводах для обеспечения мониторинга в реальном режиме времени, предиктивного обслуживания и масштабируемой автоматизации. Сосредоточение страны на облачной инфраструктуре и удаленных операциях, особенно в таких секторах, как нефть и газ и коммунальные услуги, привело к большей зависимости от виртуальных ПЛК, которые предлагают экономически эффективные решения для удаленного управления сложными промышленными системами. Присутствие крупных компаний автоматизации и поставщиков программного обеспечения в США еще больше ускоряет рост этого рынка.

Рынок Японии тесно связан с инновационным стремлением страны к таким инициативам, как Society 5.0, направленным на интеграцию передовых технологий, таких как IoT, робототехника и ИИ, в промышленный сектор. Ведущие производственные секторы Японии, включая автомобилестроение и электронику, все чаще обращаются к виртуальным ПЛК для повышения эффективности производства, оптимизации процессов и снижения эксплуатационных расходов. Ставка страны на робототехнику и интеллектуальные заводы также стимулирует спрос на гибкие решения автоматизации с применением виртуальных ПЛК. Кроме того, постоянные усилия Японии по борьбе с нехваткой рабочей силы посредством автоматизации стимулировали интерес к виртуализированным системам управления, которые можно интегрировать в существующую инфраструктуру с минимальным обновлением оборудования.

Рынок виртуальных и программных ПЛК Китая подпитывается правительственной инициативой «Сделано в Китае 2025», которая отдает приоритет внедрению передовых производственных технологий. Обширная производственная база страны, особенно в таких отраслях, как электроника, автомобилестроение и производство потребительских товаров, стремительно движется в сторону автоматизации для повышения производительности и удовлетворения растущего внутреннего и международного спроса. Виртуальные ПЛК все чаще развертываются в целях эффективной масштабируемой автоматизации, особенно на крупных интеллектуальных заводах. Внимание Китая к промышленному Интернету вещей (IIoT) и интеграции облачных платформ с промышленными системами управления также стимулирует внедрение виртуальных ПЛК.

Рынок виртуальных и программных ПЛК в Южной Корее значительно растет, поскольку внимание правительства к цифровым инновациям и интеллектуальному производству является основным драйвером внедрения данных типов контроллеров. Электронная и автомобильная промышленность страны в значительной степени автоматизированы, а виртуальные ПЛК обеспечивают повышенную гибкость, позволяя этим секторам внедрять инновации и оптимизировать свои производственные процессы. Инвестиции Южной Кореи в технологию 5G и промышленный Интернет вещей еще больше способствуют росту внедрения виртуальных ПЛК, поскольку отрасли ищут более быстрые возможности обработки данных в реальном времени. Интеграция ИИ и периферийных вычислений в промышленную экосистему Южной Кореи также является ключевой тенденцией, при этом виртуальные ПЛК играют жизненно важную роль в обеспечении этих технологий.

Производители виртуальных и программных ПЛК

В отрасли Virtual PLC и Soft PLC заметными игроками являются ABB, Beckhoff Automation и Rockwell Automation. Цена является ключевым фактором в связи с тем, что отрасли ищут экономически эффективные альтернативы традиционным аппаратным ПЛК. Такие компании, как Siemens AG и Honeywell, фокусируются на гибкости и простоте использования, в то время как Mitsubishi Electric и Omron Corporation подчеркивают бесшовную интеграцию с существующими системами автоматизации.

Дистрибьюторские сети и глобальное присутствие, особенно для таких компаний, как Emerson Electric и Delta Electronics, также играют важную роль в лидерстве на рынке, обеспечивая локализованную поддержку клиентов и быстрое развертывание решений в различных секторах. Улучшенная кибербезопасность, техническая поддержка и послепродажное обслуживание являются дополнительными конкурентными факторами, способствующими успеху на этом рынке.

Основными игроками в отрасли виртуальных и программных ПЛК являются:

  • ABB

  • Advantech

  • Beckhoff Automation

  • Bosch Rexroth

  • Delta Electronics

  • Emerson Electric

  • Hitachi Industrial Equipment Systems

  • Honeywell International

  • Koyo Electronics Industries

  • Lenze

  • Mitsubishi Electric

  • Omron Corporation

  • Phoenix Contact

  • Pilz GmbH & Co

  • Red Lion Controls

  • Rockwell Automation

Новости отрасли виртуальных ПЛК и программных ПЛК

  • В июле 2023 года Schneider Electric объявила о партнерстве с ведущими поставщиками программного обеспечения для улучшения интеграции программных ПЛК в их платформу EcoStruxure. Это сотрудничество направлено на предоставление клиентам более гибких и масштабируемых решений по автоматизации.

  • В сентябре 2023 года компания ABB представила новые решения виртуализированного управления, которые используют технологию soft PLC для улучшения процессов промышленной автоматизации. Эти решения направлены на улучшение реагирования системы и снижение эксплуатационных расходов.

  • В мае 2024 года Siemens представила новое решение виртуального ПЛК, разработанное для улучшения процессов автоматизации в производственных средах для развертывания на стандартном оборудовании, обеспечивая интеграцию с устройствами IoT.


Данные агентства Global Insight Services (GIS)

Ожидается, что рынок виртуальных и программных ПЛК вырастет с $1,5 млрд в 2023 году до $3,9 млрд к 2033 году, что соответствует среднегодовому темпу роста в 10%.

