Горячее
Лучшее
Свежее
Подписки
Сообщества
Блоги
Эксперты
Войти
Забыли пароль?
или продолжите с
Создать аккаунт
Регистрируясь, я даю согласие на обработку данных и условия почтовых рассылок.
или
Восстановление пароля
Восстановление пароля
Получить код в Telegram
Войти с Яндекс ID Войти через VK ID
ПромокодыРаботаКурсыРекламаИгрыПополнение Steam
Пикабу Игры +1000 бесплатных онлайн игр Классический пинбол, как в древнем игровом автомате или в компактной игрушке: есть пружины, шарики и препятствия. В нашем варианте можно не только зарабатывать очки: чтобы пройти уровень, придется выполнить дополнительную миссию.

Пинбол Пикабу

Аркады, На ловкость, Казуальные

Играть

Топ прошлой недели

  • cristall75 cristall75 6 постов
  • 1506DyDyKa 1506DyDyKa 2 поста
  • Animalrescueed Animalrescueed 35 постов
Посмотреть весь топ

Лучшие посты недели

Рассылка Пикабу: отправляем самые рейтинговые материалы за 7 дней 🔥

Нажимая «Подписаться», я даю согласие на обработку данных и условия почтовых рассылок.

Спасибо, что подписались!
Пожалуйста, проверьте почту 😊

Помощь Кодекс Пикабу Команда Пикабу Моб. приложение
Правила соцсети О рекомендациях О компании
Промокоды Биг Гик Промокоды Lamoda Промокоды МВидео Промокоды Яндекс Маркет Промокоды Пятерочка Промокоды Aroma Butik Промокоды Яндекс Путешествия Промокоды Яндекс Еда Постила Футбол сегодня
0 просмотренных постов скрыто
5
IdealTechnoNews
IdealTechnoNews
GeekNews

Достаточно охлаждения для майна?⁠⁠

15 дней назад
Перейти к видео
Технологии Вертикальное видео Полезное Кулер Охлаждение Сборка компьютера Компьютерное железо Юмор Видео Короткие видео
3
17
user11279637

Охлаждаю процессор в стационарном компьютере, поливая крышку процессора водой! Часть 1⁠⁠

1 месяц назад

Надоели мне обычные системы жидкостного охлаждения в компьютерах. Мне захотелось сделать систему охлаждения, где вода напрямую контактирует с крышкой процессора. Сказано - сделано!

Знаю что нужно использовать горячие процессоры, но для начала эксперимент будет на pentium g850. Потом уже на мощном и дорогом.

Берём кусок металла и нарезаем на кусочки.

Кладём подопытный процессор на паяльную станцию «Термопро ИК 650 Мини» и включаем нижний подогрев до 120 градусов.

Теперь нужно припаять к процессору ранее вырезанные кусочки металла. Надо припаять герметично, чтобы не протекала вода на плату.

Получилось герметично. Значит, идём дальше — сверлим отверстие и припаиваем кусок металлической трубки для подачи воды.

Теперь нужно припаять верхнюю крышку и ещё одну трубку для воды.

Проверяем под давлением на герметичность.

Вставляем процессор в материнскую плату и надеемся что всё заработает. Подключаем помпу и наливаем воду.

Включаем компьютер и запускаем стресс-тест.

Температура процессора в стресс-тесте 42 градуса, система охлаждения работает.

Да, ожидалось более низких температур, но это только первая часть.

Во второй части:

1) Куплю процессор посовременней и помощнее.

2) Увеличу диаметр трубок.

3) Изменю конструкцию водоблока.

4) Изменю конструкцию подачи воды на крышку процессора.

Вторая часть выйдет через неделю. Если у меня будет 100 подписок, то сделаю вторую часть на следующий день, после того как наберу 100 подписок.

Меня зовут Дмитрий, у меня есть много идей для проведения экспериментов с компьютерным железом.

Спасибо, что прочитали пост до конца. Надеюсь, вам понравилось!

Показать полностью 13
[моё] Пайка Компьютер Компьютерное железо Сборка компьютера Водяное охлаждение Охлаждение Система охлаждения Игровой ПК Эксперимент Компьютерная помощь Процессор Перегрев Длиннопост
31
9
TechSavvyZone
TechSavvyZone

Энтропия информационной инфраструктуры: Стратегии противодействия хаосу в серверных экосистемах корпоративного уровня⁠⁠

2 месяца назад

Аннотация: В современной бизнес-среде серверная комната или дата-центр перестали быть просто техническими помещениями. Они превратились в сложные, динамичные экосистемы, где физические и логические компоненты находятся в постоянном взаимодействии. В данной статье проводится глубокий анализ ключевых аспектов жизни такой экосистемы: энергопотребления и охлаждения, кабельной инфраструктуры, физической безопасности и мониторинга. В противовес описательному подходу, мы предлагаем системный взгляд, основанный на международных и отечественных стандартах (ГОСТ, TIA-942, ISO/IEC 27001). Для каждого аспекта детально разбираются типичные ошибки специалистов, приводятся яркие примеры их катастрофических последствий для бизнеса и предлагаются конкретные, реализуемые на практике варианты решений, направленные на достижение максимальной отказоустойчивости, эффективности и предсказуемости работы всей информационной структуры предприятия.

