На первом этапе был проведен анализ результатов функциональной магнитно-резонансной томографии (фМРТ) обнаружения областей мозга, связанных с 8 умственными функциями; составлена табличная классификация нейронной активности в мозге функций по Международной классификации функционирования Всемирной организации здравоохранения (МКФ) - интеллект, сознание, эмоции, мышление, чувство веры, сотрудничество, принятие решений, решение проблем.
Моделирование методом послойного наплавления — аддитивная технология, используемая при создании трёхмерных моделей, fused deposition modeling (FDM). Лазерная стереолитография (SLA) — технология 3D‑печати, основанная на послойном отверждении жидкого материала под действием луча лазера. Cura — слайсер 3D-моделей с открытым исходным кодом для 3D-принтеров.
3D модель мозга с полыми полушариями.
Восстановленная, отредактированная и обработанная с помощью программ Blender и Meshmixer 3D-модель мозга была заламинирована в Cura, чтобы установить необходимые параметры для оптимального качества печати и убедиться, что внутренний объем достаточен для многослойной светодиодной структуры. Для получения печатной модели параметры печати были настроены с помощью программы ламинатора UltiMakerCura на принтере FDMEnder3. Модель мозга была напечатана по технологии FDM с использованием полиэтилентерефталатгликоль (PETG). Для визуализации светового потока от светодиодов различной цветности, связанных с каждой координатой, был использован полупрозрачный материал
Последовательная сборка многослойных массивов RGB-светодиодов в 3D модели мозга.
Для программирования светодиодных массивов был создан лист Excel с использованием конкатенированных формул для задания яркости, положения и значений переменных, необходимых в коде микроконтроллера. Основываясь на расположении каждой из зон активации нейронов, светодиоды были запрограммированы на активацию в соответствующей области трехмерного пространства мозга с различными длинами волн для идентификации, сравнения парадигм и анатомических структур мозга.
Программирование многослойной структуры с помощью микроконтроллеров для отображения локализации активности психических функций в трехмерном пространстве мозга осуществлялось в несколько этапов:
- составление таблицы с кодом программирования, назначением переменных и распределением выводов для каждого слоя, чтобы управлять шаблонами освещения многослойной структуры;
- интеграция микроконтроллеров в многослойную структуру для управления каждым светодиодным массивом в отдельности; для обеспечения синхронизации световых потоков от многослойной светодиодной структуры была разработана сеть связи между микроконтроллерами;
- калибровка и проверка системы для обеспечения точного соответствия между местоположением активности мозга и световым потоком от светодиодных массивов, поведение тестов для подтверждения точности при отображении активности мозга.
Модель позволяла визуализировать мозговую активность в трехмерном пространстве мозга и, хотя ее разрешение не сравнимо с разрешением томографического изображения, с её помощью удается показать представление среднего объема вокселей, связанных с областями активации. Физическая модель обеспечивает анатомическую точность и по оптическим характеристикам в ходе испытаний демонстрирует визуализацию умственных функций мозга.
Работа выполнена в Кубанском государственном университете на физико-техническом факультете: научное руководство и идея - д.м.н. Еремин А.Л., организация магистратуры выпускающей кафедры физики и информационных систем - д.ф.-м.н. Богатов Н.М., основной исполнитель - магистрант специальности "физика (медицинская физика)" Рейес-Монкада А. (Республика Колумбия)
Источники, полнотекстовые статьи: