Горячее
Лучшее
Свежее
Подписки
Сообщества
Блоги
Эксперты
Войти
Забыли пароль?
или продолжите с
Создать аккаунт
Регистрируясь, я даю согласие на обработку данных и условия почтовых рассылок.
или
Восстановление пароля
Восстановление пароля
Получить код в Telegram
Войти с Яндекс ID Войти через VK ID
ПромокодыРаботаКурсыРекламаИгрыПополнение Steam
Пикабу Игры +1000 бесплатных онлайн игр «Рыбный дождь 2» — это игра-симулятор рыбалки, где вы почувствуете себя настоящим рыбаком на берегу реки, озера или морского побережья.

Рыбный дождь 2

Симуляторы, Спорт, Ролевые

Играть

Топ прошлой недели

  • Oskanov Oskanov 9 постов
  • Animalrescueed Animalrescueed 46 постов
  • AlexKud AlexKud 33 поста
Посмотреть весь топ

Лучшие посты недели

Рассылка Пикабу: отправляем самые рейтинговые материалы за 7 дней 🔥

Нажимая «Подписаться», я даю согласие на обработку данных и условия почтовых рассылок.

Спасибо, что подписались!
Пожалуйста, проверьте почту 😊

Помощь Кодекс Пикабу Команда Пикабу Моб. приложение
Правила соцсети О рекомендациях О компании
Промокоды Биг Гик Промокоды Lamoda Промокоды МВидео Промокоды Яндекс Маркет Промокоды Отелло Промокоды Aroma Butik Промокоды Яндекс Путешествия Постила Футбол сегодня
0 просмотренных постов скрыто
14
AnyaLove000001
AnyaLove000001
4 года назад

Конец ЖКХ рабству. Вечная энергия уже тут.  С помощью графена создан генератор «бесконечной» энергии⁠⁠

Физики из Университета Арканзаса схему на основе графена, которую условно можно считать «вечным двигателем» — генератором бесконечной и чистой энергии.

В этом нет противоречия законам термодинамики. Энергию научились добывать из теплового движения атомов углерода.

Конец ЖКХ рабству. Вечная энергия уже тут.  С помощью графена создан генератор «бесконечной» энергии

Как выяснилось в ходе эксперимента, под действием никогда не прекращающегося хаотического теплового движения внутри графена одиночно закреплённая пластинка этого вещества толщиной в один атом углерода медленно колеблется и изгибается.

Фактически это вариант одной из версии микроэлектромеханических устройств (MEMS), которые промышленность научилась выпускать и, так или иначе, пристроила к делу, включая создание генераторов электричества из механических колебаний. Но никто ещё не рискнул создать генератор на основе улавливания колебаний теплового движения атомов, что считалось невозможным.

Чтобы колебания графена и полученный в результате этого переменный ток был преобразован в постоянный ток, физики из Арканзаса предложили схему с двумя диодами. Поставленный эксперимент доказал, что схема генерирует добавочную мощность на нагрузке. Как считают учёные, миллионы подобных схем на кристалле могут стать источником маломощного питания автономных систем, датчиков и другого.

«Мы перенаправили ток в цепи и превратили его во что-то полезное. Следующая цель команды — определить, можно ли хранить постоянный ток в конденсаторе для последующего использования. Эта цель требует миниатюризации схемы и нанесения ее на кремниевую пластину или кристалл. Если бы миллионы этих крошечных схем могли быть построены на микросхеме размером 1 на 1 миллиметр, они могли бы служить заменой маломощной батареи», — сказал один из авторов исследования профессор физики Пол Тибадо (Paul Thibado).

Источник:


Semiconductor Digest

https://www.semiconductor-digest.com/2020/10/02/physicists-b...

Показать полностью 1 1
Энергия Графен Видео Длиннопост Физика
18
Reidea
Reidea
4 года назад

Канадские маски для школьников с графеном⁠⁠

В Канаде школьникам выдавали бесплатно маски. В течении года они ходили в этих масках. Потом выяснилось, что эти маски содержали наночастицы графена, который вызывает токсическое отравление. Министерство образования прислало родителям письмо о том, что они в курсе этой проблемы.

Идиоты.

