MZTA

MZTA

Московский завод тепловой автоматики – российский производитель программируемых логических контроллеров и ПО средств автоматизации.
На Пикабу
Дата рождения: 01 мая 1968
поставил 597 плюсов и 0 минусов
отредактировал 0 постов
проголосовал за 0 редактирований
в топе авторов на 689 месте
4434 рейтинг 36 подписчиков 337 подписок 37 постов 3 в горячем

Минпромторг – задача разработки открытой АСУ ТП

Минпромторг – задача разработки открытой АСУ ТП АСУ ТП, Scada, Минпромторг, Импортозамещение, Автоматизация, Промышленная автоматика, Программное обеспечение

Министерство промышленности и торговли России обозначило задачу создания открытой автоматизированной системы управления технологическим процессом (АСУ ТП). Для обсуждения данного вопроса 23 июля 2024 года Минпромторгом проведена встреча с крупными холдингами – Ростелеком, Газпром нефть, АЛРОСА, Зарубежнефть, Северсталь, Сибур и другими компаниями, заинтересованными в применении ПО автоматизации в промышленности.

Темы обсуждения:

  • Разработка дорожной карты открытой АСУ ТП;

  • Обмен наработками компонентов открытой платформы;

  • Подготовка кадров для реализации новых решений.

Организации, присутствующие на встрече Минпромторга выразили намерение провести тестирование уже разработанных модулей открытой АСУ ТП, с тем чтобы ускорить создание национального стандарта в области автоматизации, объединяющего требования различных ведомств.


Московский завод тепловой автоматики считает, что открытая АСУ ТП крайне нужна и объясняет преимущества данного ПО следующими причинами:

  1. Заказчики получат российскую систему автоматизации и тем самым не будут зависеть от изменений конъюнктуры рынка вследствие некоммерческих факторов (импортозамещение).

  2. Создание АСУ ТП на открытом исходном коде (Open Source) должно дополнительно защитить ПО от ограничений.

  3. Открытая АСУ ТП может быть относительно легко адаптирована под требования конкретных заказчиков и соответственно учитывать отраслевую специфику.

  4. Открытая платформа создаст единую сквозную систему проектирования, которая обеспечит совместимость и взаимозаменяемость компонентов различных систем. В эту экосистему будут вовлечены не только промышленные гиганты, но и смежные предприятия, а по сути любые эксплуатирующие организации.

  5. Единая АСУ сэкономит деньги ведущих разработчиков, которые сейчас вынуждены самостоятельно искать решения автоматизации своих производств, выполняя по сути одну и ту же базовую работу по созданию ПО.

В качестве рекламы: МЗТА безусловно также работает в этом направлении и предлагает кроссплатформенную среду диспетчеризации – SuperSCADA. Ее выход был анонсирован в 2023-м году и сейчас уже находит применение в первых проектах. Напомним ключевые особенности ПО:

  • Работа с оборудованием любого производителя по стандартным протоколам обмена данными

  • Поддержка различных операционных систем и веб-браузеров – кроссплатформенность

  • Поддержка реляционных баз данных и баз временных рядов

  • Работа с трехмерными BIM моделями для проектирования зданий

  • Интеграция с ГИС системами

В этом плане МЗТА готов поделиться опытом со всеми заинтересованными сторонами: разработчиками, проектировщиками, заказчиками и организациями, эксплуатирующими автоматизированные системы управления.

Показать полностью

Как выбрать ПЛК?

Как выбрать ПЛК? ПЛК, Программирование ПЛК, Автоматизация, АСУ ТП, Scada, Длиннопост

При выборе программируемых логических контроллеров необходимо учесть множество переменных с тем, чтобы найти лучшее решение. В этой связи стоит рассмотреть основные факторы, приведенные на специализированном ресурсе PLC Table:

  • Требования к входам/выходам. Определите количество и тип точек ввода-вывода (аналоговые и/или цифровые), необходимых для вашего приложения. Учитывайте потребности в напряжении и токе, а также параметры датчиков, исполнительных механизмов и других устройств, которые необходимо подключить к ПЛК.

  • Скорость и память. Учитывайте сложность вашего приложения, а также объем вычислительной мощности и памяти, которые необходимы для запуска программного обеспечения. Для более крупных программ или приложений с большим количеством вычислений или сложных алгоритмов может потребоваться более мощный процессор и дополнительная память.

  • Коммуникации. Определите требования по связи вашего приложения, например, необходимость взаимодействия с другими системами управления, с человеко-машинными интерфейсами (HMI) или удаленными устройствами. Составьте список протоколов связи, включая Ethernet, Modbus, Profibus и др. и интерфейсов, которые должны поддерживать ПЛК со SCADA системами.

  • Условия эксплуатации. Учитывайте температуру, влажность, уровень вибрации и пыли в месте установки ПЛК. Выберите ПЛК, который соответствует необходимым стандартам и сможет стабильно работать в прогнозируемых условиях.

  • Техподдержка и поставки товара. Выберите ПЛК из надежного производителя и поставщика, который предлагает техническую помощь и обучение. Учитывайте репутацию контрагента в плане качества и обслуживания клиентов, а также наличия запасных частей.

  • Программное обеспечение. Учитывайте простоту программирования и доступность средств программирования и отладки контроллеров. Выберите ПЛК, который поддерживает знакомый вам язык программирования или имеет простую в использовании среду программирования.

  • Цена. И наконец, оцените стоимость ПЛК, которая включает в себя аппаратное обеспечение, программное обеспечение, монтаж и пуско-наладку. Затем выберите ПЛК, который предлагает необходимые функции и возможности, оставаясь в рамках вашего бюджета.

Типы ПЛК: какой лучше всего подходит для вашего проекта?

Производители выпускают различные разновидности ПЛК, каждый из которых имеет свои плюсы и минусы в зависимости от потребностей заказчиков. Вот несколько примеров распространенных типов и приложений ПЛК:

  • Компактные ПЛК. Компактные ПЛК подходят для объектов с ограниченным пространством или задач с небольшим количеством точек ввода-вывода. Они обычно используются в миниатюрных механизмах, конвейерах и автоматизации зданий.

  • Модульные ПЛК. Модульные ПЛК предназначены для изменения и расширения путем добавления модулей для дополнительных точек ввода-вывода, интерфейсов связи и других функций. Они подходят для приложений, которые имеют меняющиеся потребности или требуют высокой степени гибкости.

  • Стоечные ПЛК. Эти ПЛК предназначены для установки в обычную 19-дюймовую стойку для соединения с другими устройствами (стекирование). Чаще всего их можно увидеть на крупных промышленных объектах, таких как электростанции и химические перерабатывающие заводы.

  • ПЛК безопасности. Эти ПЛК разработаны в соответствии со стандартами и правилами безопасности и используются в приложениях, где безопасность имеет решающее значение, например, на производственных линиях или в тяжелом машиностроении. Дополнительные функции безопасности включают резервные процессоры, механизмы самодиагностики и встроенные протоколы безопасности.

  • Распределенные ПЛК. Такие ПЛК предназначены для использования соответственно в распределенных системах управления, например, на крупных промышленных предприятиях. Они могут работать в тандеме с другими ПЛК или системами для управления различными техпроцессами.

  • Высокоскоростные ПЛК. Эти ПЛК предназначены для АСУТП, требующих быстрого реагирования, таких как упаковочные линии или робототехника. Они часто включают в себя высокопроизводительный процессор и специальные модули ввода-вывода для обработки скоростных сигналов.

Рекомендации по программированию

При выборе ПЛК для конкретного применения соображения программирования имеют решающее значение, поэтому учитывайте следующие соображения:

ПО программирования. Ищите ПЛК с удобным программным обеспечением, простым в освоении и использовании. ПО, безусловно, должно быть совместимо с языками программирования и протоколами связи, которые требуются вашему приложению.

Интеграция с существующими системами. Если у вас уже есть система управления, выберите ПЛК, который легко с ней интегрируется. Отказ от внесения крупных изменений в систему управления сэкономит время и деньги.

Простота и ясность программирования. Найдите ПЛК с простым и понятным интерфейсом программирования. Язык программирования также должен быть простым и легким для понимания, иметь соответствующую документацию и помощь.

Совместимость с HMI. Ищите ПЛК, совместимый HMI, который вы уже используете или планируете использовать. Это гарантирует легкость включения ПЛК в систему управления и простоту интерфейса оператора.

Удаленный доступ и устранение неполадок. Рассмотрите ПЛК, который включает функции удаленного доступа и устранения неполадок, что позволит вашим специалистам, диагностировать проблемы и модифицировать систему управления без физического присутствия.

Совместимость с будущими обновлениями. Выберите ПЛК, совместимый с будущими обновлениями систем управления, такими как новые протоколы связи или обновления ПО автоматизации. Это гарантирует, что в будущем ПЛК можно будет просто модернизировать без значительных изменений в системе управления.

Дополнительные особенности ПЛК, на которые также следует обратить внимание

Возможности диагностики и устранения неполадок. Убедитесь, что ПЛК оснащен средствами диагностики и устранения неполадок для быстрого выявления дефектов и проблем. Это может помочь сократить время простоя и повысить эффективность системы управления.

Масштабируемость и расширяемость. Выберите ПЛК, который можно легко расширять и масштабировать в соответствии с меняющимися потребностями приложений. Это позволяет расширять ПЛК вместе с приложением, уменьшая необходимость замены контроллера в будущем.

Функции резервирования и безопасности. Ищите ПЛК с функциями резервирования и безопасности, такими как резервные процессоры, механизмы самодиагностики и встроенные протоколы безопасности, если приложение требует высокого уровня безопасности или надежности.

Стоимость проекта: баланс бюджета и производительности

При выборе ПЛК безусловно ключевым вопросом, который следует учитывать, является стоимость. Однако важно сбалансировать бюджет с требуемой производительностью и функциональностью, чтобы обеспечить эффективную и надежную работу системы управления. Некоторые соображения по поводу стоимости, которые следует учитывать:

Первоначальная стоимость. Учитывайте первоначальную стоимость ПЛК, которая включает стоимость оборудования, программного обеспечения и монтажа. Однако не делайте ошибку, выбирая ПЛК, основываясь главным образом на его первоначальной стоимости, поскольку это может привести к увеличению долгосрочных затрат из-за снижения надежности и эффективности.

Стоимость жизненного цикла. Посмотрите на стоимость жизненного цикла, которая помимо закупки контроллера включает в себя стоимость обслуживания, модернизации и замены в течение предполагаемого срока службы. Выбор высококачественного ПЛК с меньшими требованиями к техническому обслуживанию и более длительным сроком службы в конечном счете поможет снизить затраты на владение в течение его жизненного цикла.

Масштабируемость. Лучшим выбором будет ПЛК, функционал которого можно легко увеличить или уменьшить в зависимости от требований приложения. Это сэкономит деньги и устранит необходимость в полной замене системы управления в случае изменения требований.

Энергоэффективность. Учитывайте энергоэффективность ПЛК, поскольку это может повлиять на эксплуатационные расходы. Выбор энергоэффективного ПЛК может привести к снижению счетов за электроэнергию и снижению воздействия системы управления на окружающую среду.

Совместимость с существующими системами. Выберите ПЛК, совместимый с существующими системами, чтобы избежать замены всей системы управления. Однако это должно быть сбалансировано с необходимостью наличия высококачественного ПЛК, соответствующего требованиям приложения.

Гарантия. Ищите ПЛК, на который распространяется гарантия производителя или поставщика. Это может помочь снизить затраты на ремонт и быть залогом надежной работы системы управления на протяжении всего ее жизненного цикла.

Техобслуживание и поддержка

При выборе ПЛК критически важными моментами являются обслуживание, своевременная помощь поддержка, которые в конечном счете влияют на надежность и эффективность вашей системы управления. Вот некоторые вещи, о которых следует подумать при выборе ПЛК с точки зрения обслуживания и поддержки:

Требования к техническому обслуживанию. Учитывайте требования к техобслуживанию ПЛК, включая частоту работ по техническому обслуживанию и опыт, необходимый для их выполнения. Выбирайте ПЛК с низкими требованиями к обслуживанию и простым в обслуживании.

Обучение и документация. Для правильной эксплуатации и обслуживания вам потребуется ПЛК, сопровождаемый обучением и предоставлением пакета документации. Документация должна быть подробной и простой для понимания, с регулярными обновлениями для поддержания ее в актуальном состоянии.

Инструменты диагностики. Обратите внимание на ПЛК со встроенными диагностическими возможностями, позволяющими быстро выявлять дефекты и трудности. Это может помочь сократить время простоя и повысить эффективность системы управления.

Возможность обновления. Выберите ПЛК, который можно легко обновить до новейших технологий, таких как новые протоколы связи или обновления ПО. В результате ПЛК можно быстро модернизировать, не требуя серьезных изменений в системе управления.

Выбор поставщика

Надежный поставщик может предложить техническую экспертизу, высококачественную продукцию и быстрое обслуживание клиентов. Поэтому при оценке поставщиков для принятия обоснованных решений учитывайте следующие соображения:

  • Репутация. Ищите поставщика с высокой репутацией в отрасли. Проверьте отзывы других клиентов, чтобы убедиться, что поставщик имеет опыт предложения высококачественных товаров и услуг.

  • Техническая экспертиза. Выберите поставщика, который специализируется на ПЛК и системах управления. Поставщик должен быть в состоянии посоветовать лучший ПЛК для данного приложения, а также обеспечить техническую поддержку на всех этапах инсталляции и обслуживания.

  • Ассортимент. Выбирайте поставщика, который предлагает разнообразный выбор продукции. Это может помочь убедиться в наличии у поставщика ПЛК, подходящего для данного приложения, а также других сопутствующих товаров, таких как датчики, программное обеспечение и коммуникационное оборудование.

Наличие запасных частей. Ищите системы, для которых легко доступен ЗИП на случай отказа элементов оборудования. Это может свести к минимуму время простоя и обеспечить быстрое восстановление работоспособности системы.