Введение: От «серверного парка» к «серверной экосистеме»

Бродя по просторам «ИНТЕРНЕТА» наткнулся на довольно неплохое чтиво в виде Статьи «Прогулки по серверному парку», которая была опубликована в далеком 2004 году, по моему мнению она была своего рода гидом по terra incognita для многих молодых IT-специалистов того времени которые только начинали свою карьеру. Она фиксировала состояние индустрии, где серверы были громоздкими, а их размещение зачастую напоминало скорее складское хозяйство, чем инженерное сооружение. Прошедшие два десятилетия кардинально изменили ландшафт. Виртуализация, облачные технологии, контейнеризация и экстремальный рост плотности вычислений на единицу площади превратили серверные помещения в критически важные центры жизнеобеспечения бизнеса. Я решил немного обновить и проанализировать ситуацию и обновить «Гайд» для новичков профессии, «Возможно пригодиться»! Старичкам профессии!, буду очень признателен, за комментарии и возможные дополнения, особо ценные обязательно попадут в продолжение, так как планирую в дальнейшем выпустить цикл статей если аудитория заинтересуется.

Понятие «парк» implies нечто пассивное, статичное. Сегодняшняя реальность требует более динамичной метафоры – «экосистема». Это живой, дышащий организм, где изменение одного параметра (например, температуры на одном стойко месте) немедленно сказывается на других (потреблении энергии, шуме вентиляторов, надежности соседнего оборудования). Основной закон термодинамики – энтропия, стремление системы к хаосу – в полной мере применим и к ИТ-инфраструктуре. Без целенаправленных усилий по ее поддержанию и развитию, инфраструктура неуклонно движется к состоянию беспорядка: кабели спутываются, документация устаревает, системы охлаждения не справляются с нагрузкой, а политики безопасности становятся формальностью.

Цель данной статьи – предложить не просто описание лучших практик, а целостную философию управления этой экосистемой. Мы перейдем от вопроса «Что это?» к вопросам «Почему это важно?», «Что будет, если этим пренебречь?» и «Как сделать это правильно, опираясь на мировой опыт?». Анализ будет строиться на сопоставлении хаотичного, «энтропийного» подхода с системным, стандартизированным, основанным на таких документах, как ГОСТ Р 56952-2022 (аналогичный EN 50600 по дата-центрам), серия стандартов ISO/IEC 27000 по безопасности, TIA-942 для телекоммуникационной инфраструктуры и других.

Раздел 1. Энергоснабжение и тепловой менеджмент: Основа стабильности экосистемы

Электричество – это кровь серверной экосистемы. Его качество, бесперебойность и распределение определяют возможность существования всей системы. Тепло – это ее естественный метаболический продукт, который должен быть эффективно отведен. Дисбаланс в этой паре – самая частая причина катастрофических сбоев.

Анализ текущей ситуации и проблемы

Многие организации, особенно на этапе роста, относятся к энергетике по остаточному принципу. Типичные ошибки включают:

Отсутствие резервирования: Подключение всей критической нагрузки к одной линии электропитания без источника бесперебойного питания (ИБП) или с ИБП, не рассчитанным на длительную работу.

Неправильный расчет мощности: Подключение нового мощного оборудования к уже загруженным электрическим цепям, что приводит к перегрузкам и срабатыванию автоматических выключателей.

Хаотичное размещение оборудования: Установка серверов с высокой тепловой нагрузкой в верхней части стойки, где скапливается горячий воздух, или создание «горячих островков» из-за непродуманной расстановки стоек.

Игнорирование холодных и горячих коридоров: Смешивание потоков холодного и горячего воздуха, приводящее к резкому снижению эффективности системы охлаждения.

Варианты решений для специалистов на основе стандартов

1.  Внедрение системы бесперебойного питания с многоуровневым резервированием (N+1, 2N).

Стандарт: ГОСТ Р МЭК 62040-3-2014 (Системы бесперебойного питания. Часть 3). Определяет методы определения производительности и испытаний.

Решение: Для малых и средних серверных достаточно ИБП с топологией VFI (двойное преобразование), обеспечивающего чистую синусоиду и защиту от всех видов помех в сети. Для ЦОДов корпоративного уровня обязательна схема резервирования 2N (два полностью независимых модуля питания, каждый из которых способен нести полную нагрузку). Это защитит от отказа одного из ИБП, а также позволит проводить его плановое обслуживание без прерывания работы.

2.  Проектирование и строгое соблюдение организации холодных и горячих коридоров.

Стандарт: TIA-942-B (Telecommunications Infrastructure Standard for Data Centers). Детально описывает требования к компоновке, включая ширину коридоров, высоту фальшпола, размещение перфорированных плит.

Решение: Стойки должны быть установлены фронтами друг к другу, образуя «горячие» коридоры, где горячий воздух отводится к кондиционерам. Тыльные стороны образуют «холодные» коридоры, откуда оборудование забирает охлажденный воздух. Холодные коридоры должны быть герметизированы (с помощью заглушек на пустых юнитах, боковых панелей на стойках и, в идеале, физических потолков). Это повышает температурный дифференциал и эффективность охлаждения на 15-40%.

3.  Внедрение системы мониторинга потребляемой мощности (PDU с измерением) и температуры в режиме реального времени.

Стандарт: ГОСТ Р 56952-2022 (Центры обработки данных. Требования к телекоммуникационной инфраструктуре). Рекомендует мониторинг ключевых параметров среды.

Решение: Использование интеллектуальных блоков распределения питания (PDU), которые предоставляют данные о токе, напряжении и потребляемой мощности на уровне каждой розетки или ветви. Датчики температуры должны размещаться не только на входе кондиционеров, но и на входе в стойки, а также на выходе из серверов (в горячих коридорах). Это позволяет строить тепловые карты и прогнозировать перегревы.

Последствия ошибок: Яркие примеры

Пример 1: «Эффект домино» из-за перегрузки цепи. В крупном интернет-магазине перед распродажей в стойку с существующим оборудованием был установлен новый мощный сервер СУБД. Инженер не проверил нагрузку на цепи PDU. Во время пиковой нагрузки автоматический выключатель на PDU сработал. Сервер БД отключился, что привело к падению сайта на 4 часа. Прямые убытки от потерянных продаж составили несколько миллионов рублей, а репутационные потери были еще значительнее.