Канадские маски для школьников с графеном

ссыль на какой то канадский сайт с новостью - https://ici.radio-canada.ca/nouvelle/1780300/masque-gris-ble...
надеюсь этого достаточно для пруфа :) Новостью поделился один блогер и показал пришедшее ему письмо.

Показать полностью 1
Пандемия Коронавирус Медицинские маски Графен Новости Школьники Канада
18
358
ArgusPanoptes
ArgusPanoptes
4 года назад
Наука | Научпоп

Сложив графен как оригами, ученые получили крошечные микрочипы⁠⁠

Графен не зря называют одним из самых перспективных материалов будущего. Он ультратонкий, гибкий, может становиться невероятно прочным и прекрасно проводит тепло и электричество. «Играя» с базовой структурой графена, ученые из Университета Сассекса разработали одни из самых маленьких микрочипов в мире.

Идея пришла к физикам во время экспериментов над тем, как физическая деформация листов графена изменяет его механические и электронные свойства. Выбор наноматериалов в данном случае был обусловлен стремлением сделать аналоги современных и будущих устройств как можно более компактными.


Сам процесс команда сравнивает с техникой оригами. Ученые обнаружили, что добавление к полоскам графена структурных изгибов превращало их в своего рода транзисторы, а из тех можно было собрать микрочипы – настолько маленькие, что итоговый результат «примерно в 100 раз меньше обычного микрочипа». Правда, какой размер подразумевает «обычный» микрочип, команда не уточнила.

Фотография складчатого графена. Белые линии - линии перегиба


«Вместо того, чтобы добавлять в устройство посторонние материалы, мы продемонстрировали, что аналогичных результатов можно добиться с помощью обычных изгибов самих листов графена. С помощью гофрирования можно создавать отдельные электронные компоненты», - отметил ведущий автор исследования, доктор Манодж Трипати.


Ученые уверяют, что данный процесс обладает большей устойчивостью и экологичностью, чем современные технологии производства чипов. Все потому, что для работы с графеном достаточно комнатной температуры, а потому расход энергии и в целом затраты на оборудование заметно сокращаются – важный фактор, особенно когда речь идет про небольшие компании.


Тем, кто хочет узнать больше


Все небольшие новости, интересные факты и просто занимательные ролики, которые не подходят для Пикабу, я размещаю в Телеграме и Вконтакте - заходите на огонек:


Telegram: Argus Panoptes

Вконтакте: Ссылка

Показать полностью 1
Графен Исследования Микрочип Наноматериалы
45
Cheddarbiter
Cheddarbiter
4 года назад
Всё о кино

Бегущий в лабиринте | Удивительные визуальные эффекты | До и после⁠⁠

Не смотря на то что фильмов про Бегущего в лабиринте было целых три, он не сыскал той популярности, как его коллеги по цеху среди подросткового кино. Впрочем в этом ролике речь не о сценарной составляющей, а о графической, к которой здесь приложили руку мастера из Method studios, Rhythm & Hues Studios и Weta Digital ( Если вам это конечно о чем то говорит) и благодаря их участию фильм изобилует интересными решениями и детальным подходом к отрисовке анимаций окружающего мира, да и в целом просмотр фильма доставляет удовольствие.

[моё] Бегущий в лабиринте VFX Фильмы Подростки Графен Видео
3
152
ZATOOMUCH
ZATOOMUCH
4 года назад
Наука | Научпоп

Графеновые лампы идут к вам⁠⁠

Графен — это материал будущего, представляющий собой самый тонкий двумерный слой графита. Рассказываем о применении и главных достоинствах этого необычного вещества.


Что такое графен


Впервые материал был получен в 2004 году британскими учеными российского происхождения методом отшелушивания графита. Если объяснять максимально просто, материал поместили между слоями скотча и начали отщеплять слои графита до тех пор, пока толщина не достигла одного атома. Бесполезно пытаться сделать материал тоньше графена. Уже сегодня можно совершенно точно сказать – графен это вообще самый тонкий материал в мире.

Еще одно удивительное свойство графена – его прочность. Считается, что графен является самым прочным материалом из когда-либо обнаруженных. Несмотря на то, что графен является полуметаллом, то есть имеет проводимость металла, но при этом ковалентную кристаллическую решетку, – он примерно в 200 раз прочнее стали.