Рынок виртуальных ПЛК и программных ПЛК охватывает цифровую трансформацию традиционных программируемых логических контроллеров (ПЛК) в виртуализированные системы и программные решения. Этот рынок фокусируется на улучшении промышленной автоматизации с помощью гибких, экономически эффективных и масштабируемых альтернатив ПЛК. Он включает программные платформы, которые эмулируют аппаратное обеспечение ПЛК, обеспечивая бесшовную интеграцию с существующей ИТ-инфраструктурой, тем самым оптимизируя промышленные процессы, сокращая время простоя и поддерживая переход к парадигмам Индустрии 4.0 и интеллектуального производства.

Рынок виртуальных ПЛК и программных ПЛК демонстрирует устойчивый рост, обусловленный достижениями в области автоматизации и промышленной цифровизации. На этом рынке автомобильный сектор выделяется как сегмент с наивысшими показателями, обусловленный переходом отрасли к интеллектуальному производству и подключенным системам. Вторым по показателям подсегментом является нефтегазовая промышленность, где потребность в эффективном управлении и мониторинге процессов имеет первостепенное значение.

Географически Северная Америка лидирует на рынке благодаря раннему внедрению передовых технологий и значительным инвестициям в промышленную автоматизацию. Европа следует за ней, извлекая выгоду из сильной производственной базы и поддерживающей нормативно-правовой базы. Германия в Европе является ключевым игроком, используя свое инженерное мастерство и инновации в технологиях автоматизации. В Азиатско-Тихоокеанском регионе Китай становится значительным участником, подпитываемым быстрой индустриализацией и правительственными инициативами, продвигающими интеллектуальное производство. Эти тенденции подчеркивают динамичный характер рынка и выгодные возможности для заинтересованных сторон в различных секторах.

Сегментация рынка

В 2023 году рынок виртуальных ПЛК и программных ПЛК продемонстрировал устойчивый рост, объем рынка оценивается в 320 миллионов единиц. Сегмент виртуальных ПЛК занимает долю рынка в 55%, что обусловлено его адаптивностью и интеграцией с технологиями Индустрии 4.0. Программные ПЛК занимают долю в 45%, что подкрепляется их экономической эффективностью и простотой развертывания. Эта траектория роста подкреплена растущим внедрением автоматизации в различных секторах, включая производство и энергетику. Ключевые игроки, такие как Siemens AG и Rockwell Automation, играют ключевую роль, используя свои технологические достижения для захвата значительных долей рынка.

Конкурентная среда формируется стратегическими альянсами и инновационными предложениями продуктов. Нормативные рамки, особенно в Европе и Северной Америке, подчеркивают безопасность и совместимость, влияя на динамику рынка. Будущие перспективы многообещающие, с прогнозируемым среднегодовым темпом роста в 11% в период с 2023 по 2033 год. Ожидается, что инвестиции в НИОКР и интеграция ИИ и Интернета вещей будут способствовать дальнейшему прогрессу. Однако такие проблемы, как угрозы кибербезопасности и потребность в квалифицированном персонале, могут помешать росту. Рынок готов к расширению с возможностями в развивающихся экономиках и секторах, таких как интеллектуальная инфраструктура.

Географический обзор

Рынок виртуальных программных ПЛК демонстрирует значительный рост в различных регионах, каждый из которых вносит свой уникальный вклад в ландшафт. Северная Америка находится на переднем крае, движимая технологическими достижениями и интеграцией IoT в промышленные процессы. Соединенные Штаты с их прочной промышленной базой и акцентом на автоматизацию лидируют на этом региональном рынке.

Европа следует за ними, а такие страны, как Германия и Великобритания, возглавляют инновации в промышленной автоматизации. Акцент региона на Индустрии 4.0 и интеллектуальных производственных решениях стимулирует спрос на виртуальные и программные ПЛК. Этот акцент повышает операционную эффективность и снижает производственные издержки.

Азиатско-Тихоокеанский регион становится прибыльным рынком, во главе которого стоят Китай и Индия. Быстрая индустриализация и растущее внедрение технологий автоматизации стимулируют рост в этом регионе. Стремление к цифровой трансформации в производственных секторах еще больше ускоряет расширение рынка.

Латинская Америка, Ближний Восток и Африка также демонстрируют потенциал, хотя и более медленными темпами. Эти регионы постепенно внедряют автоматизацию для повышения производительности и конкурентоспособности. Ожидается, что инвестиции в инфраструктуру и промышленные секторы будут стимулировать будущий рост на этих рынках.

Последние события

Рынок виртуальных ПЛК и программных ПЛК переживает фазу трансформации под влиянием технологических достижений и меняющихся промышленных потребностей. Ценовые предложения значительно различаются – варьируются от 100 до 1000 долларов США в зависимости от функций и возможностей интеграции. Спрос обусловлен потребностью в гибких и масштабируемых решениях по автоматизации, особенно в таких секторах, как производство и энергетика.

Северная Америка и Европа находятся на переднем крае, внедряя эти технологии для повышения операционной эффективности и снижения затрат. Компании отдают приоритет простоте интеграции с существующими системами и надежным средствами отражения кибератак, которые становятся все более важными по мере цифровизации отраслей. Нормативные рамки, такие как те, которые обеспечивают стандарты кибербезопасности и взаимодействия, влияют на динамику рынка, устанавливая барьеры для входа и влияя на затраты на разработку.

