Как наносится термопаста на заводе
Термопаста Stemedu, которая используется для автоматического нанесения в одном из производств компьютерной техники. Ссылка на термопасту
Термопаста Stemedu, которая используется для автоматического нанесения в одном из производств компьютерной техники. Ссылка на термопасту
Системы жидкостного охлаждения для ПК — неплохая альтернатива воздушным кулерам. По сравнению с ними СЖО способны отвести больше тепла, поэтому идеально подходят для «горячих» процессоров и видеокарт. Однако устроены такие системы заметно сложнее, чем обычное воздушное охлаждение. Из чего они состоят, и как работают?
Системы жидкостного охлаждения действительно могут быть более эффективными, чем башенные кулеры. Всё потому, что чисто физически вода имеет лучшую теплопроводность, чем воздух. Поэтому СЖО, у которой теплоносителя гораздо больше и которому не нужно закипать для движения по контуру, могут показывать себя лучше…но не всегда. Когда они хороши:
Когда нужно экстренно охладить резко нагревшийся процессор. Вода быстро заберет лишнее тепло и не позволит ему сгореть;
Когда процессор непрерывно работает на высокой частоте (например, с разгоном) в тяжелых задачах вроде 3D-моделирования, монтажа видео или сведения музыки.
Жидкостные системы охлаждения принято делить на обслуживаемые и необслуживаемые. К первым относятся в основном самосборные или кастомные модели, скомпонованные из отдельных элементов. Их в любой момент можно открыть и почистить, долить теплоноситель либо расширить контур или добавить в конструкцию какие-то детали. Необслуживаемые СЖО - это, как правило, заводские системы, где всё собрано из коробки, а замена жидкости в контуре представляется не самой простой задачей. По этой причине они более надежны с точки зрения безопасности “здесь и сейчас”.
Такие СЖО сразу проектируются так, чтобы там было попросту нечему течь. Их контур герметичен, из-за чего риск протечки сводится к минимуму. Тем не менее, они тоже текут. Это случается нечасто, но причиной тому может быть не только заводской брак, но и внешние факторы, влияющие на СЖО в процессе эксплуатации. Поэтому для заводских систем большое значение имеет гарантия.
Большинство производителей дают гарантию только на саму систему. Если она протекает по независящим от вас причинам, ее скорее всего без проблем заменят на новую. Но, если СЖО зальет другие компоненты и они выйдут из строя, стоимость их ремонта вам никто не компенсирует. Безусловную гарантию предоставляет очень небольшое число производителей. Бывает даже так, что она действует только в отношении определенных моделей, поэтому уточняйте, что называется, по месту.
Одним из недостатков систем жидкостного охлаждения принято считать необходимость регулярной замены теплоносителя. Для этого приходится разбирать весь контур, сливать оттуда жидкость, а потом заливать свежую, стравливая попутно из системы воздух. Умельцы проводят такие манипуляции в домашних условиях, но для простых пользователей существуют специальные сервисные центры.
Если СЖО необслуживаемая, то замена жидкости в ней может быть сопряжена с определёнными трудностями. Например, вы рискуете потерять гарантию либо нарушить герметичность всего контура, и тогда протечки не избежать. Известна масса случаев, когда люди пользовались такими системами без обслуживания и горя не знали. Но со временем теплоноситель неизменно теряет свои свойства, а всем механизмам начинает требоваться смазка. В результате СЖО может завоздушиться, начать хуже охлаждать процессор, а осадок, выпадающий со временем, - забивать каналы. Но вернемся к устройству СЖО
Небольшой металлический блок. Устанавливается на охлаждаемую поверхность и используется для поглощения тепла с нее. Чаще всего такой поверхностью служит крышка центрального или графического процессора, реже — оперативная память, часть материнской платы или платы видеокарты.
Снизу водоблок имеет подошву, выполненную из меди или алюминия. Именно она служит для передачи тепла с поверхности крышки чипа или платы.
С обратной стороны подошвы внутри водоблока находится полость. Через нее проходит поглощающая тепло жидкость. Иногда эта сторона бывает ровной, но у основной массы водоблоков для увеличения площади контакта с жидкостью используется поверхность с микроканалами различных видов: ребрами, «змейками», «иголками», и т.д.
Ввод и вывод охлаждающей жидкости в водоблок осуществляется с помощью специальных отверстий, к которым подключаются трубки или шланги.