Вывод: Каждое добавление оборудования должно сопровождаться проверкой нагрузки на электрическую цепь. Интеллектуальные PDU с пороговыми предупреждениями могли бы предотвратить инцидент.

Пример 2: Лавинообразный перегрев из-за нарушения циркуляции воздуха. В дата-центре финансовой компании сервер, расположенный в верхней части стойки, вышел из строя из-за перегрева и отключился. Его вентиляторы перестали работать. Этот сервер создавал значительное аэродинамическое сопротивление. После его остановки горячий воздух от нижестоящих серверов изменил поток и начал засасываться ими же на вход, создавая рециркуляцию. В течение 10 минут последовательно перегрелись и отключились еще 5 серверов, что привело к остановке биржевых торговых роботов. Расследование показало, что в стойке отсутствовали blanking-панели (заглушки), усугублявшие проблему.

Вывод: Физическое расположение оборудования и аэродинамика стойки не менее важны, чем работа кондиционеров. Заглушки – это не «косметика», а обязательный элемент системы охлаждения.

Раздел 2. Кабельная система: Нервная система экосистемы

Кабельная инфраструктура – это нервная система, связывающая все компоненты экосистемы воедино. Ее состояние напрямую определяет производительность сети, простоту управления и скорость реагирования на изменения.

Анализ текущей ситуации и проблемы

«Кабельный спагетти» – бич многих старых и даже не очень старых серверных. Проблемы возникают из-за:

Отсутствие проекта СКС: Прокладка кабелей «по мере необходимости», без единого плана и цветовой маркировки.

Смешение типов кабелей: Силовые и патч-корды, проложенные в одном лотке, что приводит к электромагнитным помехам.

Игнорирование правил прокладки: Резкие изгибы кабелей, превышающие минимальный радиус, что повреждает жилы и ухудшает характеристики.

Отсутствие документации: После ухода администратора, который «все держал в голове», новый специалист тратит недели на распутывание клубка.

Варианты решений для специалистов на основе стандартов

1.  Внедрение структурированной кабельной системы (СКС) с четкой иерархией.

Стандарты: ISO/IEC 11801 (Information technology — Generic cabling for customer premises), TIA-942. ГОСТ Р 53245-2008 (Информационная технология. Структурированные кабельные системы. Монтаж и приемка основных узлов).

Решение: СКС должна быть спроектирована с выделением главного кроссового поля (MC), кроссовых полей оборудования (EC) и горизонтальных кроссов (HC). Использование патч-панелей вместо прямого подключения кабелей к коммутаторам. Это создает точку стабильности (стенд с патч-панелями) и точку изменений (патч-корды). Все кабели должны быть промаркированы с двух сторон в соответствии с единой схемой именования.

2.  Разделение силовых и слаботочных кабельных трасс.

Стандарт: ГОСТ Р 53246-2008 (Информационная технология. Проектирование основных узлов систем...). Прямо указывает на необходимость разделения трасс или обеспечения расстояния не менее 30 см между силовыми и информационными кабелями при параллельной прокладке.

Решение: Использование раздельных лотков для силовых кабелей и кабелей СКС. Если разделение невозможно, следует использовать экранированные кабели (F/UTP, S/FTP) и заземлять экран. Пересечение трасс должно осуществляться строго под прямым углом.

3.  Применение систем управления кабелями (кабельные органайзеры, направляющие).

Стандарт: Рекомендации производителей телекоммуникационных шкафов (например, APC, Rittal) и лучшие практики, описанные в TIA-942.

Решение: Установка вертикальных и горизонтальных кабельных органайзеров на стойках. Использование патч-кордов фиксированной длины (0.5м, 1м, 2м). Это исключает образование свисающих петель и избыточного запаса, которые мешают циркуляции воздуха и доступу к оборудованию.

Последствия ошибок: Яркие примеры

Пример 1: Случайный обрыв критического соединения. В колокейшн-центре технический специалист, пытаясь добавить новый сервер, зацепился ногой за клубок неорганизованных кабелей. Это привело к выдергиванию патч-корда из коммутатора агрегатного уровня. Этим кабелем обеспечивалась связь между основным и резервным центром обработки данных. Сработал механизм репликации, который, столкнувшись с потерей связи, перевел систему в аварийный режим, ошибочно зафиксировав катастрофу в основном ЦОДе. Начался неплановый переход на резервный сайт, который занял 30 минут и привел к недоступности критичных приложений для сотен клиентов.

Вывод: Аккуратная кабельная разводка – это не эстетика, а вопрос отказоустойчивости. Вероятность случайного повреждения правильно организованных кабелей стремится к нулю.

Пример 2: Тайная деградация производительности сети. Компания жаловалась на периодические «зависания» сети хранения данных (SAN) в ночное время, во время выполнения задач резервного копирования. Логи серверов и коммутаторов не показывали явных ошибок. После многомесячного расследования приглашенный эксперт с помощью рефлектометра обнаружил, что один из волоконно-оптических кабелей, проложенных с резким изгибом за стойкой, имел микротрещины. Под нагрузкой (интенсивный трафик бэкапов) оптический сигнал деградировал, вызывая рост количества ошибок и повторных передач, что и проявлялось как «зависание». Проблема была решена заменой кабеля, проложенного с соблюдением минимального радиуса изгиба.

Вывод: Физические дефекты кабеля могут вызывать прерывистые и трудно диагностируемые проблемы. Соблюдение правил монтажа с самого начала сэкономило бы компании десятки тысяч рублей на диагностике и простое.