Рыночный ландшафт формируют несколько тенденций. Переход к Индустрии 4.0 является значительным драйвером, поскольку отрасли стремятся использовать Интернет вещей и ИИ для интеллектуальных производственных процессов. Такие компании, как Siemens и Rockwell Automation, являются пионерами инноваций, предлагая комплексные решения, которые легко интегрируются с существующими промышленными системами. Более того, все больше внимания уделяется устойчивости, и решения, разработанные для оптимизации потребления энергии и сокращения выбросов углерода, набирают обороты.

Такие проблемы, как сбои в цепочке поставок и геополитическая напряженность, особенно в области доступности полупроводников, влияют на стратегии производства и ценообразования. Ожидается, что спрос на высокопроизводительные вычислительные возможности будет расти, особенно в секторах, переживающих цифровую трансформацию. Сотрудничество между технологическими гигантами и лидерами промышленности, например, партнерство Schneider Electric с Microsoft, способствует разработке передовых облачных решений PLC, продвигая рынок к более связанному и эффективному будущему.

Движущие силы рынка и тенденции

Рынок vPLC и Soft PLC переживает устойчивый рост, обусловленный увеличивающимся спросом на автоматизацию в различных отраслях. Ключевой тенденцией является интеграция технологий IoT и Индустрии 4.0, которая повышает эффективность работы и обработку данных в реальном режиме времени. Эта интеграция стимулирует внедрение виртуальных и программных ПЛК, которые обеспечивают гибкость и масштабируемость по сравнению с традиционными аппаратными решениями.

Еще одной важной тенденцией является растущее внимание к сокращению эксплуатационных расходов и времени простоя. Виртуальные ПЛК обеспечивают удаленный мониторинг и управление, что сводит к минимуму необходимость в обслуживании на полевом уровне и сокращает количество сбоев системы. Кроме того, заказчики предают большое значение энергоэффективности и устойчивой работе, что побуждает отрасли внедрять более адаптируемые и менее ресурсоемкие решения, такие как программные ПЛК.

Рынок также обусловлен достижениями в области облачных вычислений и технологий периферийных вычислений. Эти достижения облегчают бесшовную интеграцию с существующими системами и улучшают возможности анализа данных. Кроме того, растущая сложность промышленных процессов требует усовершенствованных систем управления, что повышает спрос на виртуальные и программные ПЛК. На развивающихся рынках, где промышленная автоматизация все еще находится на начальной стадии развития, открываются многочисленные возможности, что создает благоприятную почву для расширения.

Ограничения и проблемы рынка

Рынок виртуальных ПЛК и программных ПЛК сталкивается с несколькими существенными ограничениями и проблемами:

  • Основной проблемой является сложность интеграции виртуальных ПЛК с существующими устаревшими системами. Многие отрасли полагаются на традиционные ПЛК, что делает переход к виртуальным решениям громоздким и дорогостоящим.

  • Проблемы кибербезопасности также представляют собой значительное препятствие. Поскольку виртуальные ПЛК все больше подключаются к сетям, они становятся уязвимыми для сетевых угроз, что требует надежных мер безопасности.

  • Рынок также сталкивается с нехваткой квалифицированных специалистов. Экспертиза как в области ИТ, так и в промышленной автоматизации имеет важное значение, однако существует нехватка специалистов с такими междисциплинарными навыками.

  • Более того, первоначальные инвестиции для внедрения систем виртуальных ПЛК могут быть непомерно высокими. Этот финансовый барьер ограничивает внедрение, особенно среди малых и средних предприятий.

  • Наконец, отсутствует стандартизированные протоколы для разных платформ и поставщиков, что усложняет взаимодействие и препятствует бесшовной интеграции решений виртуальных ПЛК в различных промышленных средах.

Ключевые игроки:

  • Beckhoff Automation

  • Wago Kontakttechnik

  • B& R Industrial Automation

  • Advantech

  • Mitsubishi Electric

  • Omron

  • Schneider Electric

  • Siemens

  • Rockwell Automation

  • ABB

  • Yokogawa Electric

  • Emerson Electric

  • Honeywell

  • Hitachi

  • GE Automation

  • Bosch Rexroth

  • Fuji Electric

  • Delta Electronics

  • Panasonic Electric Works

  • Festo

Относительно новые игроки:

  • Soft Tech Automation

  • Virtual Dynamics

  • Code Flow Systems

  • Innovative Logic

  • Flex Control Solutions

  • Next Gen Automation

  • PLC Visionaries

  • Soft Circuit Innovations

  • Digital Control Group

  • Automation Edge

  • Smart Logic Systems

  • Virtual Control Technologies

  • Soft Wave Automation

  • Intelli PLC Solutions

  • Virtual Logic Labs

  • Control Soft Innovations

  • Advanced PLC Systems

  • Soft Tech Dynamics

  • Virtual Automation Hub

  • Smart Control Solutions


В заключение, в качестве пояснения рыночного тренда приводим диаграмму агентства IoT Analytics, на которой сравниваются тенденции на рынке пленочных и цифровых камер на рубеже 2000 годов с тенденциями на рынке hard ПЛК и soft ПЛК в нынешнее время. График позволяет сделать вывод: в промышленных средах аппаратное обеспечение всё чаще заменяется программным.