Это миниатюрный насос, в основе которого лежит электрический мотор малой мощности. Благодаря помпе жидкость внутри контура СЖО приходит в движение.
Помпа равномерно «прокачивает» жидкость через водоблок, позволяя ей забирать тепло и переносить его к радиатору. У необслуживаемых СЖО помпа обычно объединена с водоблоком. А у обслуживаемых систем она нередко находится в одном корпусе со следующим компонентом — резервуаром.
Резервуар, или расширительный бак — элемент многих обслуживаемых систем жидкостного охлаждения. С его помощью в контур заливается жидкость, а также устраняется оставшийся в нем воздух. Вдобавок к этому резервуар компенсирует небольшое расширение жидкости, которое может возникнуть при ее сильном нагреве. Таким образом он уберегает от повышенного давления все компоненты СЖО. В первую очередь — чувствительные к нему шланги, трубки и места их соединений. В обслуживаемых СЖО с помощью резервуара можно визуально следить за количеством жидкости, при необходимости доливая ее. В необслуживаемых СЖО жидкость залита уже с завода, а шланги подобраны с учетом ее возможного теплового расширения. Поэтому отдельных резервуаров в них нет.
Радиатор осуществляет рассеивание тепла, которое передается ему вместе с движением жидкости от водоблока. Для этого он оснащается вентиляторами — одним или несколькими, в зависимости от размеров.
Если заглянуть внутрь радиатора, мы увидим теплотрубку, которая «змейкой» огибает его внутреннее пространство. Для повышения эффективности рассеивания на нее нанизано множество мелких металлических ребер. При движении жидкости по трубке тепло с ребер уносится вместе с потоком воздуха от вентиляторов.
За перенос тепла в контуре СЖО отвечает жидкий теплоноситель (что и следует из ее названия). Основной объем этой жидкости составляет обычная дистиллированная вода. Но часто в ней содержатся и различные добавки-присадки. Одни из присадок призваны защитить элементы системы охлаждения от коррозии. Другие — не допустить появления в контуре различных микроорганизмов и плесени. А для эффектного вида движущейся жидкости в прозрачных трубках или шлангах вдобавок к присадкам используются и красители.
Шланги и трубки — два вида полых соединительных элементов, по которым в СЖО движется жидкость. Шланги делают из поливинилхлорида или резины. Из-за этого они гибкие и довольно мягкие. Поэтому могут использоваться как в необслуживаемой, так и в обслуживаемой системе охлаждения.
Трубки создаются из пластика или акрила, являются достаточно твердыми и имеют ограниченную гибкость. Именно за счет этих характеристик они могут придать СЖО более эффектный и аккуратный вид, чем шланги. Но из-за устойчивости к изгибам и деформации трубки встречаются лишь в обслуживаемых системах охлаждения — ведь только их пользователь может доработать «под себя».
Чтобы связать компоненты СЖО, шланги и трубки подключаются к ним с помощью резьбовых металлических креплений — фитингов. У готовых систем они обычно бывают прямыми или имеют угол в 90°. Для обслуживаемых СЖО в силу их широких возможностей по кастомизации различных форм фитингов существует намного больше.
Внутри фитинг устроен достаточно просто. Для шланга он обеспечивает герметичность соединения за счет его сдавливания и плотного прижима к своему металлическому корпусу. Разновидности для трубок схожи — с той разницей, что между трубкой и корпусом фитинга для герметичности дополнительно используются резиновые кольца.
При включении компьютера на вентиляторы СЖО и е помпу подается питание. Помпа начинает прокачивать жидкость, приводя ее в движение во всем контуре.
При проходе через водоблок жидкость забирает с собой тепло от его подошвы. Затем жидкость попадает в радиатор, где при движении по теплотрубке передает собранное тепло ей и нанизанным металлическим ребрам. Вентиляторы продувают эту конструкцию, и тепло покидает радиатор вместе с движущимся воздухом.
Остывшая жидкость вновь возвращается в помпу, и после этого раз за разом повторяет свой путь. Если используется обслуживаемая СЖО с резервуаром, жидкость по пути от радиатора к помпе проходит и через него. Там сбрасывается лишнее давление и пузырьки воздуха, которые могли остаться в системе после заливки жидкости.