  • Кастомизация и настройка. Обратите внимание на поставщика, который сможет адаптировать ПЛК к конкретным потребностям. Это позволит обеспечить эффективную и надежную работу системы управления в целом.

  • Цена и доставка. Учитывайте стоимость ПЛК и доставки, а также сроки доставки. Соответственно выбирайте поставщика, который обеспечивает разумные цены и своевременную доставку.

  • Обслуживание. Остановитесь в итоге на поставщике, который предоставляет комплексное сопровождение проекта и сопутствующие услуги: техподдержку, обучение, техобслуживание и ремонт. Поставщик должен оперативно реагировать на запросы и оказывать своевременную помощь с тем, чтобы гарантировать вам надежную работу всей системы.


Резюме

Инженеры и технические специалисты должны учитывать различные критерии при выборе подходящего ПЛК для конкретного приложения, включая требования самого приложения, тип ПЛК, особенности программирования, условия технического обслуживания и поддержки, соображения стоимости на основе чего следует сделать выбор подходящего поставщика. Важно сбалансировать бюджет с требуемой производительностью и функциональностью, чтобы обеспечить эффективную и надежную работу системы управления в течение всего срока ее службы.


Комментарий МЗТА

В условиях, когда с рынка уходят иностранные бренды, при выборе или замене ПЛК на аналоги важно обратить внимание на несколько ключевых моментов. Во-первых, большим преимуществом будет наличие технической поддержки и документации на русском языке. Быстрая поставка оборудования и запасных частей также является важным критерием. Во-вторых, желательно, чтобы программное обеспечение, на котором строится управление ПЛК, было совместимо с российскими операционными системами и антивирусными программами. Кроме того, ПО должно основываться или на открытом исходном коде, или написано собственными силами, что обеспечит возможность его модификации и адаптации под конкретные потребности и независимость от иностранных правообладателей. И наконец, производитель должен быть готов оказать поддержку заказчику в процессе миграции оборудования и ПО на новую систему.

Показать полностью

Показ моды для инопланетян

Межгалактический подиум, созданный нейросетью генерации коротких видео Runway Gen-3 Alpha

Логика на уровне датчиков: может ли она упростить автоматизацию?

Логика на уровне датчиков: может ли она упростить автоматизацию? Датчик, ПЛК, Программирование ПЛК, Автоматизация, АСУ ТП, Длиннопост

Датчики и сенсорные сети со встроенными логическими функциями могут снизить затраты и ускорить выполнение алгоритмов автоматизации. Ответ на вопрос, что это функции и когда они могут быть предпочтительнее обычной релейной логики ПЛК дает Остин Фатрелл (Austin Futrell) – инженер в области промышленной автоматизации в интернет-издании «Control Automation».

Логические функции, существующие в некоторых датчиках, представляют собой фундаментальные операции, которые обрабатывают входные сигналы для определения выходного сигнала. Эти функции помогают датчику принимать решения, применяя такие правила, как «И», «ИЛИ», «исключающее ИЛИ» или вентильные переключатели/триггеры.

Это позволяет датчикам реагировать или инициировать действия в зависимости от конкретных условий, не требуя от центрального процессора интерпретации данных. Логические функции позволяют датчикам комбинировать, изменять и анализировать входящие данные для получения полезных результатов на основе заранее определенных критериев.

Большинство датчиков не имеют встроенных логических функций. Эти логические функции чаще всего встречаются в датчиках с настраиваемыми протоколами, одним из типичных примеров является IO-Link. Конфигурация программного обеспечения IO-Link позволяет одновременно сравнивать несколько диапазонов сигналов, а конечный выходной сигнал, отправляемый на контроллер, соответствует условию сравнения, обеспечивая функции окна или переключения.

Датчики логических функций в сравнении с ПЛК

Хотя программируемые логические контроллеры невероятно универсальны и широко используются в промышленной автоматизации, существуют сценарии, когда ПЛК может быть не лучшим выбором для непосредственного выполнения логических функций.

Простые приложения автоматизации. Если ваши потребности в автоматизации относительно просты использование специальных датчиков со встроенными логическими функциями может быть более эффективным, чем развертывание более крупных систем ПЛК. Например, если вам нужно контролировать только несколько входов и активировать основные выходы на основе заранее определенных условий, использование датчиков со встроенной логикой может значительно упростить программирование.

Стоимость. ПЛК могут потребовать значительных вложений в закупку оборудования, программного обеспечения и обслуживания. Использование датчиков со встроенными логическими функциями может предложить более экономичное решение без ущерба производительности для проектов с ограниченным бюджетом.

Скорость выполнения программы. Каждый шаг в программе ПЛК увеличивает общее время цикла. Поэтому для простых логических сравнений количество строк кода можно сократить, выполняя логические вычисления непосредственно на датчике.

Общие логические функции

И (AND)

Эта функция использует логический элемент И в цифровых схемах. Элемент И – это фундаментальный цифровой логический элемент, который генерирует истинный выходной сигнал (1) только тогда, когда все его входы истинны. Эта функция важна для промышленных систем управления, где функционирование оборудования может зависеть от одновременного выполнения нескольких условий безопасности. Использование логических элементов И гарантирует, что все указанные условия будут выполнены до получения входного сигнала.

Логика на уровне датчиков: может ли она упростить автоматизацию? Датчик, ПЛК, Программирование ПЛК, Автоматизация, АСУ ТП, Длиннопост

Рисунок 1. На этом изображении показан логический символ «И». Входы «A» и «B» должны быть активны для подачи выходного сигнала «Q» 

ИЛИ (OR)

Логическая функция «ИЛИ» является фундаментальной операцией в цифровой логике. Его вывод истинен, если хотя бы один из входных данных истинен. Вы можете представить это как шлюз или ворота принятия решения, которые открываются, если какой-либо из указанных входных сигналов указывает на истинное состояние. Например, в простом сценарии с двумя входами, A и B, выход логического элемента ИЛИ будет истинным, если либо A, либо B (или оба) истинны. Эта функция обычно используется в схемах для моделирования сценариев, в которых несколько условий могут привести к одному результату, обеспечивая надежность систем, реагирующих на различные входные комбинации.

Логика на уровне датчиков: может ли она упростить автоматизацию? Датчик, ПЛК, Программирование ПЛК, Автоматизация, АСУ ТП, Длиннопост

Рисунок 2. На этом изображении показана логическая функция «ИЛИ». Если «A» или «B» получит активный сигнал, «Q» также подаст сигнал. 

Исключающее ИЛИ (XOR)

Логическая функция «ИСКЛЮЧАЮЩЕЕ ИЛИ» является фундаментальной операцией в цифровой логике. Выходной сигнал истинен, если только один из входных данных истинен. Другими словами, вывод истинен, если входные данные различны; если оба одинаковы, результат будет ложным. Думайте об этом как о воротах, через которые можно пройти только в том случае, если один из входных данных верен, но не оба. Например, если входной сигнал A истинен, а входной B – ложный, или если входной сигнал A – ложный, а входной B – истинный, выходной сигнал исключающего ИЛИ будет истинным. Однако, если оба входных значения одинаковы (оба истинны или оба ложны), результат будет ложным. Элементы XOR обычно используются в различных приложениях, включая обнаружение ошибок и обработку сигналов, где необходимо различать входные состояния.

Логика на уровне датчиков: может ли она упростить автоматизацию? Датчик, ПЛК, Программирование ПЛК, Автоматизация, АСУ ТП, Длиннопост

Рисунок 3. Изображение логического символа «исключающее ИЛИ» 

Закрытый SR-FF (Gated SR-FF)

Закрытый триггер установки-сброса можно сравнить с комнатой с двумя кнопками на стене: одна для включения света (кнопка установки) и другая для его выключения (кнопка сброса). Однако в этой комнате у двери также есть уникальный переключатель (переключатель ворот). Когда переключатель ворот включен, нажатие кнопки установки или сброса немедленно влияет на освещение. Но если переключатель ворот выключен, кнопки установки и сброса не будут влиять на освещение, пока переключатель ворот не будет включен снова.

Такое расположение позволяет точно контролировать, когда вступают в силу действия по установке и сбросу, добавляя гибкость в управление состоянием освещения. В цифровых схемах эта концепция используется для контроля выполнения определенных операций, обеспечивая точное время и координацию действий.

Логика на уровне датчиков: может ли она упростить автоматизацию? Датчик, ПЛК, Программирование ПЛК, Автоматизация, АСУ ТП, Длиннопост

Рисунок 4. Цифровая схема функции «Gated SR-FF» 

Примеры применения датчиков логических функций

Мониторинг окружающей среды в чистых помещениях. Поддержание оптимального качества продукции и предотвращение загрязнения имеют решающее значение в условиях чистых помещений. Датчики, оснащенные функциями обнаружения температуры и пыли, можно использовать с функцией ИЛИ для подачи сигнала тревоги, если температура превышает заданный порог или уровень пыли превышает определенный предел. Такой подход обеспечивает быстрое уведомление о потенциальных опасностях для окружающей среды, позволяя своевременно принимать меры для поддержания целостности контролируемой среды и соблюдения стандартов качества.

Автоматизированная проверка. Поддержание качества деталей важно в автоматизированном производстве, чтобы соответствовать отраслевым стандартам. Датчики с возможностью обнаружения температуры и визуального контроля могут иметь жизненно важное значение для обнаружения дефектов. Используя функцию ИЛИ, эти датчики могут инициировать оповещения, если температура детали превышает заранее заданный порог, вызывая деформации, или если во время проверки обнаруживаются визуальные аномалии.

Совместное использование ПЛК и датчиков логических функций

Сочетание ПЛК и датчиков со встроенными логическими функциями может быть вполне эффективным. Эти датчики помогают уменьшить сложность проводки ПЛК, упрощая настройку и сводя к минимуму потенциальные точки отказа. Кроме того, поскольку базовую обработку входных данных выполняют датчики, рабочая нагрузка на ПЛК снижается, что позволяет программистам сосредоточиться на более сложных задачах. Кроме того, в условиях ограниченного пространства компактный размер этих встроенных датчиков может оказаться полезным, если у вас нет места для двух датчиков.

Автоматизация управления заключается в использовании сильных сторон каждого компонента для создания надежной системы автоматизации, отвечающей конкретным требованиям проекта.


Комментарий МЗТА

В настоящее время датчики со встроенными логическими функциями на промышленных объектах используются не так часто. Обычно их применяют совместно с программируемыми логическими контроллерами, либо в системах обеспечения безопасности, либо в задачах, требующих высокой скорости обработки данных, где задержка на передачу данных в ПЛК может быть критической.

Чаще всего такие датчики используются на небольших локальных объектах или в бытовых условиях, где применение промышленных ПЛК экономически нецелесообразно и достаточно простых функций программируемого реле. Также эти датчики можно использовать автономно для расширения функционала установки, когда нет возможности изменить существующую программу ПЛК.

Показать полностью 4

Обновление SCADA: поэтапное или полномасштабное?

Обновление SCADA: поэтапное или полномасштабное? Scada, Программное обеспечение, АСУ ТП, Автоматизация, Апгрейд, Длиннопост

Каждый производитель должен провести собственный анализ, касающийся актуальности своей SCADA системы и выбрать правильный подход, исходя из 3-х факторов: бюджета, времени простоя и риска. Это краткая рекомендация по обновлению SCADA от Кейта Мендачита (Keith Mandachit) – сертифицированного инженера Ассоциации интеграторов систем управления (CSIA), опубликованная в журнале Automation World.

Поскольку аппаратные и программные технологии развиваются молниеносно и постоянно усложняются, мир промышленного производства и коммунальных услуг сталкивается с аналогичными вопросами относительно своих систем SCADA. В этом случае возникает вопрос: будем ли мы обновлять постепенно или полностью заменять существующие системы? Это вопрос, с которым промышленные предприятия постоянно сталкиваются. И ответ не простой. Это схожий вопрос, который решает человек, проживший в доме лет 20 и более: менять крышу, водонагреватель, посудомоечную машину, внешний вид дома или вместо этого купить новый дом?

Когда перед вами стоит потенциальный крупный капитальный проект обновления АСУ, следует учитывать три основных фактора:

Бюджет. Это первое и наиболее очевидное соображение для большинства компаний, когда они обдумывают реализацию любого проекта: сколько это будет стоить? Какова стоимость нового оборудования, программного обеспечения и лицензий для поддержки этого программного обеспечения? Есть ли необходимость в новом персонале для эксплуатации системы? Существует ли порог затрат, связанный с созданием новой системы с нуля? Есть ли у нас резервы в банке для такого рода модернизации или ремонта, или нам нужно начать откладывать некоторые средства уже сейчас для составления бюджета на предстоящий год? Затем следует подумать об анализе альтернативных издержек, и это приводит к следующему соображению.

Время простоя. Разбор аргументов в пользу полномасштабной или поэтапной модернизации SCADA может во многом зависеть от требуемых результатов и вашего производственного графика. Время простоя – это важная часть головоломки, если не самая значительная часть. Хотя полномасштабное обновление может быть включено в бюджет и обеспечит вам хорошую подготовку в будущем, необходимо провести анализ затрат/рисков того, во что обойдется простой.

Поэтапные обновления часто позволяют сократить время простоя или даже позволяют производству работать в обычном темпе, пока вносятся изменения. Полномасштабная модернизация, скорее всего, потребует более длительного простоя, но, возможно, позволит компенсировать потерянные производственные дни за счет большей эффективности и скорости работы.

Риск. Существует несколько способов оценить риск при оценке капитальных затрат, таких как модернизация SCADA. При поэтапном обновлении существует риск того, что ваша система не сможет воспользоваться всей эффективностью полной модернизации. Сочетание нового оборудования или программного обеспечения с устаревшими оборудованием или программным обеспечением может привести к тому, что вы не получите планируемых показателей эффективности и не достигнете производственных целей. Хотя ни одно обновление не обещает абсолютной оптимизации, сочетание старых и новых технологий может обеспечить выигрыш в таких целях, как повышение безопасности и эффективности только на 60 %, поскольку устаревшие компоненты могут ограничивать производительность системы.