Прогноз объема рынка виртуальных и программных ПЛК в США на 2024-2032 годы

Прогноз объема рынка виртуальных и программных ПЛК в США на 2024-2032 годы


Материал подготовлен Московским заводом тепловой автоматики (МЗТА)

Показать полностью 4
[моё] ПЛК Программирование ПЛК АСУ ТП Автоматизация Софт Программное обеспечение Аналитика Длиннопост
7
9
youengineerasu
youengineerasu
9 месяцев назад

Узел автоматики теплицы. Микроклимат⁠⁠

Приветствую всех читателей.

Люблю вообще тему защищенного грунта, а в частности такие сооружения, как теплицы для выращивания овощей, фруктов и ягод. Лет 5 назад задавался вопросом, как это всё можно автоматизировать и упростить жизнь дачнику, огороднику и фермеру.

В 2020 году появился объект с реальными условиями - итальянская теплица на 5 соток. Там я проводил эксперименты работы автоматики, писал алгоритмы и подпрограммы для наиболее эффективного выращивания помидоров и огурцов.

Скажем так, эти алгоритмы бесконечные. Для каждого сорта и для каждой культуры свои условия. Но общий смысл работы улавливается.

С вами на связи автор канала, Гридин Семен, хочу в статьях сохранить след своих работ по автоматизации теплицы.

Занимался я этим вопросом несколько лет. Есть небольшие пробелы в работе автоматики теплицы. Хочется немного поделиться своим опытом и размышлениями. Если у вас будут предложения и вопросы, пишите в комментариях.

Основной функционал микроклимата

Основа микроклимата является поддержание температуры и влажности. С помощью каких исполнительных органов всё это делается? Форточкой, отоплением и вентиляцией.

Итак, основной функционал.

  1. Регулировка внутренней температуры теплицы путем автоматизированного проветривания с помощью фрамуги. По трём датчикам температуры - Тюг, Тсевер, Тнаружнего воздуха (Тн.в.). При чем по Тн. в. корректируется степень открытия форточки. Весной-осенью один режим работы, лето и зима другие режимы.

  2. Установка сервиса корректировки степени открытия на введенные показатели по силе и направления ветра.

  3. Включение внутренней вентиляции путем перекоса температур Тюг и Тсевер. Для выравнивания температур по всему объему.

  4. Уставки температур 4, для поддержания различных температурных условия жизненного цикла растения в сутки. Утром одна температура, днем 2-ая температура, вечером третья, ночью четвертая.

  5. Расчет времени восхода и захода солнца для правильной корректировки уставок температур в течении дня. Учитывается месяц для выращивания.

  6. Расчет положения форточки рассчитывается либо с помощью мат. аппарата, либо с помощью датчиков обратной связи(второй вариант лучше, потому что точнее).

  7. И в качестве доп. делал расчет дефицита водяного пара. Этот параметр говорит вам вообще о жизнедеятельности растения. Очень важная физическая единица.

  8. Датчики физ. величин возможно подключать как по цифровому интерфейсу, так и непосредственно на входы контроллера.

  9. Обязательно должны быть концевики на полное открытие и на полное закрытие форточки.

  10. Расчет точки росы и абсолютной влажности.

Какой контроллер?

Программы писались на промышленном ПЛК отечественного производителя фирмы ОВЕН.

Одна на CoDeSyS 3.5 для ПЛК200, другая на Owen Logic для Программируемых реле ОВЕН ПР.

Всё это вместе выводится в облако OwenCloud, для отчетности, мониторинга и анализа данных. Так же можно посмотреть графики и Архивы на 90 дней. Можно самому расписать логику работы аварий. Достаточно универсальная штука.

ПЛК200

ПР102

Разница между ними в сложности мат. расчетов и объёма передаваемых тегов в Облако.

Что в Облаке?

В облако можно вывести абсолютно любой параметр для записи и для чтения.

Используется OwenCloud.

Часть алгоритмов

Понятно, чтобы не быть голословным. Покажу часть алгоритмов.

Owen Logic.

ФБ для работы форточки в различных режимах.

Работа 4 уставок.

Пример работы в Codesys. Работа форточки.

Запись уставок Температур в зависимости от времени суток.

Подробнее можно посмотреть тут.

Показать полностью 7
Инженер Тестирование Программа Теплица Подземная теплица Асу АСУ ТП Асушник ПЛК Программирование ПЛК Яндекс Дзен (ссылка) Длиннопост
9
2061
SnowChipS
SnowChipS
9 месяцев назад
IT-юмор

IT vs АСУТП⁠⁠

IT vs АСУТП

С Новым годом всех АСУшников! Тем, кто встретил этот Новый год и планирует встречать Рождество на вахте, на месторождениях или производстве, на ПНР или в командировке - отдельный респект и уважуха! :)

АСУ ТП IT Программирование ПЛК Отличия Специалисты IT юмор Мемы
393
11
MZTA
MZTA
10 месяцев назад
Автоматизация
Серия ПЛК

Виртуальный ПЛК – следующий шаг в цифровой трансформации архитектур автоматизации⁠⁠

Приводим статью Дэвида Хамфри (David Humphrey) – директора по исследованиям аналитического агентства ARC Europe, в которой рассматривается появление программно-определяемой автоматизации на уровне контроллера и ее влияние на то, как АСУ ТП будут проектироваться, развертываться и управляться в будущем. Конкретно речь идет о виртуальных ПЛК (vPLC) – программных средств, эмулирующих функции физических программируемых логических контроллеров.