Но обслужить систему - это полбеды. Иногда гораздо сложнее добиться от них результата, превосходящего кулеры. Если ваша цель - снизить температуру процессора с 80 градусов до 65, а заодно украсить внутрянку своего компьютера, никаких проблем. Берите заводскую СЖО с двумя-тремя секциями, устанавливайте её внутрь ПК и радуйтесь. Но, если вы ищете средство охлаждения для оверклокнутого Threadripper или Ryzen с поддержкой PBO (Precision Boost Overdrive), которые умеют разгоняться автоматически, перед вами стоит сложная задача по выбору правильной системы.
Температура процессора с СЖО в среднем на 12-14 градусов ниже, чем при использовании кулера. Но что это даёт?
Использовать односекционные СЖО с радиатором 120 мм смысла нет вообще никакого. Тут неважен даже производитель, конкретная модель и частота и толщина оребрения. 240-е версии при прочих равных лучше справятся с охлаждением, но какой-нибудь суперкулер вроде Noctua NH-D15 или его аналог в лице “серебряной стрелы” может оказаться даже лучше. Это хорошо видно на таблице ниже:
При выборе системы жидкостного охлаждения (СЖО) для процессора каждый пользователь должен учитывать ряд факторов, которые могут значительно повлиять на эффективность охлаждения, надежность и соответствие его специфическим требованиям.
1. Потребности в охлаждении
Первый и, пожалуй, самый важный аспект — это понимание своих потребностей. Разные пользователи имеют разные подходы к использованию своих систем:
- Геймеры: Игра на высоких настройках графики может вызывать значительное тепловыделение. Для таких пользователей важна высокая производительность охлаждения.
- Оверклокеры: Те, кто занимается оверклокингом, стремятся максимально увеличить производительность своего процессора, что также приводит к повышению температуры. В этом случае необходима более мощная система охлаждения.
- Обычные пользователи: Для тех, кто использует ПК для офисной работы или серфинга в интернете, стандартное воздушное охлаждение может быть вполне достаточным.
2. Совместимость
При выборе СЖО необходимо учитывать совместимость с материнской платой и корпусом. Некоторые СЖО требуют специфического места для установки радиатора или могут быть несовместимыми с определенными сокетами процессоров. Важно заранее проверить спецификации и размеры.
3. Производительность и уровень шума
От разных моделей СЖО может существенно отличаться как производительность, так и уровень шума. Более мощные модели могут быть более шумными, что важно для пользователей, ценящих тишину в работе. Баланс между эффективностью охлаждения и уровнем шума — еще один важный аспект выбора.
4. Упрощение установки
Некоторые СЖО имеют усложнённые механизмы установки, что может пугать менее опытных пользователей. Другие системы могут иметь удобные крепления и простую инструкцию. Выбор СЖО с легкой установкой — важный фактор для пользователей, которые не хотят сталкиваться с трудностями при сборке.
5. Долговечность и уход
Жидкостные системы охлаждения могут потребовать периодического обслуживания, включая доливку жидкости или замену компонентов. Некоторые пользователи могут считать это дополнительным негативным аспектом, тогда как другие могут ценить долгосрочные преимущества, которые дает СЖО в плане охлаждения.
6. Цена
Рынок предлагает широкий спектр ценовых категорий для СЖО. От бюджетных моделей до высококлассных систем — выбор зависит от финансовых возможностей пользователя и его приоритетов в отношении охлаждения. Объективная оценка соотношения цены и качества — это важный шаг, позволяющий сделать правильный выбор.
Несмотря на многообразие моделей и технологий, выбор СЖО для процессора — это вопрос личных предпочтений и требований. Пользователь должен четко понимать свои нужды, оценивать совместимость с уже имеющимися компонентами, учитывать уровень шума и долговечность, а также готовность заниматься обслуживанием системы. Все эти факторы помогут сделать обоснованный выбор, который обеспечит надежное и эффективное охлаждение процессора в нужных условиях.
Реальное тепловыделение современных процессоров уже давно перестало соответствовать величинам TDP, указываемым их производителями. При этом в официальных характеристиках оно далеко не всегда указывается, что запутывает пользователя и может стать причиной выбора недостаточно эффективной системы охлаждения. Рассмотрим данные о тепловыделении актуальных процессоров Intel и AMD.
Для каждой модели в таблице будут указаны два значения мощности. Первое — это Thermal Design Power или Power Limit 1 (TDP/PL1). Для процессоров Intel с 12 поколения Core используется аналогичное значение Processor Base Power (PBP). Это число указывает, сколько тепла будет рассеивать процессор, работающий на своих базовых частотах. Именно его чаще всего используют в маркетинговых материалах обе компании — и Intel, и AMD.