С другой стороны, меньшие изменения в системе равны меньшему риску серьезных сбоев. Если вы выберете поэтапный подход к обновлению, четкая приоритезация критически важных компонентов и поэтапный подход сведут к минимуму ваш риск. Следование долгосрочному, поэтапному подходу, позволяющему в конечном итоге внести все необходимые обновления для повышения эффективности и долговечности ваших систем, может абсолютно успешно работать для некоторых компаний и сократить расходы на банковский счет, поскольку затраты распределяются на более длительный период времени.

Обновление SCADA: поэтапное или полномасштабное? Scada, Программное обеспечение, АСУ ТП, Автоматизация, Апгрейд, Длиннопост

В качестве совета: когда дело доходит до выбора поэтапного или полномасштабного подхода к обновлению вашей системы SCADA, не существует правильных или неправильных ответов. Единственное плохое решение – не решать.


Комментарий МЗТА: Каждый разработчик SCADA систем стремится облегчить процесс миграции на новую платформу путем совместимости своего ПО с распространенными программными средствами АСУ, имеющимися "на борту" большинства заказчиков. Не исключение и ПО диспетчеризации SuperSCADA – благодаря поддержке различных операционных систем (Windows, Linux, Android) и более десятка промышленных протоколов (Modbus, SNMP, MQTT, OPC UA, Profinet, МЭК-104, OPC DA, Kafka, Onnx, RabbitMQ, MSSQL), а также проприетарных протоколов данный софт позволяет осуществить миграцию на новую SCADA систему с относительно небольшими издержками и рисками.

Показать полностью 1

Изобретение радио. Часть 4

Изобретение радио. Часть 4 Радио, Изобретения, Видео, YouTube, Длиннопост

Беспроводная телефония

1904: Британский инженер сэр Джон Амброуз Флеминг (1849-1945) изобретает двухэлектродный радио-выпрямитель («диодный детектор» или вакуумный диод), который он называет колебательным клапаном. Созданный на основе лампочек Эдисона, клапан надежно обнаруживает радиоволны и считается первой электронной лампой.

1906: Ли Де Форест (1873–1961) изобрел трехэлементную вакуумную лампу, известную как триод, для лучшей обработки и усиления сигнала. Он назвал эту концепцию «аудио». Трансконтинентальная телефонная связь становится возможной благодаря патенту Ли Де Фореста в 1907 году на триод, или трехэлементную электронную лампу, которая усиливает сигналы электронным способом.

Патентные споры

Развитие радио стало возможным благодаря наблюдению различных явлений, связанных с передачей электромагнитных волн. С другой стороны, технология должна быть разработана с целью контроля и получения какой-то прибыли от таких явлений. В этом смысле можно считать, что существуют некоторые различия между терминами «изобретение радио» и «открытие радиофеноменов». Открытие радио как явления может быть связано с терминами, касающимися теории/исследования/демонстрации, а изобретение радио может быть связано с коммерцией, патентами и практическим применением. По этой причине следует считать, что изобретение радио нельзя приписывать только одному человеку, зная, что без первых открытий изобретение не могло бы существовать.

Изобретение радио, каким мы его знаем сегодня, стало возможным благодаря усилиям многих различных первооткрывателей и изобретателей, но во многих случаях возникает спор о том, кто был первооткрывателем, сделавшим возможным его изобретение и применение. Некоторые из этих имен: Гульельмо Маркони, Никола Тесла, Александр Попов, сэр Оливер Лодж, Реджинальд Фессенден, Генрих Герц, Джон Стоун Стоун, Амос Долбер, Махлон Лумис, Натан Стаблфилд и Джеймс Клерк Максвелл.

Описание Теслы завода на Лонг-Айленде и опись установки, как сообщалось в ходе апелляционного разбирательства по делу о лишении права выкупа заложенного имущества в 1922 году – Леланд И. Андерсон, стр. 171:

«Этот аппарат я использовал в своих лабораторных демонстрациях в двух лабораториях раньше, а также в экспериментах в Колорадо, где я построил беспроводную установку в 1899 году. 1894 или 1895 года. Это очень сложный и дорогой аппарат».

Проблема увеличения человеческой энергии – Никола Тесла – журнал Century Illustrated – июнь 1900 г.:

«Когда мы повышаем голос и слышим эхо в ответ, мы знаем, что звук голоса, должно быть, достиг отдаленной стены или границы и должен был отразиться от нее. Точно так же, как звук, электрическая волна отражается, и то же самое доказательство, которое дает эхо, дает электрическое явление, известное как «стационарная» волна, то есть волна с фиксированными узловыми и вентральными областями. Вместо того, чтобы посылать звуковые колебания к отдаленной стене, я. послал электрические вибрации к отдаленным границам земли, и вместо стены ответила земля. Вместо эха я получил стационарную электрическую волну, волну, отраженную издалека».

Джон Стоун Стоун (1869-1943) в книге «Джон Стоун Стоун о приоритете Николы Теслы в области радио и радиочастотных аппаратов непрерывного действия» 1915 г. (Вручение медали Эдисона Николе Тесле: протокол ежегодного собрания Американского института инженеров-электриков, состоявшееся в здании Инженерных обществ – Нью-Йорк - 18 мая 1917 г.):

«Я неправильно понял Теслу. Я думаю, что мы все неправильно поняли Теслу. Мы думали, что он был мечтателем и провидцем. Он действительно мечтал, и его мечты сбывались, у него были видения, но они относились к реальному будущему, а не к воображаемому. Тесла был первый человек, поднявший глаза достаточно высоко, чтобы увидеть, что разреженному слою атмосферы над нашей Землей суждено сыграть важную роль в радиотелеграфии будущего, факт, который должен был привлечь внимание большинства из нас еще до того, как мы Но Тесла также воспринимал то, чего многие из нас не видели в те дни, а именно, токи, которые текли от основания антенны по поверхности земли и в самой земле».

«Тесла, с его почти сверхъестественным пониманием явления переменного тока, которое позволило ему несколько лет назад совершить революцию в искусстве передачи электроэнергии посредством изобретения роторного двигателя, знал, как заставить резонанс служить, а не просто роль микроскопа. чтобы сделать видимыми электрические колебания, как это сделал Герц, но он заставил его служить стереооптикой, чтобы представить широкой аудитории зрелищные явления электрических колебаний и токов высокой частоты... Он сделал больше для того, чтобы возбудить интерес и создать разумное понимание этих явлений в 1891–1893 годах, чем кто-либо другой, и чем больше мы узнаем о высокочастотных явлениях, резонансе и излучении сегодня, тем ближе мы приближаемся к тому, к чему мы когда-то были склонны, посредством своего рода интеллектуальных близорукость, рассматривать как увлекательные, но фантастические рассуждения человека, которого мы теперь вынуждены, в свете современного опыта и знаний, признать пророком. Но Тесла был не просто лектором и пророком. Он следил за исполнением своих пророчеств, и было трудно сделать какие-либо, кроме незначительных, усовершенствований в искусстве радиотелеграфии, не пройдя хотя бы часть пути по пути, проложенному этим пионером, который, хотя и был чрезвычайно изобретателен, практичен, и успешный в работе с аппаратом, который он изобрел и сконструировал, настолько опередил свое время, что лучшие из нас тогда приняли его за мечтателя. Я так и не приблизился к тому, чтобы оценить то, что г-н Тесла сделал в этом искусстве, до очень позднего времени».

Г-н Флеминг в своей авторитетной книге о беспроводной телеграфии и телефонии отдает следующую дань уважения (Вручение медали Эдисона Николе Тесле: Протокол ежегодного собрания Американского института инженеров-электриков, проходившего в здании Инженерных обществ – Нью-Йорк – 18 мая 1917 г.): 

«В 1892 году Никола Тесла привлек внимание всего научного мира своими увлекательными экспериментами с электрическими токами высокой частоты. Он стимулировал научное воображение других, а также продемонстрировал свое собственное и вызвал широкий интерес к своим блестящим демонстрациям. Среди тех, кто был свидетелем этих событий, никто не смог лучше понять их внутренний смысл, чем сэр Уильям Крукс».

Изобретение радио. Часть 4 Радио, Изобретения, Видео, YouTube, Длиннопост

Одна из форм передатчика с искровым разрядником Николы Теслы 

Предполагается, что Гульельмо Маркони должен был прочитать о некоторых наиболее важных открытиях того времени в области электромагнитных явлений, чтобы быть в курсе событий. Самыми важными новостями на эту тему были об экспериментах, которые Герц проделал в 1880-е годы, когда он был в отпуске в 1894 году, и о работе Николы Теслы в только что вышедшей книге «Изобретения, исследования и сочинения Николы Теслы». Не кажется совпадением, что именно в тот же период времени Маркони начал понимать, что радиоволны можно использовать для беспроводной передачи сообщений на большие расстояния.

Синтонная беспроводная телеграфия – Гульельмо Маркони - Электрик - 24 мая 1901 г.:

Лейденская банка или цепь конденсатора, в которую включена первичная обмотка того, что можно назвать катушкой Теслы, вторичная часть которой соединена с землей или воздушным проводником. Идея использования катушки Теслы для создания колебаний не нова. Он был опробован должностными лицами почтового ведомства во время экспериментов с моей системой в 1898 году, а также предложен в описании патента г-на Лоджа от 10 мая 1897 года № 11.575 и профессора Брауна в описании патента, датированного Джа. 26, 1899, № 1862. Моя идея заключалась в том, чтобы связать с этим составным излучателем приемник, настроенный на частоту колебаний, создаваемых в вертикальном проводе конденсаторной цепью.

Изобретение радио. Часть 4 Радио, Изобретения, Видео, YouTube, Длиннопост

Синтонная беспроводная телеграфия - Гульельмо Маркони - Электрик - 24 мая 1901 г. 

Когда в 1897 году о Маркони стала писать английская пресса, Лодж заявил, что итальянским учёным ничего не было изобретено, поскольку в 1894 году, за год до Маркони, он уже доказал возможность беспроводной передачи данных на расстояние. В этих дебатах Лоджа поддержала большая часть британских физиков того времени. Он повторил свое утверждение несколько раз и полностью не согласился с главным инженером почтового отделения Уильямом Присом, которому он уже неоднократно бросал вызов в прошлом. В 1911 году компания Marconi проиграла короткую судебную тяжбу и была вынуждена приобрести патент Лоджа на синтонный тюнер US609,154A - Electric Telegraphy - 16 августа 1898 года.

10 ноября 1900 года Маркони запросил свой первый патент в США, но ему было отказано, заявив, что он использует идеи Теслы, что и происходило в течение следующих трех лет.

В 1903 году Патентное ведомство сделало следующий комментарий:

«Многие из заявлений не являются патентоспособными, поскольку зарегистрированные патенты Теслы под номерами 645 576 и 649 621, а поправка, направленная на устранение указанных ссылок, а также притворного незнания Маркони природы «генератора Теслы», почти абсурдна... термин «Осциллятор Tesla» стал нарицательным на обоих континентах (в Европе и Северной Америке)».

Внезапно, 28 июня 1904 года, «Патентное ведомство США» пошло наперекор своим предыдущим решениям и выдало Маркони патент США № 763 772 на систему радиопередачи с использованием настроенных схем. В то время, похоже, на это решение повлияли экономическая мощь его компании и ее престиж.

Никола Тесла будет бороться с патентным иском Маркони – New York Sun – 29 августа 1914 г.

Г-н Тесла заявляет о приоритете в патенте, по которому г-н Маркони подал иск - New York Herald – 1 сентября 1914 г.

Изобретение радио. Часть 4 Радио, Изобретения, Видео, YouTube, Длиннопост

Маркони на фото в 1896 году с одним из первых передатчиков и приемников Spark Gap, которые могли отправлять и принимать код Морзе

Еще в 1892 году Никола Тесла создал базовую конструкцию радио. Инженер (Отис Понд) однажды сказал Тесле: «Похоже, Маркони опередил вас» относительно радиосистемы Маркони, Тесла ответил: «Маркони — хороший парень. Пусть продолжает. Он использует семнадцать моих патентов». Многие люди считают Гульельмо Маркони отцом радио, но некоторые источники не упоминают Теслу за его достижения в передаче сигналов на большие расстояния до появления многих изобретателей того времени, а радио Тесла имело большую дальность действия по сравнению с радио Маркони. С другой стороны, во многих источниках также не упоминается, что он в некоторых случаях признавал заслуги Лоджа и Маркони и называл себя «беспристрастным наблюдателем» телеграфии Герца:
Тесла описывает свои усилия в различных областях работы – Никола Тесла – The Sun (Нью-Йорк) – 21 ноября 1898 г. – Electrical Review – 30 ноября 1898 г.

«Эта машина должна была просто заряжать и разряжать в быстрой последовательности тело, изолированное в пространстве, тем самым периодически изменяя количество электричества в земле и, следовательно, давление на всей ее поверхности. Это было не что иное, как в механике насос, заставляющий воду из большого резервуара в маленький и обратно. Первоначально я предполагал только отправку сообщений на большие расстояния таким способом и подробно описал схему, указав при этом на важность установления определенных электрических условий. Привлекательной особенностью этого плана было то, что интенсивность сигналов должна была очень мало уменьшаться с расстоянием и, по сути, не должна была уменьшаться вообще, если бы не происходили определенные потери, главным образом в атмосфере. мои предыдущие идеи, эта также получила трактовку Марсия, но она, тем не менее, составляет основу того, что теперь известно, как «беспроволочная телеграфия». Это утверждение выдержит строгую проверку, но оно сделано не с целью умаление заслуг других. Напротив, я с большим удовольствием отмечаю ранние работы доктора Лоджа, блестящие эксперименты Маркони и более позднего экспериментатора в этом направлении, доктора Слэби из Берлина. Эту идею я распространил на систему передачи энергии и представил ее Гельмгольцу по случаю его визита в нашу страну. Он без колебаний сказал, что энергия, безусловно, может передаваться таким способом, но он сомневался, что я когда-либо смогу создать аппарат, способный создавать высокие давления в несколько миллионов вольт, которые необходимы для решения этой проблемы с любым шансом на успех, и что я смогу преодолеть трудности изоляции».