Его плоская кристаллическая решетка состоит из взаимосвязанных шестиугольников атомов углерода, плотно связанных между собой.

Это свойство графена может оказаться очень полезным для военных и позволит производить сверхпрочные и сверхлегкие бронежилеты.

Следующее удивительное свойство графена – способность расширяться при охлаждении и уменьшаться при нагревании. Напомним, любые другие материалы ведут себя точно наоборот.



Где может пригодится графен


Графен интересует ученых из самых различных областей. Уже сегодня широко известны его противораковые свойства. В ходе исследования, по результатам которого была опубликована статья в журнале Oncotarget, применение графена дало положительный результат в борьбе против шести разных видов рака.


Графен уже используется в микробиологии и биохимии как подложка для электронной микроскопии белков, которая обладает сразу несколькими ценными качествами: слабо поглощает электроны, отлично проводит электрический ток и не искажает форму белковой молекулы.

В 2014 году исследователи из Массачусетского технологического института разработали технологию, позволяющую делать в листах графена отверстия определенного диаметра и получать сверхтонкие фильтры для высокой степени опреснения и очистки воды.

Но конечно, особую важность графен имеет в области электроники.

Ученые преуспели в формировании ультрафиолетового излучения с поверхности графена. Это может пригодиться для производства совершенно новых УФ-ламп на основе графена без использования токсичной ртути, которую сегодня пока приходится применять в таких лампах, используемых для уничтожения бактерий и вирусов.

Кроме этого, графен поглощает всего 2% света. Это значит, что этот материал практически прозрачен. Для сравнения: обычное стекло поглощает около 10% света.

По этой причине в нем заинтересованы производители дисплеев и солнечных батарей, которым важно получить проводящий слой максимальной прозрачности.


Еще одно перспективное направление – производство аккумуляторов на основе графена.

В продаже уже появились первые модели пауэрбанков, которые, по заверениям производителей, способны полностью восполнить заряд ваших гаджетов всего за 17 минут.

(Прим.ТС :По моему - зарядиться сами.)


Но гораздо более важную роль графеновые аккумуляторы могут сыграть в производстве электроавтомобилей. Основная проблема электромобилей сейчас – довольно малый пробег от одной зарядки. С внедрением графеновых аккумуляторов инженерам удастся повысить удельную емкость в 5 раз по сравнению с литий-ионными аналогами. А зарядить такое устройство возможно в несколько раз быстрее.

Немаловажную роль графен может сыграть и в системах освещения. Британским ученым удалось разработать самую тонкую на сегодняшний день электрическую лампу на основе графена.


Как устроена графеновая лампа


Лампа представляет собой два металлических электрода, между которыми размещена тончайшая графеновая пластинка на кремниевой подложке.

Такие лампы не нуждаются в охлаждении, так как в отличие от обычной лампы накаливания, где вольфрамовая нить накаливается и за счет этого начинает светиться, у графеновой нити нагревается только небольшая точка в центре. Отсюда люди узнали еще об одном удивительном свойстве графена – резкое падение теплопроводности при высоких температурах.

Графен в такой лампе нагревается до 2800 градусов по Цельсию, излучая свет. Если бы его теплопроводность сохранялась, то из-за непрерывного отвода тепла невозможно было бы добиться его свечения. Вся конструкция буквально расплавилась бы от перегрева.


Чем графеновые лампы лучше светодиодных


Одно из очевидных преимуществ графена перед светодиодами – это еще большая экономичность. Для свечения видимой области графеновой нити требуется намного меньше энергии. Электроны практически не встречают сопротивления, когда проходят сквозь графен. А плотность тока графена в миллионы раз превышает плотность тока меди.

Также за счет изменения расстояния между подложкой и графеновой нитью можно изменять цвет испускаемого света такой лампы. Считается, что свет от графеновой лампы более безопасен для зрения человека, так как более близок по спектру к естественному освещению.

Даже простое напыление графена на светодиодные лампы помогает лучше рассеивать свет, что делает их намного ярче. Это означает, что лампа с меньшей мощностью, покрытая графеном, будет производить тот же эффект, что и традиционная светодиодная лампа.