Однако на деле TDP современных моделей — это некий сферический конь в вакууме. Дело в том, что современные процессоры практически никогда не работают на базовых частотах, так как используют вместо них ускоренные частоты турбо-режима. И при такой работе потребление у них совсем другое, отличающееся от базового в большую сторону.
Второе значение в таблице показывает тепловыделение на частотах турбо-режима — это Power Limit 2 (PL2). У процессоров Intel Core 12 поколения и более новых оно официально называется Maximum Turbo Power (MTP), а у AMD Ryzen иногда упоминается как Package Power Tracking (PTP). Именно на него нужно ориентироваться при выборе системы охлаждения для определенной модели ЦП, причем лучше брать ее с небольшим запасом. К примеру, если ваш процессор в пике выделяет 154 Вт — выбирайте из систем охлаждения, у которых рассеиваемая мощность хотя бы немного выше этого значения.
В отношении процессоров, поддерживающих разгон, стоит помнить: указанные цифры — это лимиты по умолчанию. Для достижения более эффективного разгона их можно увеличить в BIOS материнской платы, но тогда и система охлаждения понадобится соответствующая новому значению. К разгоняемым процессорам относятся все модели AMD Ryzen, а также процессоры Intel Core K-серии.
Arrow Lake — кодовое название процессоров Core Ultra Series 2, разработанных Intel и выпущенных 24 октября 2024 года. Он является продолжением Meteor Lake , в котором Intel перешла от монолитного кремния к дезагрегированной конструкции MCM. Meteor Lake был ограничен мобильным выпуском, в то время как Arrow Lake включает как процессоры для настольных ПК с разъемами, так и мобильные процессоры.
Raptor Lake — кодовое название Intel для 13-го и 14-го поколений процессоров Intel Core , основанных на гибридной архитектуре , использующих производительные ядра Raptor Cove и эффективные ядра Gracemont. Как и Alder Lake , Raptor Lake изготавливается с использованием процесса Intel 7 компании Intel. Raptor Lake имеет до 24 ядер (8 производительных ядер плюс 16 эффективных ядер) и 32 потока и совместим с сокетами систем Alder Lake ( LGA 1700 , BGA 1744, BGA 1964). Как и предыдущие поколения, процессоры Raptor Lake также нуждаются в сопутствующих чипсетах . Процессоры Raptor Lake страдают от проблем с постоянным повреждением из-за повышенного напряжения и уязвимой схемы, что приводит к нестабильности. Intel утверждает, что эти проблемы были исправлены в последних исправлениях микрокода, для чего требуется обновление BIOS материнской платы.
Alder Lake — кодовое название Intel для 12-го поколения процессоров Intel Core , основанных на гибридной архитектуре , использующей производительные ядра Golden Cove и эффективные ядра Gracemont . Он изготавливается с использованием технологического процесса Intel 7 от Intel, ранее известного как Intel 10 нм Enhanced SuperFin (10ESF). 10ESF имеет прирост производительности на 10–15 % по сравнению с 10SF, используемым в мобильных процессорах Tiger Lake . Intel официально анонсировала процессоры Intel Core 12-го поколения 27 октября 2021 года, [мобильные процессоры и процессоры для настольных ПК, не относящиеся к серии K, 4 января 2022 года, серии Alder Lake-P и -U 23 февраля 2022 года, и серию Alder Lake-HX 10 мая 2022 года.
Rocket Lake — кодовое название Intel для микропроцессоров Core 11-го поколения . Выпущенный 30 марта 2021 года, он основан на новой микроархитектуре Cypress Cove , варианте Sunny Cove (используемой в мобильных процессорах Intel Ice Lake ), портированном на 14-нм техпроцесс Intel . Ядра Rocket Lake содержат значительно больше транзисторов , чем ядра Comet Lake, полученные из Skylake .
Rocket Lake имеет тот же разъем LGA 1200 и совместимость с чипсетом серии 400, что и Comet Lake , за исключением чипсетов H410 и B460. Он также сопровождается новыми чипсетами серии 500. Rocket Lake имеет до восьми ядер, по сравнению с 10 ядрами для Comet Lake. Он оснащен графикой Intel Xe и поддержкой PCIe 4.0. Только один диск M.2 поддерживается в режиме PCIe 4.0, в то время как все остальные подключены через PCIe 3.0.