Tesla On Lodge's Priority – New York Sun – 7 апреля 1902 г.

Менее спорно, чем важность его устройств в беспроводной телеграфии.

Никола Тесла вернулся вчера в Нью-Йорк со своего завода на Лонг-Айленде и был замечен репортером Sun в связи с заявлением профессора Сильвануса Томпсона о том, что и Маркони, и Слави обязаны Лоджу своими открытиями в области беспроводной телеграфии, а не всем, что у них есть. возник.

«Достойно сожаления, что так много выдающихся людей вступают в битву по этому поводу, сказал г-н Тесла, особенно когда в этом нет необходимости. Все факты по делу можно легко установить, просмотрев записи».

«Что касается телеграфии Герца, я был бескорыстным наблюдателем, поскольку посвятил себя своей собственной системе. Но в общих чертах я знаю, что Лодж дал первые описания некоторых устройств, известных как когерер и таппер, которые впоследствии использовались другие. Лодж пионер великой силы, и я сам часто признавал, что я в долгу перед ним в других областях работы».

«Тем не менее, я считаю, что опубликованные работы профессора Слэби об аппарате Герца заслуживают величайшего уважения, которое каждый должен без колебаний оказывать ему, поскольку он никогда не упускал возможности должным образом признать работу других».

«Я не согласен с профессором Томпсоном в отношении важности, которую он придает когереру и таперу, поскольку я тщательно протестировал эти устройства и доказал, что они недостаточны для осуществления практически быстрой телеграфии».

«Когерер инструмент удивительной чувствительности, но есть и другие устройства, которые лучше подходят для использования в настроенных цепях во всех случаях, когда надежность действия является важным фактором».

«Совершенно очевидно, что цепи Герца, отделенные от земли искровыми разрядниками и дроссельными катушками, используемые Лоджем и другими, по сути неработоспособны, поскольку они не допускают ни передачи эффектов на значительное расстояние от источника».

Изобретение радио. Часть 4 Радио, Изобретения, Видео, YouTube, Длиннопост
Изобретение радио. Часть 4 Радио, Изобретения, Видео, YouTube, Длиннопост

Итальянский изобретатель заявил права на все первые патенты на радио, но не придал должного значения достижениям Теслы. Так или иначе, патент был снова передан в пользу Теслы в 1943 году, после того как власти получили доказательства из документов, но Тесле было уже слишком поздно защищаться, поскольку благородный изобретатель уже ушел (январь 1943 года). Опять же, к такому результату привели экономические и монетарные причины, а не технические. Маркони потребовал выплаты Соединенным Штатам за использование его патента во время Первой мировой войны, что было сочтено возмутительным и привело к ответным мерам.

Тесла первым изготовил радио, остальное было запатентовано. Катушка Теслы, изобретенная в 1891 году, до сих пор используется в радио-, телевизорах и другом электронном оборудовании.

Передача электрической энергии без проводов как средство укрепления мира – Никола Тесла – Мир электротехники и инженер – 7 января 1905 г.

«Более того, я недавно узнал из ведущего британского журнала по электротехнике («Электрик», Лондон, 27 февраля 1903 г.), что некоторые экспериментаторы отказались от всего своего и «перешли» на мои методы и приборы без моего одобрения и одобрения. Я был одновременно удивлен и огорчен поражен беспечностью и недооценкой этих людей, огорчен неспособностью, проявленной в конструкции и использовании моего аппарата, однако мои большие надежды, порожденные этим прекрасным журналом, еще не оправдались. ибо я удостоверился, что Его Величество Король Англии, Его Превосходительство Президент Соединенных Штатов и другие лица, занимающие высокое положение, в конце концов не удостоили меня нетленной чести милостиво снизойти до использования моих катушек и трансформаторов. и высокопотенциальные методы передачи, но обменялись своими августейшими приветствиями по кабелю старомодным способом. Что на самом деле было достигнуто с помощью телеграфии Герца, можно только предполагать».

«Мой аппарат», говорит Тесла – New York Times – 20 декабря 1907 г., стр. 4, кол. 4.

Мой аппарат, говорит Тесла

Однако я уверен, что беспроводная телефония вполне возможна.

Редактору «Нью-Йорк Таймс»:

Я с большим интересом прочитал сообщение в вашем сегодняшнем выпуске о том, что датский инженер Вальдемар Поулсон, изобретатель интересного устройства, известного как «телеграфон», преуспел в точной передаче беспроводных телефонных сообщений на расстояние 386 км.

Я просмотрел описание аппарата, который он использовал в эксперименте, и обнаружил, что оно включает в себя:

  1. Моя заземленная резонансная передающая схема;

  2. мой индуктивный возбудитель;

  3. так называемый «трансформатор Тесла»;

  4. мои индуктивные катушки для повышения напряжения на конденсаторе;

  5. весь мой аппарат для создания незатухающих или непрерывных колебаний;

  6. мои объединенные настроенные схемы преобразования;

  7. мой заземленный резонансный приемный трансформатор;

  8. мой вторичный приемный трансформатор.

Я отмечаю и другие мои улучшения, но упомянутых будет достаточно, чтобы показать, что Дания – страна легких изобретений.

Утверждение о том, что с помощью этих средств вскоре будет создана трансатлантическая беспроводная телефонная связь, является скромным. Для моей системы расстояние не имеет абсолютно никакого значения. Моя собственная беспроводная установка будет передавать речь через Тихий океан с той же точностью и аккуратностью, что и через стол.

Никола Тесла, Нью-Йорк, 19 декабря 1907 года.

Леланд И. Андерсон в 1980 году (Тесла, Повелитель молний, стр. 71):

«Система радиосвязи требует двух настроенных цепей в передатчике и приемнике, причем все четыре настроены на одну и ту же частоту. Она не включает в себя переменную модуляцию, с помощью которой могут передаваться голос и музыка. Она также не обращается к способу электромагнитного распространения, т.е. это земная волна и/или небесные волны и их эффекты, однако они описывают преднамеренную, избирательную передачу определенной частоты и выбираемый прием на той же частоте».

Энтони С. Дэвис, приглашенный профессор Кингстонского университета Кингстон-апон-Темз, Сюрр:

Вклад Теслы в радио был связан с идеей генерирования высокочастотных непрерывных колебаний (в отличие от переходных искровых методов его современников), и ему удалось напрямую генерировать частоту 15 кГц с помощью вращающегося электрического генератора переменного тока, что намного выше, чем что-либо еще. возможно до этого от вращающейся машины.

Он разработал концепцию двух связанных резонансных контуров, приводимых в движение искровым генератором (по сути, катушкой Теслы - первым трансформатором с воздушным сердечником), таким образом создавая на выходе слегка затухающие колебания, приближаясь к своей цели - непрерывные высокочастотные колебания.

К 1893 году на основе этой системы связанных резонансных контуров он показал необходимость воздушной и земной связи для радиотелеграфной связи. В публичной лекции в Филадельфии в феврале 1893 года («О свете и других высокочастотных явлениях – лекция, прочитанная перед Институтом Франклина, Филадельфия, февраль 1893 года, и Национальной ассоциацией электрического освещения, Сент-Луис, март 1893 года») о нем сообщается как обсудивший беспроводную передачу энергии и сигналов, несущих разведданные. Его целью было разработать беспроводные методы освещения и управления электродвигателями на значительных расстояниях. Он надеялся на передачу высокой мощности по радио, что привлекло его, поскольку, если бы это было осуществимо, это устранило бы необходимость в кабелях для передачи электроэнергии. Хотя он предложил для этого некоторые методы и, очевидно, верил, что некий резонанс может сделать это возможным, его идеи были связаны с сомнениями и противоречиями, и вполне вероятно, что не существовало реального метода их успеха. У него не было техники для генерации мощных микроволн, которые можно было бы передавать в виде сфокусированного луча, и, похоже, нет никаких оснований предполагать, что частоты, которые он мог генерировать, когда-либо могли быть использованы в какой-либо точке. точечная беспроводная система распределения электроэнергии.

Тем не менее, есть некоторые недавние умозрительные работы по очень низкочастотным колебаниям, которые намекают на возможность замечательных явлений, связанных с резонансом структуры Земли. Тесла предсказал, что частота колебаний Земли будет равна 6 Гц, а недавние измерения показали, что она равна 8 Гц, что очень близко, учитывая ограниченность знаний, доступных Тесле.

За достижениями Теслы 1893 года последовала в 1894 году беспроводная передача сигнала профессором Оливером Лоджем (12 июня 1851 г. - 22 августа 1940 г.) на приемник с дипольной антенной и когерером, которая была осуществлена в Ливерпульском университете в Англии. Демонстрации Попова прошли в 1895 году, а приезд Маркони в Англию – в 1896 году. Таким образом, есть веские основания считать Теслу выдающимся «изобретателем радио» и, возможно, даже первым.

Патент США 763772 Маркони, выданный в июне 1904 года, считался фундаментальным американским патентом на радио, но в 1943 году Верховный суд США отменил его на том основании, что он не содержал ничего, чего еще не было в патентах, выданных Тесле (а также Лоджу и Стоуну).

Знаменитый физик Нильс Бор (1885-1962):

«Гениальное изобретение Теслой многофазной системы, а также его исследования удивительного явления высокочастотных колебаний послужили основой для создания совершенно новых условий для промышленности и радиосвязи и оказали глубокое влияние на всю цивилизацию».

Изобретение радио. Часть 4 Радио, Изобретения, Видео, YouTube, Длиннопост

Наглядная схема простого искрового передатчика, показывающая примеры использованных ранних электронных компонентов. Из книжки для мальчика 1917 года – это типичный маломощный передатчик, изготовленный в домашних условиях тысячами любителей для изучения новых захватывающих радиотехнологий.

Материал подготовлен Московским заводом тепловой автоматики (МЗТА)

Показать полностью 7 1

Изобретение радио. Часть 3

Изобретение радио. Часть 3 Радио, Изобретения, История изобретений, Длиннопост

Гульельмо Маркони учился в Технической школе Ливорно и знакомился с опубликованными трудами профессора Аугусто Риги из Болонского университета. В 1894 году сэр Уильям Прис представил Королевскому институту в Лондоне доклад об электрической сигнализации без проводов. В 1894 году на лекциях Королевского института Лодж читает «Работы Герца и некоторых его преемников». Говорят, что Маркони, находясь в отпуске в 1894 году, прочитал об экспериментах, которые Герц провел в 1880-х годах. Маркони также читал о работе Теслы. Именно в это время Маркони начал понимать, что радиоволны можно использовать для беспроводной связи. Ранний аппарат Маркони представлял собой развитие лабораторного аппарата Герца в систему, предназначенную для целей связи. Сначала Маркони использовал передатчик, чтобы позвонить в звонок в приемнике в своей лаборатории на чердаке. Затем он перенес свои эксперименты на улицу, в семейное поместье недалеко от Болоньи, Италия, чтобы общаться дальше. Он заменил вертикальный диполь Герца вертикальным проводом, покрытым металлическим листом, с противоположной клеммой, подключенной к земле. На приемной стороне Маркони заменил искровой разрядник когерером из металлического порошка – детектором, разработанным Эдуардом Бранли и другими экспериментаторами. В конце 1895 года Маркони передал радиосигналы на расстояние около 2,4 км.

К 1896 году Маркони представил публике в Лондоне устройство, заявив, что это его изобретение. Однако, несмотря на заявления Маркони об обратном, аппарат напоминает описания Теслы в его исследованиях, демонстрациях и патентах. Более поздняя практическая четырех-позиционная система Маркони была разработана еще до Н. Теслы, Оливера Лоджа и Дж. С. Стоуна. Он подал патент на свою самую раннюю систему в Британское патентное ведомство 2 июня 1896 года.

Маркони был далек от того, чтобы быть математиком, физиком или инженером. Однако он был достаточно интуитивен, чтобы организовать, продвигать и построить систему беспроводной передачи и приема сигналов. Он использовал все возможные человеческие и материальные ресурсы, которые были в его распоряжении. Джон Амброуз Флеминг внес большой вклад в его проект. Ричард Норман Вивиан и У.Х. Эклс помогли улучшить конструкцию джиггера Маркони. Луиджи Солари внес в проект ртутный когезор, который был их самым чувствительным детектором электромагнитных сигналов. Маркони сам разработал антенну и систему настройки, однако антенну построил Джордж Кемп. Компания WS Entwistle усовершенствовала систему искровых разрядников и эксплуатирует трансмиссию машин из Полдху. Маркони, Джордж Кемп и Пейджет Перси Райт вместе действовали в Сент-Джоне, несмотря на ужасную погоду в Ньюфаундленде. Успех эксперимента стал результатом сотрудничества команды, и ничего не было бы возможно благодаря усилиям Маркони как промоутера, организатора и строителя системы.

В июле 1896 года Маркони представил свое изобретение и новый метод телеграфии вниманию Приса, тогдашнего главного инженера Британской правительственной телеграфной службы, который в течение предыдущих двенадцати лет интересовался развитием беспроводной телеграфии. индуктивно-кондуктивный метод.