Раздел 3. Физическая безопасность и контроль доступа: Иммунная система экосистемы

Серверная комната – это сейф, где хранится самый ценный актив компании – ее данные. Физическая безопасность является фундаментом, на котором строится вся кибербезопасность.

Анализ текущей ситуации и проблемы

Ошибки в этой области часто происходят из-за недооценки человеческого фактора:

Упрощенный контроль доступа: Ключ от серверной, который хранится в незапертом ящике, или единый код на двери, известный десяткам людей.

Отсутствие аудита и сегрегации обязанностей: Один и тот же специалист имеет неограниченный физический доступ ко всему оборудованию, может самостоятельно вносить изменения без согласования.

Пренебрежение видеонаблюдением: Отсутствие архивов записей, фиксирующих кто, когда и что делал в помещении.

Варианты решений для специалистов на основе стандартов

1.  Внедрение многофакторной системы контроля доступа.

Стандарт: ISO/IEC 27001:2022 (Информационная безопасность, кибербезопасность и защита конфиденциальности — Системы менеджмента информационной безопасности — Требования). Контроль A.7.3 «Физический доступ в зоны безопасности».

Решение: Отказ от механических ключей в пользу электронных систем (карты доступа, брелоки). Обязательное использование двухфакторной аутентификации для доступа в зоны повышенной критичности (например, карта + PIN-код или биометрия). Система должна вести детальный журнал всех событий входа/выхода.

2.  Реализация принципа минимальных привилегий и сегрегации обязанностей.

Стандарт: Требованиям отечественного Федерального закона № 152-ФЗ «О персональных данных» (для обработчиков ПДн) и внутренним политикам безопасности.

Решение: Разграничение зон доступа. Например, специалист по сетевым оборудованием имеет доступ только к стойкам с коммутаторами, а администратор СУБД – только к стойкам с серверами баз данных. Физический доступ к ленточным библиотекам с архивными бэкапами должен быть предоставлен крайне ограниченному кругу лиц. Любое изменение в коммутациях (переключение патч-корда) должно фиксироваться в системе заявок.

3.  Организация круглосуточного видеонаблюдения с архивом.

Стандарт: Лучшие отраслевые практики, часто требуются стандартами PCI DSS (для платежных систем) и др.

Решение: Установка камер высокого разрешения с охватом всех критических зон: вход, коридоры, лицевые и тыльные стороны стоек. Видеоархив должен храниться не менее 90 дней. Камеры должны быть интегрированы с системой контроля доступа, чтобы событие доступа сразу привязывалось к видеофрагменту.

Последствия ошибок: Яркие примеры

Пример 1: Кража данных уволенным сотрудником. Сотрудник, уволенный из IT-отдела крупного ритейлера, воспользовался тем, что его карта доступа была деактивирована с задержкой в один день. Ночью он прошел в серверную, к которой имел доступ, и, зная пароли (которые не были изменены вовремя), подключился к серверу, скопировал базу данных с персональными данными и платежными реквизитами нескольких сотен тысяч клиентов. Эти данные были затем проданы на черном рынке. Компании пришлось уведомлять клиентов, менять платежные системы и заплатить многомиллионный штраф по 152-ФЗ.

Вывод: Процедура увольнения должна включать мгновенное отключение всех видов доступа – физического и логического. Журналы контроля доступа должны проверяться регулярно.

Пример 2: Саботаж и вывод из строя оборудования. В рамках корпоративного конфликта недовольный системный администратор, имеющий единоличный доступ в серверную, в выходной день отключил питание на нескольких стойках, вызвав остановку производственного конвейера на 12 часов. Убытки от простоя исчислялись десятками миллионов рублей. Так как видеонаблюдение велось только на входе, а журнал доступа не анализировался, доказать умысел сразу не удалось. Только косвенные улики и последующая исповедь самого администратора позволили установить истину.

Вывод: Отсутствие сегрегации обязанностей и полноценного наблюдения внутри помещения создает колоссальные операционные риски. Ни один сотрудник не должен обладать неконтролируемой властью над всей инфраструктурой.

Раздел 4. Мониторинг, документация и управление жизненным циклом: Сознание экосистемы

Способность экосистемы к самодиагностике, прогнозированию и планированию – признак ее зрелости. Это достигается за счет комплексного мониторинга и безупречного ведения документации.

Анализ текущей ситуации и проблемы

Самая распространенная болезнь – «выгорание» процессов документирования:

Документация отстает от реальности: Схемы, нарисованные пять лет назад, не соответствуют текущему состоянию.

Мониторинг «всего подряд» без реакции: Система генерирует тысячи событий, но большая часть из них игнорируется, так как не настроены пороги и приоритеты.

Отсутствие реестра активов и их жизненного цикла: Компания продолжает эксплуатировать сервер, гарантия на который истекла 3 года назад, и узнает об этом только в момент его отказа.

Варианты решений для специалистов на основе стандартов

1.  Внедрение системы централизованного мониторинга и управления событиями (SIEM).

Стандарт: ISO/IEC 27035 (Управление инцидентами информационной безопасности).

Решение: Использование систем типа Zabbix, Prometheus, Nagios для сбора метрик (температура, загрузка CPU, свободное место на дисках) и систем типа ELK Stack (Elasticsearch, Logstash, Kibana) или коммерческих SIEM-решений для агрегации и корреляции логов. Настройка правил, чтобы критичные события (например, отказ диска в RAID-массиве, срабатывание пожарной сигнализации) немедленно вызывали реакцию (уведомление по SMS, email, в мессенджер).

2.  Ведение единого реестра активов (CMDB - Configuration Management Database).

Стандарт: ITIL 4 (библиотека инфраструктуры IT). Практика «Управление активами и конфигурациями».