Информационные технологии оказывают влияние на системы промышленной автоматизации с момента появления Индустрии 4.0 более десяти лет назад. Эта инициатива показала ценности и преимуществам использования подобных ИТ архитектур, например, в процессах непрерывной оптимизации. Она также создала основанное на данных видение будущего, в котором продукты и производственные процессы моделируются и тестируются с использованием цифровых двойников. «ИТ-фикация» архитектур автоматизации началась с промышленных сетей на основе Ethernet и привела к слиянию на производстве классической автоматизации с миром ИТ. Эта тенденция продолжается, и сейчас мы наблюдаем миграцию управления со специализированного оборудования в управляемую ИТ-среду.

Базовые положения:

  • Виртуальный ПЛК (vPLC) не заменит полностью классические ПЛК (PLC). Они будут сосуществовать, поскольку пользователи сами решают, какое решение лучше и где его развернуть.

  • В программной среде vPLC дает множество преимуществ по сравнению с классическим PLC в таких категориях, как простота развертывания, управляемость, масштабируемость и гибкость. Однако эти преимущества будут реализованы только тогда, когда пользователи перейдут на действительно IT-подобные архитектуры и обучат свой персонал проектированию и эксплуатации.

  • vPLC – это всего лишь часть комплексного решения для архитектуры автоматизации, которая также включает инфраструктуру, приложения и сторонние компоненты.

От программного к виртуальному ПЛК

vPLC приобретается и загружается как приложение, а затем устанавливается и интегрируется в периферийную среду. Обычно производители ПЛК оставляют выбор оборудования для хостинга за пользователем, но предоставляют список справочного оборудования. В остальном новый vPLC ничем не отличается по функциональности от классических ПЛК.

Концепция, определяемая программным обеспечением: решения станут предоставляться в виде ПО и будут работать на стандартизированном оборудовании. 

Концепция, определяемая программным обеспечением: решения станут предоставляться в виде ПО и будут работать на стандартизированном оборудовании. 

Все началось с центров обработки данных

Центры обработки данных (ЦОД) были пионерами виртуализации. До виртуализации ЦОДы состояли из выделенных функциональных серверов, на которых работало одно приложение (база данных, электронная почта, файлообмен, CRM, ERP). Каждый сервер должен был администрироваться, настраиваться и масштабироваться индивидуально для поддержки максимального спроса, предъявляемого к его приложению или услуге. Виртуализация значительно сократила количество требуемых физических серверов, снизила потребление энергии и обеспечила лучшую видимость и управляемость ИТ-операций. Виртуализация серверов была первым шагом к сегодняшнему программно-определяемому центру обработки данных и инфраструктуре облачных вычислений.

Технология промышленной автоматизации следует по схожему пути. Для решений автоматизации эта трансформация означает консолидацию нескольких функций, таких как визуализация, управление производством или контроль партий товара, в виртуальных машинах, работающих на общей аппаратной и программной платформе (производственном сервере). В то время как электромеханические устройства, такие как датчики, приводы и двигатели, остаются на машине, традиционная функция ПЛК, установленного в щите автоматики, теперь виртуализирована в контейнере и развернута на сервере завода, рядом с другим программным обеспечением. Для рабочего в цеху ежедневная функция системы автоматизации должна оставаться прежней, но обслуживающему персоналу, возможно, придется освоить новые навыки для решения эксплуатационных проблем.

Как виртуальные ПЛК изменят автоматизацию?

Концепция виртуального ПЛК поднимает множество вопросов:

  • Является ли vPLC прямой заменой классического ПЛК?

  • Какова производительность?

  • Какие приложения останутся областью классического ПЛК?

  • Какие новые возможности создает vPLC?

Ниже приведены описания потенциальных преимуществ и предостережений vPLC.

Виртуальное развертывание

vPLC приобретается в магазине приложений, загружается и затем развертывается в контейнере на промышленной периферии. Платформы периферии обычно поддерживают приложения и устройства из постоянно растущей экосистемы продуктов и решений, в том числе от третьих лиц. Специализированные платформы предлагают инструменты для развертывания и мониторинга производительности активов и служб автоматизации, которые позволяют приложениям и устройствам легко взаимодействовать друг с другом, сохраняя при этом небольшой размер.

Развертывание для конечных пользователей

В то время как традиционные ПЛК развертываются вручную, часто с параметрами, также установленными вручную, vPLC развертываются как цифровые активы посредством «оркестровки», т.е. процесса автоматической настройки, предоставления и управления активами с использованием обычных ИТ-инструментов. После освоения определенных ИТ-навыков инженеры по автоматизации могут развертывать и контролировать целые парки контроллеров на машинах, линиях и целых заводах в смешанной конфигурации программно-определяемых и физических устройств. Крупный завод сегодня может включать несколько сотен ПЛК, поэтому потенциальная экономия средств, возможная при централизованном управлении активами автоматизации, огромна.

Развертывание для машиностроителей

Хотя большинство производителей предпочли бы поставлять устройства с идентичными конфигурациями и программами ПЛК, в реальности даже стандартные контроллеры часто модифицируются для удовлетворения требований клиентов. vPLC предлагает производителям несколько преимуществ: в то время как классическое оборудование ПЛК предлагается в разных форм-факторах и мощностях, vPLC поставляется только в одной «модели», которую можно масштабировать для соответствия требованиям каждого устройства.