Сегодня такие лампы уже появились на полках магазинов. Производители уверяют, что они на 10–12% экономичнее и долговечнее своих обычных аналогов за счет улучшенной токопроводности нового материала.

Несомненно, графен – это материал будущего и он еще наделает много шума. А пока остается наблюдать за открытиями ученых и верить, что графен поможет сделать этот мир еще лучше и безопаснее.


https://hi-tech.mail.ru/news/chto_takoe_grafen/

Показать полностью 3
Графен Применение Свойства Физика Длиннопост
104
9
rusgraphene
5 лет назад

Кто и как развивает графеновые технологии в России и мире: взгляд компании «Русграфен»⁠⁠

Автор фото: Мария Ромакина


На фотографии – гендиректор компании «Русграфен» Максим Рыбин рядом с установкой Graphene Submarine, которая позволяет в автоматическом режиме синтезировать CVD-графен. Это высококачественная графеновая пленка толщиной в один атом углерода, получаемая методом химического газофазного осаждения (от англ. CVD - chemical vapor deposition). Именно такой чистый монослойный графен применяют для создания нового поколения электронных и биомедицинских устройств: гибких и прозрачных электродов, мембран и сенсоров, логических элементов и ячеек памяти, оптоэлектронных устройств и нелинейных оптических элементов для лазеров.


Эта фотография – одна из иллюстраций статьи «Продавцы графена», опубликованной в онлайн-журнале об инновациях «Стимул». В ней Максим Рыбин рассказывает о гонке графеновых технологий в странах Востока и Запада и состоянии дел в России, о возникновении, развитии и траекториях компании «Русграфен».


Статья начинается так:


— Если смотреть на цикл зрелости технологий, хайп-цикл Гартнера, то в передовых странах Востока и Запада графеновые технологии уже преодолели «дно разочарований» и постепенно поднимаются по «склону просвещения». В России мы едва ли почувствуем «пик завышенных ожиданий» и в идеале можем сразу выйти на «плато продуктивности», — говорит гендиректор компании «Русграфен», старший научный сотрудник Института общей физики РАН Максим Рыбин.


С 2013 года в Европе действует инновационная программа Graphene Flagship с десятилетним бюджетом в миллиард евро. Под эгидой Graphene Flagship 142 организации из 23 стран занимаются исследованием и внедрением графена в различные сферы медицины, энергетики, электроники и материаловедения. Компании из США — Angstron Materials, XG Sciens, AzTrong и др. — синтезируют сотни тонн графеновых материалов в год, в основном для производителей аккумуляторов и композитных материалов. Графеновой тематикой заняты R&D-центры IBM, SanDisk, Ford и Boeing. Активно финансируют графеновые разработки исследовательские центры военно-воздушных и военно-морских сил США. В стране создана Национальная графеновая ассоциация (National Graphene Association), которая включается в себя 20 корпоративных партнеров и более двух тысяч международных членов.


На Востоке графеновые технологии развиваются еще стремительнее. Пятерку основных мировых патентообладателей в сфере графена формируют компании из Китая, Японии и Южной Кореи. В их числе Samsung, инженеры которого модернизировали графеном литий-ионные батареи, повысив емкость на 45% и увеличив скорость зарядки в пять раз. Смартфон с графеновым аккумулятором ожидается на рынке в 2021 году.


Больше всех верят в графен в Китае. В 2013 году создан Инновационный альянс графеновой промышленности Китая (China Innovation Alliance of the Graphene Industry). Сегодня это разветвленная сеть индустриальных парков, крупнейший из которых — Changzhou Graphene Science and Technology Industrial Park — расположен в провинции Цзянсу на базе Jiangnan Graphene Research Institute (JGRI). На площади шесть квадратных километров в парке работают 70 компаний производственной и прикладной направленности. Например, Sixth Element синтезирует 100 тонн графеновых материалов в год для создания композитов, коррозионностойких покрытий и сенсорных панелей. В планах 13-й китайской пятилетки — до конца 2020 запустить порядка десяти графеновых индустриальных парков. Huawei, Xiaomi и другие корпорации активно внедряют графен в свои продукты. Как результат, Китай лидирует по количеству патентов и объемам синтеза: здесь сосредоточено 66% мирового выпуска графенов (следом идут США — 25%). Учитывая, что 80% мировых запасов кристаллического графита, основного сырья для производства графена, находятся в КНР, большие китайские надежды на грядущую «графеновую революцию» вполне объяснимы.


— В России нет государственной программы развития графеновых технологий, а основных производителей графена можно пересчитать по пальцам: «Графенокс» из Черноголовки, «Нанотехцентр» из Тамбова, «Актив-нано» и ПКФ «Альянс» из Питера, «АкКО Лаб», «Граф-СК», «Графсенсорс» и «Русграфен» из Москвы. Мы работаем на базе НИИ и университетов, не конкурируем, а скорее сотрудничаем друг с другом, — говорит Максим Рыбин.

Медная подложка для синтеза CVD-графена перед загрузкой в установку Graphene Submarine. (с) Мария Ромакина


Прочитав статью, вы узнаете:


1. О свойствах графена и методах его получения: «скотч-методе» и CVD-методе.


2. Об истории компании «Русграфен», ее партнерах, продукции и онлайн-магазине наноматериалов «Русграфен.Маркете».


3. О продвижении совместно с компанией «Графенокс» порошков и паст из графеновых частиц, которые используют для упрочнения бетонов, модернизации литий-ионных батарей и создания электропроводящих чернил. Этому посвящена финальная часть статьи:


— Если верить исследованиям маркетологов, в ближайшие двадцать лет мировой рынок гибкой электроники превысит 300 миллиардов долларов, — рассказывает гендиректор компании «Графенокс», старший научный сотрудник Института проблем химической физики РАН Сергей Баскаков. — В миниатюрных и гибких девайсах металлические провода исключены. Их место займут напечатанные на тонких полимерных подложках проводящие чернила. В современных чернилах для создания электропроводимости используют металлические микро- или наночастицы (серебро, медь, никель и другие). Мы заменили их частицами графена, которые имеют ряд преимуществ: они легче и дешевле, обладают гибкостью и эластичностью, не окисляются со временем. Графеновые чернила применимы для печати NFC и RFID-меток, гибких шлейфов и электрических плат. На их основе можно создавать антистатические, экранирующие и нагревательные покрытия практически на любом материале: полимерах, бумаге, тканях.


Графеновые частицы получают из природного графита, который расщепляется физико-химическими методами вплоть до одинарных слоев. Различные методы дают на выходе разный материал: частицы могут отличаться поперечными размерами (от сотен нанометров до десятков микрометров), толщиной (от одного до нескольких графеновых слоев), степенью окисления, наличию дефектов, примесей и т. д. По словам ученых, для каждого приложения нужно проводить специальную НИОКР и синтезировать графеновые частицы целевой модификации. Например, для модернизации электродов литий-ионных батарей в первую очередь нужны тонкие, хорошо проводящие частицы с большой удельной площадью поверхности. Для армирования бетонов толщина и электропроводность графеновых частиц играет меньшую роль, однако они должны быть модифицированы для лучшего сцепления внутри бетонной смеси.


— Сейчас мы сотрудничаем с несколькими технологическими стартапами, — рассказывает Максим Рыбин. — Компания «Фэском», резидент «Сколково», производит системы накопления электроэнергии на базе литий-ионных ячеек с добавками микрочастиц графена для увеличения их удельной емкости, количества циклов заряда/разряда и глубины разряда. Команда разработчиков из Электрогорска трудится над созданием смазочных материалов для велосипедов с применением присадок из графеновых частиц, которые уменьшают трение и, как следствие, увеличивают срок службы деталей и период между техосмотрами, что важно для шоссейных велогонок. Графеновые смазки успешно прошли испытание этим летом с участием ведущих российских спортсменов: команда SlowFlowTeam подтвердила эффективность применения графеновой смазки на велотреке, а Петр Винокуров, многократный призер всероссийских соревнований по скоростному спуску, одобрил использование смазки в экстремальных условиях. Вывод на рынок графеновых велосмазок запланирован на следующий год под брендом Bike Therapy.

Характеристики микрочастиц графена, которые можно приобрести в "Русграфен.Маркете" . (с) Русграфен


Использование графенов в качестве армирующих добавок в бетонные и асфальтобетонные смеси — еще одно перспективное направление развития, считает Максим Рыбин. Внедрение графена в бетон приводит к увеличению его прочности на 30%. На столько же возрастает и скорость набора прочности бетона, что позволяет сократить сроки строительства. Интерес к графеновым материалам проявляют производители тепло- и электропроводящих пластиков для энергетических и климатических систем, а также компании, выпускающие антикоррозийные покрытия, добавление графенов в которые улучшает эксплуатационные характеристики на 25–30%.


— Совместно с компанией «Графенокс» мы планируем запустить производство мощностью 500 килограммов графеновых частиц в месяц к середине 2021 года, — говорит Максим Рыбин. — Уже сейчас понятно, что основными нашими клиентами будут инновационные предприятия, которым важно получить конкурентное преимущество на старте. Но для серьезного развития графеновых технологий необходимо участие крупного бизнеса. Российским графеновым компаниям и лабораториям есть чем его заинтересовать. Совместные усилия помогут сгладить кривую хайп-цикла и ускорить выход российской графеновой промышленности на «плато продуктивности.

Показать полностью 2
[моё] Графен Наука Инновации Длиннопост
8
2
rusgraphene
5 лет назад

Графен связал ДНК-цепочки в биосенсорах тромбина⁠⁠

(с) Ольга Антипова, соавтор статьи в Fullerenes, Nanotubes and Carbon Nanostructures

Российские ученые создали экспериментальный образец графенового биосенсора для детектирования фермента свертывания крови тромбина с помощью коротких цепочек ДНК. Устройство может быть использовано для мониторинга состояния больных гемофилией и пациентов с другими расстройствами гемостаза: ДВС-синдром, пурпура, болезнью Виллебранда и др. Работа выполнена сотрудниками Межотраслевого инжинирингового центра «Композиты России» МГТУ им. Н.Э. Баумана и факультета биоинженерии и биоинформатики МГУ им. М.В. Ломоносова. Результаты опубликованы в журнале Fullerenes, Nanotubes and Carbon Nanostructures.


Графен можно модифицировать: присоединить к его поверхности биополимеры (например, молекулы ДНК или РНК), способные связываться с различными биомолекулами – маркерами тех или иных заболеваний. Реакция связи влияет на электрическое сопротивление графена. По его изменению можно судить о типе и концентрации биомолекул в живом организме, а значит – о развитии болезни. На этом принципе основано применение графена для разработки сверхчувствительных биосенсоров.


Ученые из Бауманки и МГУ использовали оксид графена, то есть графен, содержащий на своей поверхности кислородосодержащие функциональные группы. Для целей эксперимента были важны карбоксильные группы (-СООН), которые расположены на краях чешуек оксида графена. Они образуют устойчивые соединения с аптамерами – короткими искусственно синтезированными ДНК или РНК цепочками, которые могут, аналогично антителам, избирательно взаимодействовать с различными маркерами патогенов или самими патогенами. В данной работе использовались аптамеры AmTBA (50-GGTTGGTGTGGTTGG-30), способные избирательно связываться с белком тромбином – важнейшим компонентом системы свертывания крови, по концентрации которого можно судить о развития болезней гомеостаза.

Пленка оксида графена на подложке биосенсора. Изображение получено на атомно-силовом микроскопе. (с) Иван Комаров

В отличие от превосходного проводника графена, оксид графена является диэлектриком. Он практически не проводит ток, использовать его в электрохимических биосенсорах бессмысленно. Ученые нашли способ вернуть ему проводящие свойства. Они удалили часть кислородсодержащих молекул с пленки оксида графена, облучив ее импульсным лазером (длина волны: 445 нм, мощность 25 Дж/см^2). В результате получился проводящий ток материал (частично-восстановленный оксид графена) с карбоксильными группами по краям, через которые производится связывание с аптамерам AmTBA и детектирование тромбина.


Было изготовлено 30 экспериментальных образцов биосенсоров на гибкой полимерной подложке с размером чувствительной части детектора 20х20 мм. Треть сенсоров оказались непригодными из-за высокого сопротивления (более 200 кОм). Остальные продемонстрировали высокую эффективность. Их отклик на целевой белок тромбин в 10 раз превысил отклик на эталонный белок, в качестве которого использовался неспецифичный для AmTBA альбумин.