Решение: Создание базы данных, где каждый актив (сервер, коммутатор, ИБП) имеет свою запись с указанием производителя, модели, серийного номера, даты ввода в эксплуатацию, гарантийного срока, ответственного, связей с другими активами (какой сервер на каком коммутаторе висит). CMDB должна быть «единственным источником истины».

3.  Автоматизация документирования изменений.

Стандарт: Внутренние регламенты компании, интегрированные с ITSM-системами (ServiceNow, Jira Service Desk).

Решение: Любое изменение в инфраструктуре (добавление сервера, смена патч-корда) должно инициироваться через заявку на изменение (Request for Change, RFC). После выполнения изменения ответственный специалист обязан обновить соответствующие схемы в CMDB или системе документооборота. Это делает процесс необременительным и частью рабочего потока.

Последствия ошибок: Яркие примеры

Пример 1: Многочасовой простой из-за отсутствия актуальной схемы. В результате аварии на коммутаторе агрегатного уровня отключилась половина серверов. Команда администрирования начала восстановление, но столкнулась с тем, что схема сетевых подключений была устаревшей. Физическое распутывание кабелей, чтобы понять, какой сервер куда подключен, заняло 4 часа. Вместо потенциально быстрого восстановления путем переключения на резервный коммутатор, простой критически важных систем длился более 6 часов, что привело к остановке онлайн-торговли и срыву сроков по ключевым проектам.

Вывод: Актуальная документация – это не отчет для начальства, а инструмент для аварийного восстановления. Ее стоимость несопоставима со стоимостью простоя.

Пример 2: Цепная реакция отказов из-за пропущенных предупреждений мониторинга. Система мониторинга в течение двух недель генерировала предупреждения о постепенном снижении емкости аккумуляторных батарей в ИБП. Однако эти предупреждения имели низкий приоритет («Warning») и терялись среди сотен других сообщений. Никто на них не отреагировал. Во время плановых работ в городской электросети произошло короткое отключение питания. ИБП должен был обеспечить работу на 15 минут, но батареи отработали менее 2 минут. Серверы аварийно отключились, что привело к повреждению файловых систем на нескольких виртуальных машинах. Их восстановление из бэкапа заняло сутки.

Вывод: Мониторинг без настройки правил эскалации и реакции бесполезен. Критичные для инфраструктуры компоненты (ИБП, охлаждение) должны мониториться с высочайшим приоритетом.

Заключение: От борьбы с хаосом к управляемой эволюции

Серверная экосистема современного предприятия – это сложный организм, требующий не сиюминутных «латаний дыр», а продуманной стратегии управления, основанной на международных и отечественных стандартах. Каждый рассмотренный аспект – энергетика, кабельная система, безопасность, мониторинг – является неотъемлемым звеном в цепи надежности.

Ошибки на любом из этих этапов, как показали примеры, имеют далеко идущие последствия: от прямых финансовых потерь и репутационного ущерба до полной остановки бизнес-процессов. Стратегия, построенная на стандартах (ГОСТ, TIA-942, ISO/IEC 27001, ITIL), – это не бюрократия, а практический инструмент, позволяющий перевести инфраструктуру из состояния непредсказуемого хаоса в состояние управляемой, предсказуемой и надежной системы.

Ключевой вывод заключается в том, что инвестиции в порядок и стандартизацию «железного» уровня многократно окупаются за счет снижения рисков, уменьшения времени простоя и упрощения масштабирования. Борьба с энтропией информационной инфраструктуры – это непрерывный процесс, но именно он позволяет бизнесу не просто выживать, а уверенно развиваться в цифровую эпоху.

Показать полностью 18
[моё] Инженер Статья IT Серверная Сервер Цод ГОСТ Проектирование Технологии Компьютерное железо Автоматизация СКУД Охлаждение Система охлаждения Стандарты Закон Требования Нормы Длиннопост
0
10
bushroot256
bushroot256

Дырки для скорости⁠⁠

3 месяца назад

Сегодня убедился, что они существуют.

Как в Симпсонах

Только не для ускорения, а наоборот. Из-за троттлинга на 80% урезает. И температура 100С даже в простое.

И это видеосервер от серьезной конторы.

Показать полностью 4
[моё] Процессор Охлаждение Компьютерное железо Сборка компьютера Игровой ПК Своими руками Гифка Длиннопост
15
33
TechSavvyZone
TechSavvyZone

Технологии: "Процессорный Кулер" с экструдированным радиатором — есть ли право на жизнь?⁠⁠

3 месяца назад

В современных ПК для охлаждения процессора чаще всего используются кулеры с тепловыми трубками. Сегодня их ассортимент как нельзя широк, поэтому даже для бюджетной сборки можно подобрать подходящую недорогую модель. Но в продаже до сих пор остаются и «обычные» кулеры с экструдированными радиаторами. Чем они хороши, и есть ли вообще в них смысл?

Устройство и принцип работы

Экструзия — наиболее простой способ изготовления радиаторов, которые используются для охлаждения компонентов ПК. Этот процесс представляет собой продавливание расплавленного алюминия через специальную заготовку, которая определяет форму готового цельнометаллического радиатора на выходе.

Подошва экструдированного радиатора поглощает тепло от процессора, которое за счет теплопроводности металла понемногу распространяется по всему его объему. Эффективность отвода тепла здесь зависит от размеров радиатора и формы его ребер — ведь именно они определяют площадь контакта горячего металла с воздухом, нагнетаемым вентилятором. Дополнительно увеличить эффективность может помочь медная вставка-теплосъемник, которой оснащаются некоторые подобные конструкции.