Intel официально запустила семейство настольных ПК Rocket Lake 16 марта 2021 года, продажи начнутся 30 марта. Core i3 11-го поколения, а также процессоры Pentium Gold и Celeron на базе Rocket Lake не были включены в более дорогие модели; вместо этого Intel выпустила обновленные модели для процессоров Comet Lake Core i3 и Pentium Gold. Эти процессоры имеют те же характеристики, что и их оригинальные детали, хотя и с частотой на 100 МГц выше, а последняя цифра их номеров моделей изменилась с нуля на пять. Intel также выпустила процессоры Tiger Lake как часть линейки 11-го поколения на рынке настольных ПК/ NUC и планшетов. Такие процессоры имеют новый суффикс B в названиях моделей.
Comet Lake — кодовое название процессоров Core 10-го поколения от Intel . Они производятся с использованием третьей ревизии 14-нм техпроцесса Skylake от Intel, пришедшей на смену семействам мобильных процессоров серии U Whiskey Lake и настольных процессоров Coffee Lake . Intel анонсировала маломощные мобильные процессоры Comet Lake-U 21 августа 2019 г., мобильные процессоры серии H 2 апреля 2020 г., настольные процессоры Comet Lake-S 30 апреля 2020 г., и процессоры серии Xeon W-1200 для рабочих станций 13 мая 2020 г. Процессоры Comet Lake и 10-нм процессоры Ice Lake вместе называются семейством Intel «10-го поколения Core». В марте 2021 года Intel официально выпустила процессоры Comet Lake-Refresh Core i3 и Pentium в тот же день, что и 11-е поколение Core Rocket Lake. Маломощные мобильные процессоры Comet Lake-U Core и Celeron 5205U были сняты с производства 7 июля 2021 года.
Zen 5 ( «Нирвана» ) — название микроархитектуры ЦП от AMD , которая будет представлена в их дорожной карте в мае 2022 года, запущена для мобильных устройств в июле 2024 года и для настольных компьютеров в августе 2024 года. Она является преемницей Zen 4 и в настоящее время производится по процессу N4P компании TSMC . Также планируется производить Zen 5 по процессу N3E .
Микроархитектура Zen 5 лежит в основе процессоров для настольных ПК серии Ryzen 9000 (кодовое название «Granite Ridge»), серверных процессоров Epyc 9005 (кодовое название «Turin») и тонких и легких мобильных процессоров Ryzen AI 300 (кодовое название «Strix Point»).
Zen 4 — это название микроархитектуры ЦП , разработанной AMD и выпущенной 27 сентября 2022 года. Она является преемницей Zen 3 и использует процесс N6 от TSMC для кристаллов ввода-вывода, процесс N5 для ПЗС и процесс N4 для APU. Zen 4 используется в высокопроизводительных настольных процессорах Ryzen 7000 (кодовое название «Raphael»), массовых настольных APU серии Ryzen 8000G (кодовое название «Phoenix»), а также процессорах HEDT и рабочих станций серии Ryzen Threadripper 7000 (кодовое название «Storm Peak»). Он также используется в экстремальных мобильных процессорах (кодовое название «Dragon Range»), тонких и легких мобильных процессорах (кодовые названия «Phoenix» и «Hawk Point»), а также в серверных процессорах EPYC 8004/9004 (кодовые названия «Siena», «Genoa» и «Bergamo»).
Zen 3 — название микроархитектуры ЦП от AMD , выпущенной 5 ноября 2020 года. Она является преемницей Zen 2 и использует 7-нм техпроцесс TSMC для чиплетов и 14-нм техпроцесс GlobalFoundries для кристалла ввода-вывода на серверных чипах и 12-нм техпроцесс для настольных чипов.
AMD Ryzen 4000 построены на 7-нанометровой архитектуре Zen 2, которая позволила увеличить общее количество ядер и потоков и обеспечила более высокую производительность IPC и высокие тактовые частоты.