Маркони получил патент на радио, британский патент GB12039 «Усовершенствования в передаче электрических импульсов и сигналов и устройства для них» принят 2 июля 1897 года. Полная спецификация была подана 2 марта 1897 года. Это был первый патент Маркони на радио, хотя в нем использовались различные более ранние методы других экспериментаторов (в первую очередь Теслы) и напоминал инструмент, продемонстрированный другими (включая Попова). В это время широко исследовались беспроводная телеграфия с искровым разрядником. Весной 1897 года Маркони работал в почтовом отделении, экспериментируя со своим изобретением на увеличивающихся расстояниях до пяти, десяти и пятнадцати километров в Бристольском канале. Его научное открытие было представлено публике несколько месяцев назад, но никто не имел ни малейшего представления о том, как оно работает.

4 июня 1897 года он выступил с докладом «Сигнализация в космосе без проводов». Прис посвятил много времени демонстрации и объяснению аппарата Маркони в Королевском институте в Лондоне, заявив, что Маркони изобрел новое реле, обладающее высокой чувствительностью и деликатностью.

Изобретение радио. Часть 3 Радио, Изобретения, История изобретений, Длиннопост

Простая антенна Маркони и приемник. 1896 год

Изобретение радио. Часть 3 Радио, Изобретения, История изобретений, Длиннопост

Устройство Морзе Мюрхеда

В 1896 году Бозе поехал в Лондон с лекциями и встретил Маркони, который проводил эксперименты с беспроводной связью для британского почтового отделения. Компания Marconi Company Ltd. была основана Маркони в 1897 году и известна как Wireless Telegraph Trading Signal Company. Также в 1897 году Маркони основал радиостанцию в Нитоне, остров Уайт, Англия. Беспроводной телеграф Маркони был проверен телеграфными властями почтового отделения. Они провели серию экспериментов с системой телеграфии Маркони без соединительных проводов в Бристольском канале. Октябрьские беспроводные сигналы 1897 года были отправлены с равнины Солсбери в Бат на расстояние 55 км. Репутация Маркони во многом основана на принятии его закона (1897 г.), а также на других достижениях в области радиосвязи и коммерциализации практической системы.

Другие экспериментальные станции были созданы в Лавернок-Пойнт, недалеко от Пенарта; на Флэт-Холмсе, острове в середине Ла-Манша, и в Брин-Дауне, мысе на стороне Сомерсета. Сигналы были получены между первой и последней точками, на расстоянии примерно 8 миль (13 км). В качестве приемного инструмента использовалась пишущая машинка Морзе образца почтового отделения. В 1898 году Маркони открыл радиозавод на Холл-стрит в Челмсфорде, Англия, на котором работало около 50 человек. В 1899 году Маркони объявил о своем изобретении «когерера железо-ртуть-железо с телефонным детектором» в докладе, представленном в Королевском обществе в Лондоне.

В мае 1898 года для Корпорации Ллойдс была установлена связь между Балликаслом и маяком на острове Ратлин на севере Ирландии. В июле 1898 года телеграф Маркони был использован для сообщения о результатах гонок на яхтах на Кингстонской регате для газеты Dublin Express. Набор инструментов был установлен в комнате в Кингстауне, а другой – на борту парохода «Летучая охотница». Воздушный проводник на берегу представлял собой полосу проволочной сетки, прикрепленную к мачте высотой 12 м, и во время гонок было отправлено и правильно получено несколько сотен сообщений.

В это время Его Величество король Эдуард VII, тогдашний принц Уэльский, имел несчастье повредить колено и был прикован к борту королевской яхты «Ослторм» в заливе Каус. По запросу Маркони установил свой аппарат на борту королевской яхты, а также в Осборн-Хаусе на острове Уайт и в течение трех недель поддерживал беспроводную связь между этими станциями. Пройденные расстояния были небольшими; но во время движения яхты в некоторых случаях попадались высокие холмы, так что воздушные провода перекрывались на сотни футов, однако это не было препятствием для связи. Эти демонстрации побудили Корпорацию Тринити-Хаус предоставить возможность опробовать систему на практике между маяком Саут-Форленд, недалеко от Дувра, и маяком Ист-Гудвин на песках Гудвин. Эта установка была введена в эксплуатацию 24 декабря 1898 года и доказала свою ценность. Было показано, что после того, как аппарат будет установлен, с ним смогут работать обычные моряки с очень небольшой подготовкой.

В конце 1898 года электрический волновой телеграф, созданный Маркони, продемонстрировал свою полезность, особенно для связи между кораблем и кораблем, а также кораблем и берегом. Электроволновая телеграфия имела следующие преимущества:

Передача работала как днем, так и ночью, в плохую погоду, туман или бурю, а также в ясную погоду; при условии, что была сохранена надлежащая изоляция воздушного провода или надземного проводника.

При определенных электрических условиях атмосферы и во время гроз обычно возникали некоторые трудности в работе из-за атмосферных разрядов, поражающих чувствительную трубку и, следовательно, оставляющих случайные следы на ленте Морзе принтера, но редко достаточные, чтобы полностью прервать связь.

Расположение высоких холмов, деревьев или кривизна земли не препятствовали общению, хотя и немного влияли на требуемую мощность. Особенно хорошо он работал над морской поверхностью, а также между кораблями и береговыми станциями.

Аппарат мог настроить и обращаться с ним любой обычный телеграфист, а запись производилась на бумажной полоске обычной азбукой Морзе.

Передача легко преодолевала расстояния, намного превосходящие возможности других систем беспроводной телеграфии.

Наконец, необходимое устройство ни в коем случае не было дорогостоящим и, за исключением мачты, необходимой для крепления воздушного троса, оно занимало мало места и было особенно приспособлено для использования на борту корабля.

Станция отеля Haven и мачта беспроводного телеграфа были местом, где после 1898 года проводилась большая часть исследовательской работы Маркони в области беспроводной телеграфии. В 1899 году он передавал сообщения через Ла-Манш. Император Вильгельм II послал немецкого инженера Адольфа Карла Генриха Слаби (1849–1913) стать свидетелем одного из экспериментов Маркони. Вдохновленный экспериментами Гульельмо Маркони с электромагнитными волнами, он представил резонансные катушки, известные как стержни Слэби, для измерения длин волн. В сотрудничестве с Георгом фон Арко и Маркони он помог развить беспроводную телеграфию в Англии. Впоследствии Слэби предложил систему Слэби-Арко — модификацию антенны Маркони, которая вместе с системами Брауна и Сименса-Гальске была принята немецкой беспроводной системой, созданной в 1903 году (US750496A – Spark Telegraphy – 26 Gen. 1904 – подано 9 апреля 1901). Также в 1899 году Маркони представил Институту инженеров-электриков «Беспроводную телеграфию». Кроме того, в 1899 году У. Х. Прис представил «Эфирную телеграфию», заявив, что экспериментальная стадия беспроводной телеграфии была пройдена в 1894 году и изобретатели тогда перешли на коммерческую стадию. Прис, продолжая лекцию, подробно описывает работу Маркони и других британских изобретателей. В октябре 1899 года о ходе яхт в международной гонке между «Колумбией» и «Шемроком» успешно сообщалось по воздушной телеграфии: с двух корабельных станций на береговые станции было отправлено (как говорят) до 4000 слов. Сразу после этого аппарат по заказу был передан на службу Военно-морскому совету США, и под личным наблюдением Маркони последовало несколько весьма интересных экспериментов. В 1900 году компания Маркони была переименована в компанию беспроводного телеграфа Маркони.

Изобретение радио. Часть 3 Радио, Изобретения, История изобретений, Длиннопост

Маркони наблюдает, как коллеги поднимают антенну для воздушного змея в Сент-Джонсе, декабрь 1901 года

В 1901 году Маркони утверждал, что принимал дневные трансатлантические радиочастотные сигналы на длине волны 366 метров (820 кГц). В 1901 году Маркони основал станцию беспроводной передачи в доме Маркони, Росслэр-Стрэнд, графство Уэксфорд, которая служила связующим звеном между Полдху в Корнуолле и Клифденом в графстве Голуэй. В его заявлении от 12 декабря 1901 года с использованием для приема антенны, поддерживаемой воздушным змеем, длиной 152,4 метра (500 футов) говорилось, что сообщение было получено на Сигнал-Хилл в Сент-Джонсе, Ньюфаундленд (ныне часть Канады) через сигналы, передаваемые новым центром компании. Мощная электростанция в Полдху, Корнуолл. Полученное сообщение было заранее подготовлено и было известно Маркони и состояло из буквы Морзе «S» – трех точек. Однако Брэдфорд недавно оспорил сообщаемый успех, основываясь на теоретической работе, а также на реконструкции эксперимента. Сейчас хорошо известно, что передача на большие расстояния на длине волны 366 метров невозможна в дневное время, поскольку небесная волна сильно поглощается ионосферой. Возможно, что то, что было услышано, было всего лишь случайным атмосферным шумом, который был принят за сигнал, или что Маркони мог слышать коротковолновую гармонику сигнала. Расстояние между двумя точками составляло около 3500 километров.

Заявление о передаче сигнала из Полдху в Ньюфаундленд подверглось критике. Есть различные историки науки, такие как Белроуз и Брэдфорд, которые ставят под сомнение то, что Атлантический океан был соединен мостом в 1901 году, но другие историки науки придерживаются мнения, что это была первая трансатлантическая радиопередача. Критики утверждали, что более вероятно, что в этом эксперименте Маркони получил посторонний атмосферный шум от атмосферного электричества. Передающая станция в Полдху, Корнуолл, использовала передатчик с искровым разрядником, который мог генерировать сигнал в диапазоне средних частот и с высокими уровнями мощности.

Маркони переправился из Англии в Канаду и США. В этот период Маркони разработал особый электромагнитный приемник, названный магнитным детектором Маркони или гистерезисным магнитным детектором, который успешно использовался в его ранних трансатлантических работах (1902 г.) и на многих небольших станциях в течение ряда лет. В 1902 году в деревне Крукхейвен, графство Корк, Ирландия, была создана станция Маркони для обеспечения морской радиосвязи кораблям, прибывающим из Америки. Капитан корабля мог связаться с агентами судоходных линий на берегу, чтобы узнать, какой порт должен принять их груз, без необходимости сойти на берег в первом порту выхода на берег. Ирландия также, благодаря своему западному расположению, должна была сыграть ключевую роль в первых усилиях по отправке трансатлантических сообщений. Маркони передавал сообщение со своей станции в Глейс-Бэй, Новая Шотландия, Канада, через Атлантику, а 18 января 1903 года станция Маркони передала приветственное послание от Теодора Рузвельта, президента Соединенных Штатов, королю Соединенного Королевства, отмечая первая трансатлантическая радиопередача, происходящая из США.

Изобретение радио. Часть 3 Радио, Изобретения, История изобретений, Длиннопост

Ежедневный бюллетень Кунард

В 1904 году Маркони открыл океанскую ежедневную газету Cunard Daily Bulletin на судне RMS «Кампания». Вначале проходящие события были напечатаны в небольшой четырехстраничной брошюре под названием «Бюллетень Кунард». Заголовок будет гласить «Cunard Daily Bulletin» с подзаголовком «Маркониграммы прямо на корабль». Все пассажирские суда компании «Кунард» оснащены системой беспроводного телеграфирования Маркони, посредством которой поддерживалась постоянная связь либо с другими судами, либо с наземными станциями в восточном или западном полушарии. RMS Lucania, октябрь 1903 года, с Маркони на борту было первым судном, поддерживавшим связь с обеими сторонами Атлантики. Cunard Daily Bulletin, иллюстрированная газета на тридцать две страницы, издаваемая на борту этих лодок, записывает новости, полученные по беспроводной телеграфии, и является первой океанской газетой. В августе 1903 года с британским правительством было заключено соглашение, согласно которому компания «Кунард Ко.» должна была построить два парохода, которые вместе со всеми другими кораблями «Кунард» будут находиться в распоряжении Британского Адмиралтейства для аренды или покупки, когда они потребуются. Правительство предоставило компании кредит в размере 2 600 000 фунтов стерлингов на строительство кораблей и предоставило им субсидию в размере 150 000 фунтов стерлингов в год. Одними из них были RMS Lusitania и RMS Mauritania.

Патент Маркони US763772, выданный в июне 1904 года, считался фундаментальным американским патентом на радио, но в 1943 году Верховный суд США отменил его на том основании, что он не содержал ничего, чего еще не было в патентах, выданных Тесле (а также Лоджу и Стоуну).

В июне и июле 1923 года коротковолновые передачи Маркони были завершены в ночное время на расстоянии 97 метров от станции беспроводной связи Полдху в Корнуолле на его яхту «Элеттра» на островах Зеленого Мыса. В сентябре 1924 года Маркони днем и ночью перенесся на 32 метра из Полдху на свою яхту в Бейруте. Маркони в июле 1924 года заключил контракты с Главпочтамтом Великобритании (GPO) на установку телеграфных линий из Лондона в Австралию, Индию, Южную Африку и Канаду в качестве основного элемента Имперской беспроводной сети. Коротковолновая линия «Beam Wireless Service» из Великобритании в Канаду была введена в коммерческую эксплуатацию 25 октября 1926 года. Служба беспроводной связи Beam из Великобритании в Австралию, Южную Африку и Индию была введена в эксплуатацию в 1927 году. Электронные компоненты для системы были изготовлены на заводе Маркони в Нью-Йорке. Завод уличной беспроводной связи в Челмсфорде.

Маркони вместе с Карлом Фердинандом Брауном получил Нобелевскую премию по физике 1909 года за вклад в существующие радионауки. Демонстрации Маркони использования радио для беспроводной связи, оснащение кораблей спасательной беспроводной связью, [160] создание первой трансатлантической радиослужбы и строительство первых станций британской коротковолновой службы отметили его место в истории. Вскоре после начала XX века Патентное ведомство США повторно выдало Маркони патент на радио. Патент США RE11913 был выдан 4 июня 1901 года. Патент США Маркони 676332 также был выдан 11 июня 1901 года. Эта система была более продвинутой, чем его предыдущие работы. Верховный суд США в решении по делу MARCONI WIRELESS T. CO. OF AMERICA против США, 320 US 1 (1943 г.) заявил, что «репутация Маркони как человека, который первым добился успешной радиопередачи… здесь не подвергается сомнению». за которым следует «патент Маркони не включал никаких изобретений по сравнению с Лоджем, Теслой и Стоуном». Решение 1943 года не отменило ни оригинальные патенты Маркони, ни его репутацию первого человека, разработавшего практическую радиотелеграфную связь. Там только что говорилось, что внедрение регулируемых трансформаторов в передающих и приемных цепях, что было усовершенствованием первоначального изобретения, было предвосхищено патентами, выданными Оливеру Лоджу и Джону Стоуну. (Это решение не было единогласным).