За счет большей теплопроводности медь быстрее поглощает и равномернее передает тепло по всему объему радиатора из алюминия, чем при контакте этого металла с охлаждаемой поверхностью напрямую. Поэтому кулеры с медным сердечником показывают себя лучше, чем модели на основе цельнометаллических «брусков» алюминия.

Исторически экструдированные радиаторы использовались на всех компонентах ПК, которые нуждались в охлаждении: материнских платах, процессорах и видеокартах. Но из-за роста тепловыделения на двух последних уже к концу 2000-х годов они постепенно стали вытесняться радиаторами на базе тепловых трубок.

Тепловые трубки выполняются из меди и являются герметичными сосудами. Внутри них находится жидкость под пониженным давлением, которая за счет этого способна закипать при температуре ниже 100 °C. В теплосъемник кулера спрессовывается или припаивается несколько таких трубок, на концы которых нанизываются тонкие алюминиевые пластины — они играют роль радиатора.

При нагреве жидкость в трубках закипает и испаряется, поглощая большое количество тепла. Пар перемещается на противоположный конец трубок, где соприкасается с холодными стенками и конденсируется, вновь превращаясь в жидкость. Тепло от трубок передается алюминиевым пластинам радиатора и рассеивается с помощью потока воздуха от вентилятора. А жидкость стекает в теплосъемник, и весь процесс повторяется снова и снова.

Трубки быстро передают тепло в разные части радиатора, а площадь отдачи у такой конструкции довольно большая. Чего нельзя сказать о моделях с экструдированными радиаторами: площадь рассеивания здесь меньше, а тепло распространяется по ней заметно медленнее даже с медным теплосъемником, не говоря уже чисто об алюминиевых моделях. Поэтому эффективность работы у радиаторов на тепловых трубках ощутимо выше.

Виды кулеров и их особенности

В зависимости от модели, экструдированные радиаторы кулеров могут иметь разную форму — круглую или квадратную. Никакую значимость этот параметр не несет, это лишь часть дизайна.

По ширине радиатора разные модели отличаются незначительно, чего не скажешь о высоте. При прочих равных, у более низких радиаторов эффективность хуже, а максимальный TDP — ниже. Но зато кулеры с ними без проблем поместятся даже в ультракомпактные корпуса.

Чаще всего вентилятор у кулеров находится поверх радиатора, но у некоторых моделей он бывает утоплен в ребра. В теории, так радиатор продувается лучше. Однако на практике заметного прироста эффективности от подобной конструкции почти нет.

Особняком стоят модели с медной вставкой. Как уже упоминалось, такие радиаторы рассеивают тепло лучше, чем полностью алюминиевые. Подобная конструкция наиболее распространена у боксовых кулеров Intel, но встречается и у решений от сторонних производителей.

Как правило, чем дешевле кулер, тем незамысловатее дизайн его радиатора и тем меньше у него ребер. Поэтому, несмотря на кажущуюся схожесть, у самых простых моделей эффективность может быть заметно ниже, чем у более «продвинутых». Стоит помнить, что это влияет не только на температуру, но и на уровень шума — справиться с охлаждением процессора может любая модель, подходящая по TDP, но работать тише будет более эффективная.

Когда стоит покупать

На заре появления башенных кулеров с тепловыми трубками стоили они ощутимо дороже, чем модели с экструдированными радиаторами. А если учесть, что до 2017 года в массовых ПК не было процессоров с количеством ядер более четырех (привет, псевдовосьмиядерный FX), то реальная нужда в «башнях» была главным образом у пользователей топовых ЦП, энтузиастов, оверклокеров и любителей абсолютной тишины под нагрузкой.

К сегодняшнему дню даже бюджетные процессоры обзавелись большим количеством ядер. Поэтому они выделяют заметно больше тепла и требуют заметно более эффективного охлаждения. Вдобавок технология тепловых трубок распространилась массово, а цена недорогих кулеров с ними практически сравнялась со стоимостью моделей на базе экструдированных радиаторов. А если учесть, что последние могут эффективно отвести максимум 100–120 Вт при вентиляторе, вращающемся со скоростью около 2000 об/мин, то возникает резонный вопрос: а зачем они вообще нужны, если решения с тепловыми трубками работают тише и эффективнее?

Однако есть у таких кулеров и собственные ниши распространения, в которых конкуренция с «башнями» им не грозит. К ним относятся:

  • Компактные корпуса и мини-ПК. Башенные кулеры обладают большой высотой, что делает их несовместимыми с компактными корпусами. И хотя встречаются горизонтальные кулеры с тепловыми трубками, их габариты больше, чем у классических моделей с экструдированными радиаторами. Поэтому последние точно «влезут» везде.

  • ПК с процессорами, обладающими низким TDP. ЦП с низким тепловыделением прекрасно охлаждаются экструдированными кулерами даже на умеренных оборотах. К тому же, бонусом они обдувают и зону VRM на «материнке», что важно для бюджетных плат без радиаторов. Установка башенного кулера в этом случае не имеет особого смысла.

К моделям с низким тепловыделением из ассортимента Intel относятся Celeron, Pentium, Сore i3, а также энергоэффективные варианты Core с приставкой «T». Среди современных AMD с ними могут поспорить некоторые Ryzen с приставкой «G» и все энергоэффективные Ryzen «GE».

  • Компьютеры с пассивным охлаждением. Если нужна абсолютная бесшумность для системы с «холодным» процессором, то можно организовать пассивное охлаждение. Основной критерий к кулеру в этом случае — отсутствие вентилятора. Среди моделей с экструдированными радиаторами такие как раз есть.