Снижение капитальных затрат

vPLC работает на сервере, и пользователи могут сократить капитальные затраты, если несколько vPLC установлены на одном хост-устройстве. Выбор хостингового оборудования остается за пользователем, что возлагает на него ответственность за обеспечение соответствия требованиям приложений. Но сколько vPLC можно установить на сервере и каковы ограничения? Пользователи рекомендуют следующее: вычислительный кластер из 10 – 20-ти vPLC на сервер является реалистичным, но это зависит от того, какие функции выполняют vPLC. Жесткое управление движением с детерминированной производительностью – это испытание на прочность ПЛК. Виртуальный ПЛК выполняет стандартные задачи управления движением также, как и его аппаратные собратья, но для расширенного управления движением (координация нескольких сервоосей) производители рекомендуют применять классический PLC и использование выделенного технологического модуля (T-CPU).

Масштабируемость и гибкость

vPLC делают системы автоматизации более гибкими и масштабируемыми. Размер системы можно увеличивать или уменьшать, просто изменяя количество используемых экземпляров виртуальных ПЛК, а не устанавливая или удаляя физическое оборудование. Пользователи, которые платят только за контроллеры, используемые в данный момент – весьма привлекательная модель для производителей.

Управление устройствами и приложениями

Виртуализированные системы «оркестрируются» – это означает, что приложения и устройства могут быть быстро развернуты с помощью автоматизированных задач по настройке. Это позволяет эффективно развертывать, контролировать и управлять целыми парками программно-определяемых систем автоматизации, интеллектуальных устройств и приложений с использованием общих инструментов.

Поддержка прежних версий

Производители вложили огромные суммы в разработку кода ПЛК, поэтому неслучайно vPLC обычно поддерживают устаревший код и структуры данных, позволяя пользователям использовать свою существующую интеллектуальную собственность и знакомые инженерные инструменты. (Например, Simatic S7-1500V настраивается так же, как традиционный ПЛК). Это также работает в обратном направлении: пользователи могут легко переключиться на классический ПЛК, если это необходимо с тем, чтобы снизить риск изменений и осуществлять пошаговое развертывание.

Более высокая эффективность

Виртуальный ПЛК развертывается в промышленной среде – пространстве, где новые и устаревшие системы автоматизации интегрируются в ИТ-инфраструктуру. vPLC работает в среде, в которой приложения и устройства могут контролироваться централизованно, и которая способствует открытому обмену данных. Например, пользователи могут управлять и обслуживать производственное оборудование с помощью аналитических данных, которые помогают оптимизировать процессы и даже предсказать остановки и поломки до того, как они произойдут (предикативная аналитика). Эти возможности могут быть дополнительно расширены другими приложениями, такими как мониторинг, работающими на той же периферийной платформе.

Расходы на закупку и жизненный цикл

Является ли система автоматизации, использующая vPLC, менее дорогой в приобретении, чем традиционная система автоматизации? Как затраты на жизненный цикл сравниваются с затратами на традиционную систему PLC? Пока еще не решен вопрос о сравнении стоимости виртуального и классического PLC. Хотя vPLC по-прежнему требует аппаратного обеспечения для работы, пользователи могут развертывать несколько экземпляров vPLC на одном сервере, что сокращает общее количество устройств и экономит место в шкафу автоматики. Однако vPLC просто заменяет центральный процессор системы автоматизации. Модули ввода-вывода, датчики, исполнительные механизмы и панели оператора по-прежнему необходимы, и они могут составлять большую часть общей стоимости системы. Дополнительная экономия средств может быть достигнута за счет снижения затрат на проектирование с помощью подхода DevOps к созданию ПО, который сокращает время разработки, обеспечивая при этом качество и согласованность кода.

Заключение

В то время как виртуальный ПЛК является относительно новый продуктом на достаточно зрелом рынке дискретного управления, появление виртуально развернутого контроллера является частью более широкой картины в русле цифровой трансформации. По мере появления новых вариантов использования vPLC бизнес-кейс для систем автоматизации станет более убедительным.

Виртуальный ПЛК следует по давно устоявшемуся пути в области информационных технологий: «переносить hard в soft на столько, насколько это возможно», более того применяет этот принцип к критическому управлению, осуществляемому в режиме реального времени.

Цель vPLC заключается не в замене классического ПЛК, а в развертывании и управлении функциями ПЛК в среде, ориентированной на данные, со всеми преимуществами современных ИТ-инструментов.


Материал подготовлен Московским заводом тепловой автоматики.

Показать полностью 3
[моё] ПЛК Программирование ПЛК Автоматизация АСУ ТП Длиннопост
17
5
youengineerasu
youengineerasu
10 месяцев назад

Параметры автоматики теплицы⁠⁠

Приветствую, это параметры, которые можно вывести на ПК при автоматизации теплицы.

На ваш суд. Может что лишнее или добавить нужно?

АСУ ТП Программирование ПЛК ПЛК Инженер Асушник Теплица Промышленность Текст Видео Видео ВК
8
8
youengineerasu
youengineerasu
11 месяцев назад
Серия Программная среда CoDeSyS 3.5

Программирование СПК107. Журнал аварий⁠⁠

Приветствую всех. Эта статья будет посвящена дистрибутиву CoDeSyS 3.5 SP17 Pacth 3 и панельному контроллеру ОВЕН СПК107.