Zen 2 — это микроархитектура процессора компьютера от AMD . Она является преемницей микроархитектур Zen и Zen+ от AMD и производится на 7 нм узле MOSFET от TSMC . Микроархитектура лежит в основе третьего поколения процессоров Ryzen , известных как Ryzen 3000 для основных настольных чипов (кодовое название «Matisse»)
Доброго дня! Обрисую ситуацию, проживаем с женой на съемном жилье без кондея, впереди как обычно крымское жаркое лето, жена в положении (рожать будет уже осенью), хотелось бы создать для беременной комфортные условия, по причине чего решил взять кондиционер, однако с данного жилья будем переезжать после рождения ребенка, потому установка сплит системы не рассматривается, к тому же хозяин жилья против, остается только мобильный (или напольный) кондей. Так вот, если кто то имеет опыт использования подобными аппаратами, подскажите на сколько они хороши, ну и если есть эксперты в теме кондеев, подскажите какую модель стоит рассматривать к покупке, желательно конечно чтобы не сильно дорого и сердито
Современную игровую сборку не хочется представлять без разгона. Студии рисуют графику с заделом на передовые графические ускорители, а производители железа будто специально выпускают поколение за поколением ровно под эти игры, не оставляя пользователям запаса прочности хотя бы на несколько лет. Так сложилась культура современного гейминга. Но почти любой юзер может вытащить из своей сборки дополнительную мощность, причем совершенно безопасно и безвозмездно. Если ее не вытащили на заводе за нас.
Первоначальное значение термина «оверклокинг» имеет несколько иное понимание разгона комплектующих. Вольтмоды, паяние перемычек, моддинг BIOS уже в прошлом. Сейчас разгон это жмакнул кнопку и готово. Но, какова работа, таков и результат. Если раньше с помощью разгона можно было добиться чуть ли не двукратной прибавки, то сейчас это не более 10–15 %. И то, учитывая полное отсутствие разгона из коробки. Тем не менее, если эта мощность есть и готова к работе, почему бы ею не воспользоваться.
Так, оверклокинг превратился из разгона комплектующих в настройку комплектующих. Это так, потому что свежие модели видеокарт имеют ограничения, которые не снимаются штатными безопасными способами. А в рамках этих ограничений мы можем только управлять поведением карты, но не можем добраться до предельных возможностей кремния.
Новые видеокарты сильно напичканы автоматикой, которая берет полный контроль над управлением мощностью. Хваленый турбобуст Nvidia устроен таким образом, что максимальная частота графического чипа ограничена лишь температурными условиями. Ниже температура — выше стабильная частота. Выше температура — ниже частота. Цифры меняются порогами, где прописаны соотношения частот и вольтажей.
С AMD ситуация повторяется. Только вместо температурных рамок алгоритм ставит ограничение на энергопотребление. То есть, чем выше ватты, тем ниже частота. И все же, с радеонами разгон еще имеет отголоски прошлого, когда ограничение в частоте и вольтаже ставил кремний, а не прошивка. Только для этого нужно редактировать биос карты, зашивать новые соотношения частот и вольтажей.
Более того, производители комплектующих научились «плохому» и теперь разгоняют железки еще на конвейере. Например, RTX 2070 Super в исполнении Palit имеет базовую частоту выше заводской почти на 100 МГц. В нормальных температурных рамках частота и вовсе колеблется в пределах 1950–2050 МГц. Больше из этих карт не выжать, поэтому задача современного оверклокера — заставить турбобуст удержать стабильную частоту как можно выше. Ну и подкрутить память, у которой запас по мегагерцам не тронут заводом.
Видеокарта — как отдельный компьютер. У нее есть свой блок питания, свой процессор, свои материнская плата и оперативная память. Поэтому удача в разгоне ложится не только на плечи силиконовой лотереи, но и на качество обвязки графического чипа:
Раз — качество цепей питания. Видеокарты верхнего ценового сегмента потребляют от 200 Вт на заводских настройках. Это сказывается на температуре элементов системы питания, а также на стабильности регулировки вольтажа.
Два — силиконовая лотерея. Возможности графического чипа ограничены качеством кремния, из которого он построен. Чем оно выше, тем больше шансов стабилизировать высокую частоту на низком вольтаже и при меньшем нагреве.
Три — видеопамять. Хотя чипы памяти тоже принимают участие в силиконовой лотерее, основной частотный потенциал пока задается одним фактором: производитель. Так, для каждого производителя памяти есть примерная максимальная частота:
Samsung — самая качественная и способная память. Легко переваривает прибавку +1000 МГц и даже выше. При этом работает с низкими таймингами.
Micron — менее удачные чипы, но тоже неплохо гонятся от +500 до +900.
Hynix — самые неудачные для разгона чипы. Почти ничего не умеют, максимум +300 МГц к общей частоте. При это греются сильнее предыдущих и имеют самые высокие тайминги.
Три с половиной — система охлаждения. Мы заставляем графический чип и память работать на повышенных частотах, а значит тепловыделение будет тоже выше. Крайне желательно выбирать видеокарту с хорошим охлаждением не только чипов, но и с отдельным радиатором для мосфетов (системы питания).
Мы уже разобрались, что штатные возможности видеокарт хорошо контролируются автоматикой и не готовы отдать полное управление настройками пользователю. Тем не менее, эти лимиты можно обойти с помощью вольтмодов и модифицированных прошивок. Когда в конструкцию видеокарты вносятся изменения: впаиваются дополнительные элементы и ставятся перемычки. В этом случае можно обойти встроенные лимиты и вдоволь насладиться разгонным простором. Главное, держать поблизости огнетушитель. Остальные манипуляции с картой безопасны.
Для удобства понадобится такой набор программ:
MSI Afterburner — утилита-комбайн. Вообще, у каждого производителя есть свое ПО для управления видеокартой, но афтербернер твердо стоит в рядах разгонщиков и используется для всех графических ускорителей как универсальная утилита.
GPU-Z — показывает любую информацию о видеокарте, начиная от ревизии чипа и заканчивая энергопотреблением на втором разъеме дополнительного питания.
Unigine Heaven — довольно практичный тест стабильности. Вообще, это игровой бенчмарк, но его можно включить на бесконечную прокрутку и хорошенько прогреть видеокарту.
3DMark TimeSpy Stress Test — для окончательного тестирования видеокарты. Это тестовый отрезок из основного бенчмарка, который повторяется 20 раз. Система замеряет количество кадров во время каждого прогона и сравнивает итоговые цифры. Если отклонение в производительности между прогонами минимально — система стабильна. Если процент стабильности ниже 95 %, снижаем разгон.
Настройка охлаждения. Чтобы видеокарта работала в прохладе и могла держать высокую частоту, необходимо подкрутить кривую вентиляторов в Afterburner. Для этого открываем программу и нажимаем на значок шестеренки, затем выбираем вкладку «кулер» и включаем пункт «Включить программный пользовательский режим»:
Настройка скорости вентиляторов индивидуальна для каждого типа системы охлаждения. Если это модель с одним вентилятором, то придется выкручивать обороты посильнее. Если топовая с несколькими вентиляторами и массивным радиатором — ориентируемся на такое соотношение температуры к оборотам вентиляторов: 40/60, 60/80, 70/95. С такой настройкой кулеры будут быстрее реагировать на изменения температуры и избавят от кратковременных скачков.
Снимаем температурные лимиты и ограничение энергопотребления. Для этого выставляем три верхних ползунка в AB, как на скриншоте, и нажимаем кнопку «применить»:
ВНИМАНИЕ!!! Если вы не обладаете специализированными навыками и ваше оборудование не обеспечено высокотехнологичной системой охлаждения, данные действия могут привести к полному выходу Вашего оборудования из строя!!!
"БУДТЕ ПРЕДЕЛЬНО ВНИМАТЕЛЬНЫ И ОСТОРОЖНЫ, ОЦЕНИТЕ ВСЕ РИСКИ ПЕРЕД ВЫПОЛНЕНИЕМ ЛЮБЫХ ДЕЙСТВИЙ, СВЯЗАННЫХ С ОТКЛЮЧЕНИЕМ РАЗЛИЧНЫХ ЗАЩИТНЫХ ОГРАНИЧЕНИЙ."
Находим максимум для графического чипа. Открываем бенчмарк Unigine Heaven и MSI Afterburner таким образом, чтобы во время теста было удобно менять настройки в AB:
Запускаем тест на таких настройках:
Как только видеокарта нагреется до рабочей температуры, переходим к подбору частоты. Для этого двигаем ползунок Core Clock вправо. Например, до цифры +40:
Тест не выключаем. После применения частоты замечаем, что максимальная частота поднялась с 1980 МГц до 2010 МГц. При этом температура поднялась на 3 градуса. Оставляем систему в таком режиме на несколько минут, чтобы удостовериться, что частота дается видеокарте без проблем. Далее прибавляем по 10-20 МГц и следим за тестом.
Как только он начнет зависать или показывать артефакты, снижаем частоту ядра на 10-20 МГц и снова запускаем тест. Если бенчмарк крутится без проблем 10 минут и дольше, считаем, что максимальная частота для графического процессора найдена. Подбираем частоту памяти. Частота памяти подбирается аналогичным способом. Но мы знаем примерные возможности всех разновидностей чипов, поэтому с настройкой проще. Для этого переходим в GPU-Z на основную вкладку и находим графу Memory type:
В этом экземпляре установлены чипы Micron. Значит, примерный рабочий диапазон значений колеблется от +500 до +900. От этого и будем отталкиваться.