  • Системы, где требуется работа в любых условиях. Тепловые трубки не подходят для использования в условиях холода или жары. В первом случае жидкость в них может замерзнуть, а во втором — перестать конденсироваться. Это ведет к невозможности эффективно переносить тепло на радиатор, что приведет к перегреву ЦП. А при длительном использовании подобные условия могут стать причиной разгерметизации трубок. Поэтому в системах, которые работают на улице (к примеру, банкоматы и терминалы самообслуживания) можно использовать только кулеры с цельнометаллическими радиаторами.

Итоги

Кулеры с экструдированными радиаторами в народе часто называют «простыми» или «обычными». Эти имена как нельзя точно отражают их конструкцию и принцип работы. Подобные решения простые, как три копейки, и в них просто нечему ломаться (кроме самого вентилятора).

Однако возможности по отводу тепла у этих кулеров ставят крест на их использовании с современными производительными процессорами. А там, где возможностей хватает, аргументом против может стать повышенный уровень шума — «башня» почти всегда будет работать тише.

Впрочем, исчезать кулеры с экструдированными радиаторами не собираются. Они остаются востребованными для компактных корпусов, сборок с «холодными» процессорами и систем, которые должны оставаться работоспособными в любых внешних условиях. Для этих случаев подобные решения все также незаменимы.

Показать полностью 10
Технологии IT Компьютерное железо Инженер Компьютер Производство Электроника Система охлаждения Охлаждение Длиннопост
23
17
A.Kristina
A.Kristina
Интересные покупки

Как делают крутые кулеры DEEPCOOL⁠⁠

4 месяца назад
Перейти к видео

Кулеры для процессора DEEPCOOL Assassin служат охлаждением для центрального процессора с высоким уровнем тепловой нагрузки. Аксессуар монтируется на процессор и решает задачу оптимизации его рабочей температуры, отводя до 280 Вт выделяемой ЦПУ тепловой энергии. В его конструкции предусмотрены медное основание, алюминиевый радиатор для рассеивания тепла и 7 тепловых трубок.

Ссылка на кулер (AliExpress)

Ссылка на кулер (ЯндексМаркет)

Ссылка на кулер (Ситилинк)

К сожалению, Пикабу длинные видео загрузить не даёт, поэтому полную версию можно посмотреть на Ютубе

Показать полностью
AliExpress Товары Китайские товары Электроника Кулер Система охлаждения Охлаждение Как это сделано Компьютер Компьютерное железо Видео Короткие видео YouTube (ссылка) Яндекс Маркет Реклама
3
7
A.Kristina
A.Kristina
Интересные покупки

Ставим радиатор на SSD M.2⁠⁠

4 месяца назад
Перейти к видео

Интересный набор с термопрокладками и радиатором охлаждения для SSD M.2 накопителей. Такое охлаждение позволяет держать температуру SSD на уровне 30°C. Ссылка на набор

AliExpress Товары Китайские товары Радиатор Система охлаждения Охлаждение Компьютер Сборка компьютера Компьютерное железо Материнская плата Игровой ПК Видео Короткие видео
0
23
TechSavvyZone
TechSavvyZone

Технологии: "Корпусные вентиляторы" типы и виды подшипников, преимущества и недостатки⁠⁠

5 месяцев назад

Активное охлаждение компонентов компьютера уже давно ни для кого не является новостью. Пользователи так сильно увлечены воздушными потоками, давлением внутри корпуса, что забывают о том, что не каждый вентилятор подходит на отведенную ему роль в полной мере. И не последнее значение в этом играет тип подшипника вентилятора.

Немного истории

Изначально подшипники выглядели совсем не так как сейчас. Как следует из названия, это то, во что упирается шип.

Простая конструкция за счет малого диаметра оси создает большое отношение плеч рычага и даже большой коэффициент трения не создает существенного противодействия вращению. А чтобы износ был как можно меньше, в качестве подшипника используется более твердый материал. Сегодня такая конструкция встречается в механических часах.

Так или иначе прогресс взял свое, и современные конструкции уже более совершенны.

Подшипник скольжения

Традиционный спутник бюджетных вентиляторов. Внешне максимально простая конструкция, состоящая из латунной втулки и стального вала, но в своей работе не так уж и проста.

Небольшая разница в диаметре вала и втулки заполнена маслом. При вращении вала силы трения между валом и маслом нагнетают масло в место соприкосновения вала и втулки, создавая давление масляного клина. Если это давление будет достаточно большим, оно предотвращает контакт вала и втулки.

h — толщина слоя смазки, ω — угловая скорость вращения вала, d — диаметр вала, P — величина нагрузки, s —средний зазор, e — эксцентриситет  

Как видно из рисунка слабым местом этого подшипника является то, что давление прилагается только с одной стороны вала — это не способствует гашению вибраций, а даже наоборот вызывает их при малой величине нагрузки.

По мере работы нагрев делает масло более жидким, что уменьшает давление масляного клина. Также нагрев способствует ускорению испарения масла и в итоге вал с втулкой начинает контактировать. При повышении окружающей температуры на 20 градусов срок эксплуатации такого подшипника снижается в 3 раза. То есть, для вентилятора с обычным подшипником скольжения наиболее удачным будет место с низкой температурой. А для уменьшения, микровибраций, которые изнашивают втулку и в итоге становятся слышимыми вибрациями нужна нагрузка на вал. Такие условия в сборке башенного типа актуальны только на фронтальной панели.

По мере усовершенствования этого типа подшипника появились самосмазывающиеся вариации, а также с винтовой нарезкой. Их особенностью является большее количество масла, доступное для смазки, а также некоторое подобие насоса за счет винтовых конструкций, обеспечивающее циркуляцию масла в любом положении.  