Совет ВМС США опубликовал в 1899 году отчет о результатах исследований системы беспроводной телеграфии Маркони. Отчет «Заметки о беспроводной телеграфии Маркони» был полностью опубликован в журнале «Электрик», и из него были взяты следующие утверждения относительно эффективности системы: «Она была хорошо приспособлена для использования в эскадрильной передаче сигналов в условиях дождя, тумана, темноты». и движение скорости. Ветер, дождь, туман и другие погодные условия не влияют на передачу в космосе, но сырость может уменьшить дальность, скорость и точность, ухудшив изоляцию воздушного провода и приборов. Темнота не имеет никакого эффекта. Когда два передатчика передают сигналы одновременно, все приемные провода в пределах досягаемости принимают импульсы от передатчиков, и записи, хотя и нечитаемые, безошибочно показывают, что такая двойная передача имела место. В каждом случае при большом числе разнообразных условий попытка вмешательства была полной. Маркони, хотя и заявил Совету директоров до того, как были предприняты эти попытки, что он может предотвратить вмешательство, так и не объяснил, как, и не предпринял никаких попыток продемонстрировать, что это можно сделать. Между крупными кораблями с высотой мачт 40 м и 43 м и торпедным катером (высота мачты 14 м на открытой воде сигналы можно читать на расстоянии до 11 км на миноносце и 137 км на корабле Связь могла быть полностью прервана при вмешательстве высоких зданий с железным каркасом. Для опытных операторов скорость не превышала 12 слов в минуту. Передающее устройство и провод могут повредить компас, если их разместить рядом с ним. Точное расстояние не было известно и будет определено экспериментальным путем. Система была адаптирована для использования на всех кораблях военно-морского флота, включая торпедные катера и малые суда, в качестве патрульных катеров и разведывательных катеров. Для десантных групп единственным возможным методом использования была установка шеста на берегу и последующая связь с кораблем. Система могла быть адаптирована для телеграфного определения различий. долгота при съемке. Совет со всем уважением рекомендовал провести испытания системы в ВМС США.

HMS Hector стал первым британским военным кораблем, на котором была установлена беспроводная телеграфия, когда он провел первые испытания нового оборудования для Королевского флота. Начиная с декабря 1899 года HMS Hector и HMS Jaseur были оснащены беспроводным оборудованием. В 1901 году HMS Jaseur принял сигналы от передатчика Маркони на острове Уайт и от HMS Hector (25 января).

1899: Фердинанд Браун (1850-1918) внес свой вклад в проект Маркони с его «безыскровой» антенной, а в 1909 году разделил с Маркони Нобелевскую премию по физике.

1899: В мае – июне Хулио Сервера Бавьера (1854–1927) работал над разработкой своей собственной системы. Посетив радиотелеграфные установки Маркони на Ла-Манше, он начал сотрудничать с Маркони в решении проблемы системы беспроводной связи, получив к концу 1899 года несколько патентов. Сервера, работавший с Маркони, и его помощником Джорджем С. Кемпом, в 1899 г. решили проблемы со своим беспроволочным телеграфом. Он получил свои первые патенты до конца того же года.

1900: 8 февраля Джон Стоун Стоун (1869-1943) подал заявку на патент США на устройство радионастройки.

Джон Стоун Стоун был одним из первых телефонных инженеров, оказал влияние на разработку технологий беспроводной связи и является обладателем десятков ключевых патентов в области «космической телеграфии». Патенты Стоуна на радио вместе с их эквивалентами в других странах составляют очень объемный вклад в патентную литературу по этой теме. Только этому патентообладателю было выдано более семидесяти патентов США. Во многих случаях эти спецификации представляют собой научный вклад в литературу по данной теме, наполненный ценными ссылками на другие источники информации.

Полный анализ спецификаций Стоуна занял бы слишком много места. В целом их можно разделить на четыре класса:

  • Те, кого интересуют предложенные методы достижения синтонной телеграфии, или изоляции приемных станций, или защиты приемников от действия блуждающих волн.

  • Те, которые описывают формы детектора электрических волн или цимоскопа.

  • Те, которые охватывают создание различных форм передающих и приемных цепей, а также создание непрерывных последовательностей волн.

  • Различные технические характеристики, касающиеся устройств, предлагаемых для локализации направления приходящих волн и других вопросов.

Стоун выдал большое количество патентов, охватывающих метод воздействия на систему излучателей и излучения энергии в виде волн заданной длины, какими бы ни были электрические размеры генератора. 8 февраля 1900 года он подал заявку на селективную систему в патенте US714,756A – Метод избирательной электрической сигнализации –  2 Des. 1902. В этой системе индуктивно связаны две простые цепи, каждая из которых имеет независимую степень свободы, и в которых при восстановлении электрических колебаний до нулевого потенциала токи накладываются, создавая сложные гармонические токи, которые позволяют резонаторной системе работать. с точностью синтонизированы с генератором. Система Стоуна, как указано в патенте US714831 «Метод избирательной электрической сигнализации» от 2 декабря 1902 г., разработала свободные или неуправляемые простые гармонические электромагнитные сигнальные волны определенной частоты, исключая энергию сигнальных волн других частот, и надземный проводник и средство для создания в нем вынужденных простых электрических колебаний соответствующей частоты. В этих патентах Стоун разработал схему многократного индуктивного колебания с целью вызвать в антенном контуре одиночное колебание определенной частоты. В системе получения энергии свободных или неуправляемых простых гармонических электромагнитных сигнальных волн определенной частоты, исключая энергию сигнальных волн других частот, он предложил приподнятый проводник и связанный с ним резонансный контур, настроенный на частоту волн, энергию которых необходимо получить. Когерер, созданный на основе так называемой системы Стоуна, использовался в некоторых портативных беспроводных устройствах армии США. Stone Coherer имеет две небольшие стальные пробки, между которыми расположены свободно упакованные углеродные гранулы. Это устройство самодекогерентности; хотя он и не так чувствителен, как другие виды детекторов, он хорошо подходит для грубого использования портативного оборудования.

1900: 3 июня Роберто Ланделл де Моура (1861-1928) публично продемонстрировал радиопередачу человеческого голоса.

Роберто Ланделл де Моура, бразильский священник и ученый, отправился в Рим в 1878 году и учился в Южноамериканском колледже и Папском григорианском университете, где изучал физику и химию. Он завершил свое духовное образование в Риме, получив диплом богослова, и был рукоположен в священники в 1886 году. В Риме он начал изучать физику и электричество. Вернувшись в Бразилию, он проводил эксперименты с беспроводной связью в Кампинасе и Сан-Паулу (1892–1893).

По данным газеты Jornal do Comercio (10 июня 1900 г.), свой первый публичный эксперимент он провел 3 июня 1900 г. перед журналистами и генеральным консулом Великобритании г-ном К. П. Люптоном в городе Сан-Паулу. Бразилия, достигнув расстояния примерно 8 км. Пунктами передачи и приема были Альто-де-Сантана и авеню Паулиста в центре города. Через год после публичного эксперимента он получил свой первый патент от правительства Бразилии. Его описывали как «оборудование для фонетической передачи через пространство, наземные и водные элементы на расстоянии с использованием проводов или без них». Наблюдая за экспериментами, Родригес Ботет, сообщая новости об испытаниях, сказал, что он недалеко от момента посвящения Ланделла в авторы радиооткрытий. Беспроводная телефония считается самым важным открытием Лэнделла. Позже Де Моура получил несколько патентов на беспроводные технологии. Четыре месяца спустя, осознав, что его изобретение имеет реальную ценность, он уехал из Бразилии в Соединенные Штаты Америки с намерением запатентовать машину в Патентном ведомстве США в Вашингтоне, округ Колумбия. Из-за ограниченных ресурсов ему пришлось полагаться на друзей, чтобы продвигать свой проект. Несмотря на большие трудности, в конце концов были выданы три патента: «Волновой передатчик» (11 октября 1904 г.), который является предшественником сегодняшнего радиопередатчика; «Беспроводной телефон» и «Беспроводной телеграф», датированные 22 ноября 1904 года.

1900: 23 декабря Реджинальд А. Фессенден (1866-1932) стал первым человеком, который передал звук (беспроводную телефонию) с помощью электромагнитных волн, успешно передавая его на расстояние около 1,6 километра, а шесть лет спустя, в канун Рождества 1906 года. он стал первым человеком, который выступил с общественной радиопередачей. В 1902 году Реджинальд Фессенден (1866-1932) разработал концепцию «гетеродинирования», чтобы упростить и улучшить радиоприемники, но этот принцип не был практичным до изобретения Де Форестом триода. (Две радиочастоты объединяются, чтобы получить одну «промежуточную» частоту.) Он первым начал транслировать речь и музыку в 1906 году.

В январе 1906 года Фессенден разработал роторно-искровой передатчик и первую двустороннюю трансатлантическую передачу. Используя свои вращающиеся искровые передатчики, Фессенден осуществил первую успешную двустороннюю трансатлантическую передачу, обмениваясь сообщениями азбуки Морзе между станцией в Брант-Роке и идентичной станцией, построенной в Махриханише в Шотландии. (Обратите внимание, что Маркони в то время добился только односторонней передачи.) Однако передатчики не могли преодолеть это расстояние в светлое время суток или летом, поэтому работы были приостановлены до конца года. К сожалению, радиовышка Махриханиш рухнула, что резко положило конец трансатлантическим работам.

21 декабря 1906 года он разработал генератор-передатчик, используемый для беспроводной телефонии. Фессенден проводит масштабную демонстрацию своего нового высокочастотного генератора-передатчика в Брант-Роке, демонстрируя его полезность для беспроводной телефонной связи «точка-точка», соединяя свои станции (в Плимуте и Брант-Роке) с телефонной сетью Bell. Свидетелями этого события стали видные эксперты Элиху Томпсон и Гринлиф Пикард и другие. См. статью под названием «Эксперименты и результаты в беспроводной телефонии», опубликованную в «Американском телефонном журнале». 26 января 1907 г.

За три дня до сочельника (книга Хелен Фессенден, стр. 153). Реджинальд Фессенден планирует дать две радиопередачи: в канун Рождества и Нового года. Персонал станции уведомляет корабли ВМС США и United Fruit Company о необходимости прослушивания. Эти корабли ранее были оснащены радиоприемниками.

24 декабря 1906 года из Брант-Рока, штат Массачусетс, для широкой публики была передана первая развлекательная и музыкальная радиопередача. Это новаторское вещание было осуществлено после многих лет разработок Реджинальда Обри Фессендена (1866-1932), который построил полную систему беспроводной передачи и приема с использованием амплитудной модуляции (АМ) непрерывных электромагнитных волн. Эта технология представляла собой революционный отход от широко распространенной в то время передачи точек и тире. Мемориальную доску можно увидеть у основания антенны в Блэкмэнс-Пойнт, Центральная улица, 2, Брант-Рок, Массачусетс.

Генератор-передатчик и первая радиопередача. Знаменитая трансляция передачи обычной речи и музыки из Брант-Рока на корабли, плывущие вдоль побережья Атлантического океана. В канун Нового года состоялась повторная трансляция. Прием подтвержден слушателями. Историческое место расположено в Блэкманс-Пойнт, Брант-Рок, в округе Плимут, штат Массачусетс. Блэкманс-Пойнт находится в нескольких милях от центра Маршфилда. Город Маршфилд находится примерно в 30 милях к юго-востоку от Бостона. Оставшийся бетонный фундамент, построенный для поддержки беспроводной башни Фессендена, находится в трейлерном парке, принадлежащем семье Блэкман, в южной части города Брант-Рок, недалеко от Центральной улицы Сент-Луис.

Продолжение в части 4.


Материал подготовлен Московским заводом тепловой автоматики (МЗТА)

Показать полностью 4

Изобретение радио. Часть 2

Изобретение радио. Часть 2 Радио, Изобретения, Длиннопост

Соседние точки на поверхности Земли

В 1893 году в Сент-Луисе, штат Миссури, Тесла провел публичную демонстрацию беспроводной связи «О свете и других высокочастотных явлениях». Выступая в Институте Франклина в Филадельфии, он подробно описал принципы ранней радиосвязи. Лекционный аппарат, который использовал Тесла, содержал все элементы, которые были включены в радиосистемы до разработки «колебательного клапана», ранней вакуумной лампы. Лекция, прочитанная в Институте Франклина в Филадельфии, состоялась 24 февраля 1893 года. Разнообразие радиочастотных систем Теслы было снова продемонстрировано во время его выступления на собраниях Национальной ассоциации электрического освещения в Сент-Луисе 1 марта 1893 года.

Впоследствии принцип радиосвязи (отправка сигналов через космос к приемникам) получил широкую огласку благодаря экспериментам и демонстрациям Теслы. 25 августа 1893 года Тесла прочитал лекцию «О механических и электрических генераторах» – лекцию, прочитанную перед членами Международного электрического конгресса в зале, примыкающем к сельскохозяйственному зданию, на Всемирной выставке в Чикаго в пятницу, 25 августа 1893 года.

Высокочастотные явления, которые Тесла впервые разработал и продемонстрировал, имели скорее научный, чем практический интерес. Но Тесла обратил внимание на тот факт, что, взяв генератор Теслы, заземлив одну его сторону и подключив другую к изолированному телу большой поверхности, можно будет передавать электрические колебания на большое расстояние и передавать при этом разведданные. путь к другим осцилляторам, находящимся с ними в симпатическом резонансе. Это шло далеко к изобретению радиотелеграфии, известной в начале 20-го века, как заявил журнал Electrical World в 1917 году.

В 1894 году Т.С. Мартин опубликовал «Изобретения, исследования и сочинения Николы Теслы», в которых подробно описывалась работа Теслы за предыдущие годы. Различные ученые, изобретатели и экспериментаторы начали исследовать беспроводные методы. Работа Теслы содержала связанные колебательные цепи, имеющие последовательно соединенные емкость и индуктивность.

В 1895 году производил сигналы с помощью высокочастотных генераторов переменного тока по всему Нью-Йорку из своей лаборатории на Пятой авеню. Настроив несколько источников на слегка разнесенных частотах, он смог контролировать передачу на слышимой частоте биений.

Передача и излучение радиочастотной энергии была особенностью, продемонстрированной в экспериментах Теслы, которую он предложил использовать для передачи информации. Метод Теслы был упомянут в Нью-Йорке в 1897 году. В Буффало, штат Нью-Йорк, он упомянул о изобретенных средствах передачи электродвижущей силы, намного превышающей практические возможности обычных аппаратов, и передачи энергии от станции к станции без использования каких-либо средств. соединительный провод. Позднее, 6 апреля 1897 года, Тесла объяснил свои методы преобразования электрической энергии колебательными разрядами конденсатора в своей лекции «Поток Ленарда и Рентгена и новые устройства для их получения». Он продемонстрировал свой предмет с помощью прекрасного набора усовершенствованных аппаратов, в которых несколько футов провода были столь же эффективны, как и мили в старых системах.

Тесла продолжал работать с резонансом, и его патент US568178 «Метод регулирования устройства для создания токов высокой частоты» от 22 сентября 1896 года показывает несколько способов получения резонанса в высокочастотной цепи. В 1897 году Тесла подал заявку на два ключевых патента США на радиосистему: US645 576 – Система передачи электрической энергии – 20 марта 1900 г. (подана 2 сентября 1897 г.) – первый патент на радиосистему и (позже разделенный на) US649 621 – Аппарат для передачи электрической энергии – 15 мая 1900 г. (подана 2 сентября 1897 г.) для защиты интересов радио-искусства. Тесла также разработал чувствительные электромагнитные приемники, которые отличались от менее чувствительных когереров, которые позже использовались другими ранними экспериментаторами.

С тех пор он смог поймать сигнал в Вест-Пойнте, в 30 милях от своего передатчика. Катушки Теслы широко использовались для питания радиопередатчиков всех людей в первые годы двадцатого века.

Вскоре после этого он начал разрабатывать устройства беспроводного дистанционного управления. В 1898 году он продемонстрировал в Мэдисон-Сквер-Гарден радиоуправляемую лодку, которая обеспечивала безопасную связь между передатчиком и приемником (искусство «телеавтоматики»). Между 1895 и 1897 годами Тесла на своих лекциях получал беспроводные сигналы, передаваемые на короткие расстояния. Между 1897 и первым десятилетием 1900-х годов он осуществлял передачу на средние расстояния. Тесла предсказал, что без проводов на большие расстояния будут передаваться не только понятные сигналы, но и электроэнергия. Позже он опубликовал такие статьи, как «Настоящая беспроводная связь – электрический экспериментатор – май 1919 года» и «Передача электрической энергии без проводов» – «Электрический мир и инженер» – 5 марта 1904 года, посвященные исследованиям Всемирной беспроводной системы.

Изобретение радио. Часть 2 Радио, Изобретения, Длиннопост

Патент Теслы US645576

Краткое изложение некоторых основных достижений Николы Теслы, составленное Кеннетом М. Суизи, другом и доверенным лицом Теслы, 16 мая 1948 года:

Д-р Л. У. Остин, многолетний руководитель радиоотдела Бюро стандартов; Профессор Слаби, пионер немецкого радио («Маркони Германии»), М. Е. Жирардо, французский радиоведущий, и другие назвали Теслу «отцом беспроводной связи». Это было за его изобретения и открытия, сделанные как минимум за несколько лет до самых первых экспериментов Маркони и других. Вот несколько:

• Высокочастотные генераторы для создания непрерывных волн.

• Связанные и настроенные схемы. (Его «Катушка Теслы», которую он изготовил во многих вариантах, в той или иной форме сегодня используется в каждом радио- и телеприемнике.)

• Поворотные и последовательные разрядники

• Трансформаторы и конденсаторы с масляной изоляцией

• Слюдяные конденсаторы, пропитанные воском под вакуумом

• Многожильные проводники («Литзендрахт»)

• Воздушное и наземное соединение

• Выборочная настройка с помощью волн биений или гетеродинирования

• Дуги для создания непрерывных волн

• «Тикер» для приема непрерывных волн

• Дроссельные катушки

Радиоуправляемые суда (управляемые ракеты)

До 1897 года (года, когда Маркони получил свой первый патент на беспроводную связь в США) Тесла разработал лодки, автомобили и другие подвижные объекты, которыми можно было полностью управлять с помощью радиоволн. Он широко продемонстрировал их в Нью-Йорке в 1898 году и перед Коммерческим клубом в Чикаго в 1899 году. Эта работа с тем, что Тесла называл «телавтоматикой», развитой позже Джоном Хейсом Хаммондом-младшим и другими, стала началом концепции, которая привели к созданию сегодня управляемых ракет.

Синхронные электрические часы

В своем выступлении перед Международным электротехническим конгрессом 25 августа 1893 года на Чикагской ярмарке он продемонстрировал несколько синхронных электрических часов. В заявлении о своей «Мировой системе» беспроводной энергии, сделанном в 1900 году, он упомянул дешевые синхронные часы по всему миру, которые будут питаться и поддерживаться в такт с помощью единственного главного генератора в Соединенных Штатах. Никто не вводил такие часы в коммерческое использование примерно до 1916 года.

Радар

Хотя это было больше в форме пророчества (поскольку в то время не было оборудования, способного его осуществить), Тесла написал в 1917 году идеи, которые, как он утверждает, у него были много лет назад, согласно которым суда и другие удаленные объекты можно было обнаружить, тренируясь на них. чрезвычайно мощный луч коротковолновых электрических импульсов, улавливающий отражение на флуоресцентном экране. Маркони был провозглашен родоначальником этой идеи, когда он сделал похожее, но менее подробное пророчество в 1922 году — в то время, когда еще не было средств для его эффективного осуществления.

Факс

В качестве еще одного обещания для своего «World Wireless» 1900 года Тесла предложил:

«Взаимосвязь и работа всех телефонных станций земного шара; мировая передача печатных или рукописных символов, писем, чеков и т. д.; открытие системы мировой печати; мировое воспроизведение фотографий и всевозможных рисунков или пластинок».

Профессор Артур Корн, который фактически отправил первые изображения по беспроводной связи, приписывает Тесле часть своей системы.

Вещание

На рубеже веков Тесла также сказал о своей системе следующее:

«Я не сомневаюсь, что оно окажется очень эффективным в просвещении масс, особенно в еще нецивилизованных странах и менее доступных регионах, и что оно существенно повысит общую безопасность, комфорт и удобство, а также поддержание мирных отношений. Он предполагает использование ряда аппаратов, каждый из которых способен передавать индивидуальные сигналы в самые отдаленные уголки Земли. Каждый из них будет предпочтительно расположен вблизи какого-нибудь важного центра цивилизации, а новости, полученные им по любому каналу, будут транслироваться во все точки земного шара. Дешевое и простое устройство, которое можно носить в кармане, затем можно установить где-нибудь на море или на суше, где оно будет записывать мировые новости или специальные сообщения, которые могут быть для него предназначены».

В статье, посвященной работе Теслы, опубликованной в журнале Scientific Monthly сразу после смерти Теслы в 1943 году, майор Э. Х. Армстронг процитировал приведенное выше заявление и прокомментировал:

«Конечно, в то время еще не существовало инструментов для осуществления радиовещания. Теслу считали провидцем, и его пророчество было забыто. Какие более суровые условия можно было бы справедливо применить ко многим из нас, кто помог создать инструменты, с помощью которых в конечном итоге стало возможным вещание. Мы применили их к двухточечной связи, не сумев полностью осознать значение слов Теслы».

Изобретение радио. Часть 2 Радио, Изобретения, Длиннопост

Корабельный передатчик с погашенным искровым разрядником ВМС США, произведенный Löwenstein Radio Company и лицензированный по патентам компании Nikola Tesla, установленный на военно-морских кораблях до Первой мировой войны. Показан передатчик мощностью 5 киловатт, имеющий дальность действия до 1500 миль. В аппарате используется катушка антенной схемы с плоской спиралью, показанная в родственных патентах Теслы: US645576 – Система передачи электрической энергии – 20 марта 1900 г. и US649621 – Устройство для передачи электрической энергии – 15 мая 1900 г. Подпись от руки Николы Теслы гласит:

«аппаратура, установленная по моим патентам на многих военных кораблях, которая, по словам министра военно-морского флота Джозефуса Дэниелса, «превосходит любую другую»

1894: 1 июня Оливер Джозеф Лодж (1851-1940) читает памятную лекцию о Герце, где он демонстрирует оптические свойства «волн Герца» (радиоволн), в том числе передачу их на короткое расстояние, используя улучшенную версию Брэнли. заполняющая трубка, которую Лодж назвал «когерером», в качестве детектора. Он также демонстрирует управление частотой, изменяя индуктивность и емкость в своих цепях.

Одним из первых исследователей, заметивших и измеривших на проводах стоячие волны, возникающие в результате прямой связи (резонанса) с покрытиями лейденской банки, был сэр Оливер Лодж 4 июня 1891 года под названием «Опыты по разрядке лейденских банок». 1 июня 1894 года Оливер Лодж в Королевском институте прочитал лекцию «Работа Герца и некоторых его преемников». Через два года после лекции Теслы о высоком потенциале и высоких частотах и через пять лет после сигналов Герца Лодж осуществил передачу 14 августа 1894 года, отправив сообщение азбуки Морзе на расстояние 150 футов по радиоволнам. Демонстрация прошла в Музее естественной истории Оксфордского университета. Сигнал был послан из соседнего лабораторного здания Кларендон. Лодж сделал это на заседании Британской ассоциации содействия развитию науки в Оксфордском университете. Это было за год до первых экспериментов Маркони. Также в 1894 году Лодж заявил, что Александр Мюрхед ясно предвидел телеграфную важность передачи поперечных волн Герца. Удобным методом создания стационарных электрических волн на проводах является метод, который обычно приписывают Эрнсту Лехеру и называют устройством Лехера. Фактически, оно было создано Лоджем и Герцем, а Эдуард Сарасен и Люсьен де ла Рив придали ему улучшенную форму.

В тот день в августе 1894 года Лодж продемонстрировал прием сигналов азбуки Морзе по радиоволнам с помощью «когерера». Позже он усовершенствовал когерер Брэнли, добавив «дрожатель», который вытеснял слипшиеся опилки, тем самым восстанавливая чувствительность устройства. 16 августа 1898 года он получил патент US609,154A «Электрическая телеграфия», который позволял передавать беспроводные сигналы с использованием катушек Румкорфа или катушек Теслы для передатчика и когерера Бранли для детектора. В этом патенте использовалась концепция «синтонной» настройки.

Многие люди викторианской эпохи, включая Чарльза Диккенса, твердо верили в телепатию. Лодж считал, что чтение мыслей может быть формой общения через эфир, подобно радиоволнам. Его приверженность спиритуализму (поясняемая ниже) привела к резкому падению оценки его работы современниками-учеными.

Лишь недавно его патент, который он назвал «синхроничностью», был полностью признан и был куплен и украден Маркони, нанявшим его в качестве консультанта.

В 1911 году компания Маркони проиграла короткую судебную тяжбу и была вынуждена купить патент Лоджа на синтонический тюнер US609,154A – Электрическая телеграфия – 16 августа 1898 года, а в 1912 году Лодж продал патент Маркони.

В лекции Лоджа перед Королевским институтом («Работы Герца и некоторых его преемников», 1 июня 1894 г.) описывалось, среди прочего, следующее:

  • Сборщик документов

  • Вакуумный когерер

  • Автоматический когерерный станок

  • Металлический отражатель фокусирующей волны

  • Заземленный проводник

  • Связанная система

  • Метод обнаружения

В этой лекции Лодж заявил, что, по его оценкам, используемый аппарат будет реагировать на сигналы на расстоянии 800 м).

В 1894 году Лодж показал, что когерер Бранли можно использовать для передачи телеграфных сигналов, а для того, чтобы опилки не оставались «связанными» после прекращения электрических колебаний, он изобрел электромеханический «таппер» на принципе обычный «зуммер», или электрический дверной звонок, молоток которого постукивал по стеклянной трубке до тех пор, пока продолжались электрические колебания. Таким образом, записи фактически заменяют ключ в обычной телеграфной сети. В нормальном состоянии ключ открыт; при наличии электрических колебаний ключ закрывается. Таким образом, открывая и закрывая ключ на более длительный или короткий период, можно генерировать сигналы, соответствующие точкам и тире. Другими словами, путем создания электрических колебаний на периоды времени, соответствующие точкам и тире, можно передавать сообщения с передающей станции, а если на приемной станции использовать записывающий прибор (управляемый когерером), такой, как обычный регистратор Морзе можно получить запись сообщения точками и тире. Доктор Лодж фактически использовал телеграфный ключ, постоянно приводимый в действие часовым механизмом.

В 1894 году с помощью трубки Бранли Лодж провел для Британской ассоциации пару демонстраций: одну в июне в Королевском институте в Оксфорде и одну в августе в Оксфорде, используя генераторы Герца для передачи сигналов с помощью ключа Морзе, связанного с передающей катушкой и морского гальванометра Томсона для приема-передачи сигналов из одной комнаты в другую через стены и далее. Лодж отправил их также через двор Ливерпульского колледжа, но выбрал очень небольшую мощность и не пытался преодолевать большие расстояния. В то время доктор Александр Мюрхед был поражен применимостью этого метода в практической телеграфии. Когда в 1896 году сэр Уильям Прис сообщил на собрании Британской ассоциации (это произошло в его лаборатории) в Ливерпуле, что итальянский джентльмен, в то время неизвестный, представляет интерес почтовом отделении в секретном ящике, Лодж практически знал, что должно находиться в ящике, и в тот же день показал нескольким друзьям ленточный инструмент Морзе, приблизительно работая по этому плану. Г-н Маркони и сэр Уильям Прис вместе заинтересовали весь мир этой темой; К отправителю был проявлен огромный интерес, и дело приобрело финансовую важность. Однако Американское патентное ведомство выдало Лоджу телеграфный патент на основе его работы, опубликованной в 1894 году, после доказательства того, что эта книга достигла Америки в 1895 году или раньше.

Когда в 1897 году о Маркони стала писать английская пресса, Лодж заявил, что итальянским ученым ничего не было изобретено, поскольку в 1894 году, за год до Маркони, он уже доказал возможность беспроводной передачи данных на расстояние. В этих дебатах Лоджа поддержала большая часть британских физиков того времени. Он повторил свое утверждение несколько раз и полностью не согласился с главным инженером почтового отделения Уильямом Присом, которому он уже неоднократно бросал вызов в прошлом. В 1911 году компания Marconi проиграла короткую судебную тяжбу и была вынуждена купить синтонический тюнер Лоджа.

1894: В ноябре индийский физик Джагадиш Чандра Бос, основываясь на опубликованной работе Лоджа, публично продемонстрировал использование радиоволн в Калькутте, но он не был заинтересован в патентовании своей работы. Бозе поджег порох и позвонил в колокол на расстоянии, используя электромагнитные волны, доказав, что сигналы связи можно передавать без использования проводов. Он отправлял и принимал радиоволны на расстоянии, но не использовал это достижение в коммерческих целях.

Публичная демонстрация Бозе в Калькутте в 1895 году произошла перед экспериментом Маркони по беспроводной передаче сигналов на равнине Солсбери в Англии в мае 1897 года. Бозе продемонстрировал способность электрических лучей перемещаться из лекционной комнаты и через промежуточную комнату и коридор в третью комнату. На расстоянии 23 м от радиатора, пройдя таким образом через три сплошные стены, а также тело председателя (который оказался вице-губернатором). У приемника на таком расстоянии все еще было достаточно энергии, чтобы установить контакт, который вызвал звонок, выстрелил из пистолета и взорвал миниатюрную мину. Чтобы получить этот результат от своего маленького излучателя, Бозе установил аппарат, который любопытным образом предвосхитил высокие «антенны» современного беспроводного телеграфирования – круглую металлическую пластину на вершине столба высотой 6,1 м, соединяемую с излучателем и аналогичный с приемным аппаратом.

Форма «когерера», разработанная профессором Бозе и описанная им в конце его статьи «О новом электрополярископе», позволила создать впечатление, что чувствительность и дальность действия в то время оставляли желать лучшего. В 1896 году газета Daily Chronicle of England сообщила о его экспериментах с УВЧ: «Изобретатель (Дж. К. Бозе) передал сигналы на расстояние почти в милю, и в этом заключается первое, очевидное и чрезвычайно ценное применение этого нового теоретического чуда».

После пятничных вечерних выступлений Бозе в Королевском институте «Инженер-электрик» выразил «удивление тем, что никогда не было секрета в отношении его конструкции, так что всему миру было открыто принять ее для практических и, возможно, прибыльных целей». Бозе иногда, и это вполне естественно, критиковали за непрактичность за отсутствие прибыли от своих изобретений.

В 1899 году Бозе объявил о разработке «когерера железо-ртуть-железо с телефонным детектором» в докладе, представленном в Королевском обществе в Лондоне. Позже он получил патент США № 755840 «Детектор электрических помех» (1904 г.) на особый электромагнитный приемник. Бозе продолжил исследования и внес другой вклад в развитие радио.

1895: Эрнест Резерфорд (1871–1937) получил стипендию для научных исследований в Кембридже в рамках выставки 1851 года. При поддержке Томсона ему удалось обнаружить радиоволны на расстоянии полмили и на короткое время он стал мировым рекордсменом по расстоянию, на котором можно было обнаружить электромагнитные волны, хотя, когда он представил свои результаты на собрании Британской ассоциации в 1896 году, он обнаружил, что его превзошёл другой лектор по имени Маркони.

Новозеландец, 1-й барон Резерфорд Нельсонский внес свой вклад в развитие радио. Он прибыл в Англию с репутацией новатора и изобретателя и отличился в нескольких областях, сначала исследовав электрические свойства твердых тел, а затем используя беспроводные волны в качестве метода передачи сигналов. В его работе Резерфорда поддерживал сэр Роберт Болл, который был научным консультантом организации, занимающейся обслуживанием маяков на ирландском побережье; он хотел решить сложную проблему неспособности корабля обнаружить маяк в тумане. Почувствовав славу и богатство, Резерфорд увеличил чувствительность своего прибора до тех пор, пока не смог обнаруживать электромагнитные волны с помощью своего электромагнитного приемника на расстоянии нескольких сотен метров. Гистерезисный магнитный детектор, изобретенный Резерфордом и описанный им в 1897 году, использовался для определения характеристик электромагнитных волн, причем концы маленького соленоида детектора были прикреплены к ртутным чашкам ползунка. Однако развитие беспроводной технологии было оставлено на усмотрение других, поскольку Резерфорд продолжал чисто научные исследования. Дж. Дж. Томсон понял, что Резерфорд был способным исследователем, и пригласил его принять участие в изучении электропроводности газов.

1896: Александр Попов (1859-1906) передавал радиосигналы между зданиями Санкт-Петербургского университета и подарил свой радиоприемник Русскому физико-химическому обществу.

1897: Карл Фердинанд Браун сконструировал первый электронно-лучевой осциллограф, способный сканировать электрическим лучом.

Основным вкладом Фердинанда Брауна было введение замкнутой настроенной цепи в генерирующую часть передатчика и ее отделение от излучающей части (антенны) посредством индуктивной связи, а затем использование кристаллов для приемных целей. Браун экспериментировал сначала в Страсбургском университете. Браун много писал на тему беспроводной связи и был хорошо известен благодаря своим многочисленным публикациям в журнале Electrician и других научных журналах. В 1899 году он подал заявку на патенты «Электро-телеграфия с помощью конденсаторов и индукционных катушек» и «Беспроводная электропередача сигналов по поверхностям».

Пионеры, работавшие над беспроводными устройствами, в конце концов подошли к пределу расстояния, которое они могли преодолеть. Подключение антенны непосредственно к разряднику давало только сильно затухающую последовательность импульсов. Прошло всего несколько циклов, прежде чем колебания прекратились. Схема Брауна обеспечивала гораздо более длительные устойчивые колебания, поскольку энергия имела меньшие потери при колебании между катушкой и лейденскими банками. Также посредством индуктивной антенной связи излучатель был согласован с генератором.

Весной 1899 года Браун в сопровождении своих коллег Кантора и Ценнека отправился в Куксхафен, чтобы продолжить свои эксперименты в Северном море. 6 февраля 1899 года он подал заявку на патент США «Беспроводная электрическая передача сигналов по поверхностям». Вскоре он преодолел расстояние в 42 км до города Мутцинг. 24 сентября 1900 г. состоялся регулярный обмен радиотелеграфными сигналами с островом Гельголанд на расстоянии 62 км. Маяки на реке Эльбе и береговая станция в Куксхафене начали регулярную радиотелеграфную службу. 6 августа 1901 года он подал заявку на получение средств для настройки и регулировки электрических цепей.

К 1904 году замкнутая система беспроводного телеграфирования, связанная с именем Брауна, была хорошо известна и в принципе принята повсеместно. Результаты экспериментов Брауна, опубликованные в журнале «Электрик», представляют интерес, помимо использованного метода. Браун показал, как можно удовлетворительно и экономически решить проблему. Преимущество генератора с замкнутым контуром, как было известно, состоит в том, что он может использовать кинетическую энергию генераторного контура, и, таким образом, поскольку такому контуру можно придать гораздо большую мощность, чем можно получить с помощью одной лишь излучающей антенны, при его использовании можно накопить и излучать гораздо больше энергии. Излучение также продлевается, причем оба результата имеют тенденцию к достижению столь желаемого ряда незатухающих волн. Доступная энергия, хотя и была больше, чем в открытой системе, все же была незначительной, если не использовались очень высокие потенциалы с вытекающими отсюда недостатками. Браун избегал использования чрезвычайно высоких потенциалов для зарядки промежутка, а также использовал менее расточительный зазор, разделяя его на части. Однако главным моментом в его новой конструкции является не просто разделение промежутков на части, а их расположение, при котором они заряжаются параллельно, при низких напряжениях, и разряжаются последовательно. Этот дизайн изображен на Нобелевской премии, присужденной Брауну в 1909 году.

Изобретение радио. Часть 2 Радио, Изобретения, Длиннопост

Позднее развитие радио

Во время Всемирной Колумбийской выставки в Чикаго и Третьего международного электротехнического конгресса Александр Степанович Попов из Кронштадта (Россия) был представителем русской торпедной школы. После этого он работал над своими беспроводными проектами. Попов проводил эксперименты в духе исследований Герца. В 1894-95 годах он построил свой первый радиоприемник, улучшенную версию конструкции Оливера Лоджа, основанной на когерере. В 1895 году он построил когерер.

Попов сконструировал устройство для согласования документов, одна из форм которого использовалась российским правительством в некоторых геодезических экспериментах. В начале 1895 года он использовал когерерный самоотводной механизм и заменил гальванометр обычным телеграфным реле. Он управлял этим аппаратом на расстоянии с помощью большого излучателя. Одна клемма его когерера была подключена к проводнику, прикрепленному к мачте высотой около 30 футов на вершине здания института, а другая клемма когерера была заземлена.

Попов подарил свой радиоприемник Русскому физико-химическому обществу 7 мая 1895 года – этот день в Российской Федерации отмечается как «День радио». В этот день Попов провел публичную демонстрацию передачи и приема радиоволн, используемых для связи в Русском физико-химическом обществе, с помощью своего когерера. Статья о его выводах была опубликована в том же году (15 декабря 1895 г.). В конце 1895 года Попов записал, что надеется на дальнюю передачу сигналов с помощью радиоволн. Он не подавал заявку на патент на это изобретение. Ранние эксперименты Попова заключались в передаче всего на 600 ярдов (550 м). Попов был первым, кто разработал практическую систему связи, основанную на когерере, и русские обычно считают его изобретателем радио.

В 1895–1896 годах Попов и другие использовали когерер, чтобы показать существование атмосферного электричества, используя для этого вертикальный провод, прикрепленный к когереру. 24 марта 1896 года Попов публично продемонстрировал передачу радиоволн между различными зданиями кампуса Санкт-Петербургскому физическому обществу. (Это было до публичной демонстрации системы Маркони примерно в сентябре 1896 года.) Однако, по другим сведениям, Попов добился этих результатов только в декабре 1897 года, то есть после публикации патента Маркони. В 1898 году его сигнал был принят на расстоянии 6 миль (9,7 км), а в 1899 году – на расстоянии 210 км.

Его приемник оказался способен улавливать удары молний на расстоянии до 30 км, действуя таким образом, как детектор молний. В конце 1895 года Попов построил версию приемника, способную автоматически записывать удары молний на рулонах бумаги. В конечном итоге система Попова была расширена и стала функционировать как беспроводной телеграф с прикрепленным к передатчику ключом Морзе. Есть некоторые споры относительно первого публичного испытания этой конструкции. Часто утверждается, что Попов использовал свое радио для отправки сообщения азбукой Морзе на расстояние 250 м 26 марта 1896 года (за три месяца до подачи патента Маркони). Однако современные подтверждения этой передачи отсутствуют. Более вероятно, что указанный эксперимент имел место в декабре 1897 года.

В 1900 году Попов заявил на съезде русских электротехников, что «излучение и прием сигналов Маркони посредством электрических колебаний не было чем-то новым, поскольку в Америке Никола Тесла проделал те же эксперименты в 1893 году». В 1900 году по указанию Попова на острове Гогланд (Суурсаари) была создана радиостанция для обеспечения двусторонней связи по беспроволочному телеграфу между русской военно-морской базой и экипажем линкора «Генерал-адмирал Апраксин». К 5 февраля сообщения поступали надежно. Беспроводные сообщения были переданы на остров Гогланд станцией, расположенной примерно в 40 км от Кюми (ныне Котка) на финском побережье. Позже Попов экспериментировал со связью корабль-берег. Попов умер в 1905 году, и российское правительство не настаивало на его иске до 1945 года.

1896–1897: Гульельмо Маркони (1874–1937) получил британский патент GB12,039 «Усовершенствования в передаче электрических импульсов и сигналов, а также в устройстве для этого» Гульельмо Маркони – принят 2 июля 1897 года. Этот патент Маркони является первым описанием в печати. устройства беспроводной телеграфии (US586193; RE11913). В 1897 году он основал компанию Wireless Telegraph and Signal Company. К 1899 году он отправил радиосигнал на девять миль через Бристольский канал. В 1901 году, после нескольких недель усилий, он посылает сигнал буквы «S» из Англии на Ньюфаундленд, что представляет собой первую трансатлантическую беспроводную связь.

Изобретение радио. Часть 2 Радио, Изобретения, Длиннопост

Продолжение в части 3 и 4.


Материал подготовлен Московским заводом тепловой автоматики (МЗТА)

Показать полностью 5
Отличная работа, все прочитано!