Снова запускаем тест и выставляем ползунок Memory Clock на значение +500:
Крутим тест пять минут, а затем прибавляем к памяти еще 100 МГц. И так, пока тест не начнет сыпать артефактами или вылетать. Запоминаем глючное значение и спускаемся на 100 МГц ниже. Тестируем 5–10 минут и считаем, что максимальная частота для памяти тоже найдена.
Для данного экземпляра RTX 2070 Super максимальная частота ядра составила 2050 Мгц при температуре 65 °C. Если температура находится ниже этой отметки, частота поднимается до 2080–2100 МГц. Это и есть работа того самого турбобуста Nvidia. Стабильная частота памяти получилась ровно 7900 МГц, то есть +900 по афтербернеру. Пропускная способность поднялась почти на 60 Гб/с:
Тестовый стенд:
Материнская плата: Asus Maximus VIII Hero Coffeemod
Процессор: Intel Core i7 9700k 5.0 ГГц
ОЗУ: Ballistix AES 16 Гб 4000 МГц CL16
Видеокарта: Palit RTX 2070 Super GameRock Premium
Накопитель: SSD Samsung
Assassin’s Creed Valhalla
Средний фпс в разгоне всего на 4 кадра выше, чем на автомате с Turboboost. Это заслуга высокой частоты памяти. При этом температура разогнанной карты отличается на 3 °C. Энергопотребление выше на 13 Вт. Стоит сказать, что игра новая и ведет себя странно. Виной тому слишком сырая версия или неоптимизированные драйверы. Тем не менее, прошлая Odyssey берет от видеокарты намного больше, чем Valhalla.
Assassin’s Creed Odyssey
Разница 7 кадров в среднем количестве кадров, то есть почти 10 %. Интересно, что разгон принес больше пользы в 1 % и 0.1 % кадров. Здесь разница до 60 %. Что удивляет сильнее, так это те же температуры, что и в Valhalla, при большем энергопотреблении. Одним словом, аномалия. Хотя фпс оправданно выше в этом ассассине при 10 Вт разницы с Valhalla.
Horizon Zero Dawn
Все как по книжке: 12 % прирост производительности, 14 % прибавка в ваттах. Привычные 3 °C разницы.
Shadow of the Tomb Raider
Удивительно, но на средний фпс настройка видеокарты влияет так себе. А 1 % и 0.1 % стабильно показывают 8–12 % прибавки во всех тестах. Видимо, частота памяти сильнее влияет на стабильность фреймрейта, нежели на максимальную мощность. Много кадров не выиграли, но подняли энергопотребление и температуру чипа. Так себе разгон, скорее «кукурузный».
Red Dead Redemption 2
Тут тоже без сюрпризов. Все те же 8–9 % прибавки фпс, но выше температура и энергопотребление.
World of Tanks Encore
Здесь и вовсе 6 % разницы, а нагрев как в RDR2. Но энергопотребление выше. То ли тест кукурузный, то ли разгон.
3DMark Fire Strike Extreme
Игровые тесты показывают мизерное увеличение производительности вместе с несоизмеримым повышением температуры и энергопотребления. Этим грешат все современные видеокарты, начиная с поколения Pascal, которые почти не дают дополнительные кадры в обмен на повышение частоты. Все потому, что максимальные возможности графического чипа уже используются автоматически «из коробки».
Но такой разгон может оказаться очень эффективным, если видеокарту не разгоняли на заводе. В таком случае она покажет больше производительности, чем модель от конкурентов. Другое дело, если отключить турбобуст и обойти запреты, чтобы управлять частотой на низком уровне, не взирая на повышенные температуры и лимиты энергопотребления. Но с видеокартами Nvidia такое не пройдет из-за аппаратных ограничений. За неимением таковых, пользователи нашли способ настроить карту так, чтобы при меньших температурах и меньшем потреблении она работала даже лучше, чем в «умном» турбобусте. Способ избавиться от такого кукурузного разгона: снизить рабочий вольтаж и подобрать стабильную частоту. Это называется андервольтинг. Но об этом как ни будь в другой раз.
Интересный процесс изготовления различных видов радиаторов охлаждения для промышленного оборудования. Ссылка на источник