Использование полиоксиметилена (POM) также идет на пользу. Этот материал частенько используют в редукторах дешевого электроинструмента. Но в данном случае это замена мягкой втулки из медного сплава, которая в редукторе рассыпалась бы моментально. Полимерный материал уменьшает коэффициент сухого трения и появление частиц с абразивными свойствами, которые в свою очередь ускоряют износ.   

Все эти ухищрения не устраняют полностью недостатки конструкции подшипника скольжения, хотя и позволяют ему проработать несколько лет даже в неудачном положении. Наиболее живучим будет вентилятор, имеющий защиту IP6X. В нем применяется герметизирующая втулка для защиты от пыли, которая также мешает испаряться и вытекать маслу.

Гидродинамический подшипник

Считается вечным, ведь пока в нем есть масло, вал и втулка не могут соприкоснуться. Это обеспечивается особым профилем либо втулки, либо вала, обеспечивающих повышенное давление в некоторых участках. Обычно это встречные косые углубления на втулке. Их проще выполнить в мягком металле, не нарушая балансировки вала. Но на практике может встретиться все что угодно, щедро сдобренное маркетинговыми названиями.

Как видно по результатам моделирования, повышенное давление действует на вал со всех сторон. За счет этого вал меньше вибрирует и практически исключается контакт со втулкой. Но главная проблема подшипников скольжения — высыхание масла тут тоже присутствует. И добавляется еще одна: в лежачем положении масло, по мере высыхания, либо скопится в масляной камере (при этом некоторые конструкции исключают достаточное поступление масла за счет капиллярного эффекта), либо постепенно будет покидать подшипник через недостаточно герметичное уплотнение вала.     

И ко всему этому еще добавляется очень большая восприимчивость к работе на низких оборотах. Давление масла зависит от оборотов, и если они будут недостаточны, то гидродинамический подшипник превращается в обычный подшипник скольжения. Недаром производители зачастую ограничивают нижнюю частоту вращения вентиляторов с гидродинамическими подшипниками в 600 оборотов в минуту. Но даже с таким ограничением пользователи отмечают появление посторонних звуков.

Подшипники с магнитным центрированием

Большая часть вентиляторов пользуется магнитной левитацией за счет притяжения постоянного магнита ротора и полюсов статора. Убедиться в наличии магнитной левитации просто — достаточно вдоль оси потолкать крыльчатку. Она свободно перемещается на некоторое расстояние и тут же возвращается. В вентиляторах с магнитным центрированием добавляют еще один магнит, придающий больше жесткости, и упор оси вала, который может быть выполнен как из пластика, так и из гидродинамического подшипника.   

Дополнительная жесткость уменьшает вибрацию вала на низких оборотах и позволяет гидродинамическому подшипнику работать на любых оборотах и в любом положении.

Подшипник качения

Как можно понять из названия, принцип его работы основан на качении. Чем тверже материал, меньше шероховатость поверхности и точнее детали, тем дольше прослужит такой подшипник. Чем ниже рабочие обороты в подшипнике качения,  тем дольше он проработает (даже в перерасчете на суммарное количество оборотов).

  Ориентация в пространстве на работе никак не сказывается, поэтому вентиляторы на его основе можно применять в любой части сборки.  

Но такой подшипник шумный, что делает его применение на низких оборотах бессмысленной затеей, и с течением времени создаваемый шум растет постепенно. Наиболее долговечная разновидность выполняется из керамики.

А самую тихую модификацию без сепаратора, в которой шарики не создают шума постукиванием друг о друга, скорее всего в компьютерных вентиляторах мы никогда и не увидим.

Заключение

Подшипники компьютерных вентиляторов имеют свои слабые и сильные стороны, учитывая которые можно избежать ускоренной поломки и бессмысленных трат.

Обычный подшипник скольжения дешевый, быстро выходит из строя, но на фронтальной панели может прослужить вполне долго.

Самосмазывающиеся подшипники, особенно с применением пластика (POM) и класса защиты IP6Х могут работать в любой части сборки, не уступая в долговечности другим типам.

Гидродинамический подшипник в самом простом исполнении даже капризнее чем обычный подшипник скольжения. Оптимальным будет использование на оборотах, близких к максимальным, если избегать «лежачего» положения.

Магнитное центрирование позволяет гидродинамическим подшипникам работать в любом положении и оборотах.

Подшипник качения самый надежный, но шумный. Зачастую заранее предупреждает о своей грядущей поломке повышенным шумом, что позволяет избежать внезапной остановки. 

P/S

Cрок наработки вовсе не означает, что устройство отработает его и тут же "умрёт".
правильная цифра получается  когда расчитывают нарботку на отказ по партии большого размера и количества отказов произошедших в течении некоторого времени, но обычно цифра "рисуется" исходя из технологии производства подшипника и двигателя на основании предыдущих измерений.

Трактовать эту цифру следует следующим образом

 вероятность сбоя в течении года = 1-е^(-8760/MTBF)

Показать полностью 13
IT Технологии Компьютерное железо Компьютер Инженер Подшипник Система охлаждения Охлаждение Вентилятор Длиннопост
1
Посты не найдены
О нас
О Пикабу Контакты Реклама Сообщить об ошибке Сообщить о нарушении законодательства Отзывы и предложения Новости Пикабу Мобильное приложение RSS
Информация
Помощь Кодекс Пикабу Команда Пикабу Конфиденциальность Правила соцсети О рекомендациях О компании
Наши проекты
Блоги Работа Промокоды Игры Курсы
Партнёры
Промокоды Биг Гик Промокоды Lamoda Промокоды Мвидео Промокоды Яндекс Маркет Промокоды Пятерочка Промокоды Aroma Butik Промокоды Яндекс Путешествия Промокоды Яндекс Еда Постила Футбол сегодня
На информационном ресурсе Pikabu.ru применяются рекомендательные технологии