Как сделать журнал аварий?

Аварии. Начало

Аварии бывают разные - предупреждение, аварии и сообщения. Ну смысл такой, что их нужно где-то отображать и фиксировать для своевременного реагирования персонала на внештатную ситуацию.

В CoDeSyS 3.5 это достаточно глубоко продумано. Создаем проект. И добавляем в дереве проектов менеджер Аварий.

Добавляем Конфигурацию тревог.

Error, Info, Warning - это у нас классы, где мы настраиваем цвет сработанной аварии, цвет квитирования и цвет отмеченной аварии. и, соответственно шрифт текста.

AlarmStorage - это настройки хранилища, где будем архивировать аварии.

После этого добавляем группу тревог и список сообщений.

Получаем вот такой список элементов.

Настройки Конфигуратора и вывод на экран

Настраиваем классы аварий, цвет, шрифт, действия, способ квитирования.

В списке текстов пишем названия сообщений - под каждую переменную своё название. ID - это номер строки.

Дальше настраиваем группы аварий, каждая со своей переменной, сообщением и способом квитирования.

Вот так выглядит сама настройка. Можно выбрать разные способы наблюдений.

Можно по дискретному сигналу, можно по верхней и нижней границе, можно за пределы, можно посередине, можно по изменению, можно по событию. Логика настраивается.

Далее добавляем визуализацию, либо баннер либо таблицу.

Мне удобнее всего в виде таблицы. Её можно очень гибко настроить. Шапку, столбцы, толщина столбца, шрифт ну и т.п.

Можно сделать несколько групп и разные аварии, можно делать сообщения и аварии в отдельных таблицах. Кому как надо.

Это готовые кнопки управления панелью алармов.

Вот так выглядит в одном из рабочих проектов. Там требовалось сделать просто сообщения.
Пишите комменты, как делаете вы?

Показать полностью 16
Инженер Программа Windows Приложение Гайд ПЛК Программирование ПЛК Отдел АСУ КИПиА Я у мамы инженер Telegram (ссылка) Длиннопост
2
7
youengineerasu
youengineerasu
11 месяцев назад
Серия Программная среда CoDeSyS 3.5

Счётчики ПЛК c CODESYS: CTU, CTD и CTUD⁠⁠

ПЛК имеют счётчик с увеличением CTU, счётчик с уменьшением CTD и реверсивный счётчик CTUD. Счётчик увеличивает или уменьшает текущее значение, когда вход счётчика изменяется с «ложь» на «истина» или с ВЫКЛ на ВКЛ.

Каждое изменение входного сигнала счётчика увеличивает или уменьшает текущее значение на 1. Уставка счётчика — это числовое значение, определяющее диапазон счётчика. Счётчики используются для подсчёта изменений входных битов. Диапазон подсчитываемых битов определяется уставкой. Диапазон счётчика фиксированный.

Счётчик с увеличением (Up Counter) CTU в ПЛК

Счётчик с увеличением — это инкрементный счётчик. Когда вход счётчика изменяется с «ложь» на «истина», счётчик увеличивается на 1 до достижения установленного значения. Как только счётчик достигает установленного значения, выход счётчика Q включается. Ниже приведены входы и выходы для счётчика с увеличением:

Входы счётчика с увеличением:

  • CU: вход счётчика с увеличением, тип данных bool. Каждое изменение CU увеличивает счётчик на 1.

  • Reset: вход сброса счётчика. Когда Reset равен «истина», счётчик сбрасывается.

  • PV: установленное значение счётчика. Максимальное значение счётчика для подсчёта битов.

Выходы счётчика:

  • Q: выходной бит счётчика. Состояние Q становится «истина», когда текущее значение счётчика (CV) равно или больше установленного значения.

  • CV: выход счётчика. Это текущее значение счётчика.

Выше приведен пример счётчика с увеличением в ПЛК. Каждый нарастающий фронт CU увеличивает счётчик на 1. Когда значение счётчика (CV) равно или больше установленного значения, выход счётчика (Q) включается. Счётчик с увеличением сбрасывает текущее значение (CV) до нуля, если вход сброса счётчика включен. Текущее значение счётчика продолжает увеличиваться, даже если выход счётчика равен «истина».

Счётчик с уменьшением (Down Counter) CTD в ПЛК

CTD — это счётчик с уменьшением в ПЛК. При каждом нарастающем фронте счётчика с уменьшением значение счётчика уменьшается на 1. При инициализации счётчика или первом запуске установленное значение счётчика не задаётся, пока вход загрузки не станет «ложь», поэтому установите вход загрузки в «истина», чтобы задать установленное значение. Когда вход загрузки включен, установленное значение счётчика задаётся, и каждое изменение входа счётчика уменьшает значение счётчика на 1. Ниже приведены входы и выходы счётчика с уменьшением:

Входы счётчика с уменьшением:

  • CD: вход счётчика с уменьшением, тип данных bool. Каждое изменение CD уменьшает счётчик на 1.

  • LOAD: когда LOAD установлен в «истина», устанавливается предустановленное значение счётчика. В противном случае счётчик не уменьшается.

  • PV: установленное значение счётчика. Установленное значение счётчика задаётся, когда LOAD равен «истина».

Выходы счётчика:

  • Q: выходной бит счётчика. Состояние Q становится «истина», когда текущее значение счётчика (CV) равно нулю.

  • CV: выход счётчика. Это текущее значение счётчика.

Выше приведен пример счётчика с уменьшением в ПЛК. Установите LOAD в «истина», чтобы установить предустановленное значение счётчика, затем установите LOAD в «ложь». Если LOAD равен «истина» и вход счётчика (CD) изменяется с «ложь» на «истина», то текущее значение счётчика остаётся неизменным, поэтому всегда устанавливайте значение LOAD в «ложь», если установлено предустановленное значение счётчика.

Если значение счётчика установлено и вход LOAD равен «ложь», то каждый нарастающий фронт входа CD счётчика уменьшает значение CV счётчика на 1 до тех пор, пока значение счётчика не достигнет нуля. Как только значение счётчика становится равным нулю, выход счётчика Q устанавливается в «истина».

Реверсивный счётчик (Up/Down Counter) CTUD в ПЛК

CTUD — это инструкция реверсивного счётчика в ПЛК. CTUD работает как счётчик с увеличением и уменьшением при выборе соответствующего входа CTUD. Для счётчика с увеличением CU устанавливается в «истина», а все остальные битовые входы устанавливаются в «ложь».

Для счётчика с уменьшением бит CD включается и устанавливается предустановленное значение. CTUD — это комбинация счётчика с увеличением и уменьшением, он работает как счётчик вверх или вниз. Каждый нарастающий фронт входа CU увеличивает счётчик на 1, а каждый нарастающий фронт CD уменьшает значение счётчика на 1.

Выше приведен пример реверсивного счётчика в ПЛК. Все входы и выходы представляют собой комбинацию входов и выходов счётчика с увеличением и уменьшением. Реверсивный счётчик работает как счётчик с увеличением, если CD, LOAD, Reset установлены в «ложь», и вход счётчика CU изменяется с «ложь» на «истина», то счётчик увеличивает значение на 1. QU — это выход счётчика с увеличением, он устанавливается, когда счётчик (CV) больше установленного значения счётчика.

Реверсивный счётчик работает как счётчик с уменьшением, когда CU, RESET и LOAD равны «ложь», и установлено предустановленное значение или текущее значение счётчика больше нуля. Каждый нарастающий фронт уменьшает значение счётчика на 1. QD — это выход счётчика с уменьшением, он включается, когда текущее значение счётчика равно нулю.

Показать полностью 3
Инженер Электричество Энергетика (производство энергии) Энергия Асу Промышленность АСУ ТП Программирование ПЛК ПЛК Telegram (ссылка) Длиннопост
1
12
youengineerasu
youengineerasu
11 месяцев назад
Серия Программная среда CoDeSyS 3.5

Codesys 2.3. Связь ОВЕН ПЛК100 с ПЧВ⁠⁠

Приветствую. Принципы связи одни и те же. У любого производителя ПЛК и преобразователя частоты. У ОВЕН просто есть примеры реализации. Если их поймёте, всё остальное не составит труда.

Сторона Преобразователя частоты

В принципе частотник должен работать уже "из коробки".

Важно найти параметры настроек сети по интерфейсу RS-485. И, если есть настройки управления по коммуникациям, настроить их.

Пример ПЧВ.

Открываем мануал, находим раздел параметры связи.

Настраиваем в соответствии с ваши задачами. Тут сразу можно заметить адресацию нужных регистров.

После этого открываем раздел Modbus.

В каждом ПЧ есть два главных командных слова, всегда. На запись, и на чтение.

Слово записи. Команда управления ПЧ.

Слово чтение - состояние ПЧ.

Все разложено по битам, которое преобразуется в слово.

Все остальное - это регистры типа WORD. Опрашиваются и записываются соответствующими функциями 03 (чтение) и 06 (запись).

Не забываем настроить откуда пуск.

И откуда задание частоты.

Сторона ПЛК

На всех ПЛК практически всё однотипно. Надо знать карту регистров и по каким адресам "Просить и отдавать".

Нашёл пример в Codesys 2.3

Это мы отдаем команды, com_word_55 присваиваем адрес с мануала.(2001)

Это получаем. Адрес слова с мануала.(2002)

Вся другая адресация соответствует коду параметра.

На этом я всё. Пишите комментарии. Ставьте лайки.

Показать полностью 9
Программа Инженер Программирование Приложение Частотный преобразователь Программирование ПЛК КИПиА АСУ ТП Telegram (ссылка) Длиннопост
4
Посты не найдены
О нас
О Пикабу Контакты Реклама Сообщить об ошибке Сообщить о нарушении законодательства Отзывы и предложения Новости Пикабу Мобильное приложение RSS
Информация
Помощь Кодекс Пикабу Команда Пикабу Конфиденциальность Правила соцсети О рекомендациях О компании
Наши проекты
Блоги Работа Промокоды Игры Курсы
Партнёры
Промокоды Биг Гик Промокоды Lamoda Промокоды Мвидео Промокоды Яндекс Маркет Промокоды Отелло Промокоды Aroma Butik Промокоды Яндекс Путешествия Постила Футбол сегодня
На информационном ресурсе Pikabu.ru применяются рекомендательные технологии