– Мы продолжаем работать над созданием биосенсоров для диагностики различных заболеваний, в том числе гепатита B и C. Планируем использовать различные аптамеры и более сложный состав проводящего материала с включением углеродных нанотурбок. В перспективе мы хотим интегрировать наши биосенсоры в устройства «умной электроники» для непрерывного мониторинга состояния здоровья человека и дистанционной передачи этих данных в медицинские учреждения, – говорит первый автор статьи в Fullerenes, Nanotubes and Carbon Nanostructures, ведущий инженер Межотраслевого инжинирингового центра «Композиты России» МГТУ им. Н.Э. Баумана Иван Комаров.

Показать полностью 2
[моё] Графен Наука МГТУ им Баумана Биотехнологии Нанотехнологии Длиннопост
3
Промо Забустить свой пост
specials
specials

Время прогревать аудиторию!⁠⁠

Сентябрь — это не только начало учебного года, но и время активной подготовки к горячему сезону распродаж. Самое время подключить подписку Пикабу+:

  • рассказывайте о своих товарах и услугах

  • добавляйте ссылки

  • создавайте витрину товаров прямо в профиле

  • подключайте дополнительное продвижение постов

Пора готовить сани!

ПОДКЛЮЧИТЬ ПИКАБУ+

Подписки Аудитория Продвижение Бизнес Текст
32
rusgraphene
5 лет назад

Российские химики создали катализатор для топливных элементов из графен-тефлонового аэрогеля⁠⁠

Внутренняя структура гранулы аэрогеля. Источник: Yury M. Volfkovich et al. / ACS Energy & Fuels


Пористый нанокомпозит на основе оксида графена и тефлона, способный улучшить характеристики топливных элементов, синтезировали и изучили сотрудники Института физической химии и электрохимии имени А. Н. Фрумкина РАН и Института проблем химической физики РАН, Черноголовка. Результаты исследования опубликованы в журнале ACS Energy & Fuels.


Топливный элемент преобразуют химическую энергию в электрическую. Схематично он состоит из двух электродов, анода и катода, пространство между которыми заполнено электролитом. На анод подается поток водорода. Просачиваясь сквозь пористый материал анода, водород распадается на протоны и электроны. Протоны устремляются к катоду через электролит, способный проводить протоны и не способный – электроны. Последним ничего не остается, как потечь по внешней электрической цепи и совершить полезную работу. На катоде электроны и протоны соединяются с подаваемым извне кислородом с образованием воды и тепла.

Источник: 900igr.net


Благодаря экологичности и высокому КПД (более 60%) топливные элементы могут стать основным источником электроэнергии в быту и промышленности. Они уже используются как источник электричества, тепла и воды для космических аппаратов и в качестве энергоустановки для электромобилей и беспилотников. Этим занимается Центр компетенций по технологиям новых и мобильных источников энергии при ИПХФ РАН. Компания Toshiba выпускает мобильные водородные электростанции Н2One, снабжающие электричеством и горячей водой небольшие районы или организации, например, железнодорожную станцию.


Одним из способов модернизации топливных элементов является поиск более эффективных электродов. Для создания катода используется пористая подложка, на которую наносится тонкий слой платины. От материала подложки зависит скорость химической реакции восстановления кислорода: чем она быстрее, тем больше топливный элемент вырабатывает электроэнергии. Перспективный материал для этих целей представили сотрудники Института физической химии и электрохимии имени А. Н. Фрумкина РАН и Института проблем химической физики РАН, Черноголовка.


Это легкий и прочный композит, состоящий из тефлона и оксида графена. Их сочетание формирует губчатую структуру аэрогеля из пор разного размера – от единиц нанометров, до десятков микрометров. Покрытый платиной графен-тефлоновый аэрогель ученые использовали в качестве катода для топливного элемента. При определенных условиях энергоэффективность топливного элемента увеличилась вдвое.

А - фотография гранул аэрогеля; B - внутренняя структура гранулы аэрогеля. Источник: Yury M. Volfkovich et al. / ACS Energy & Fuels


Причина - в уникальном сочетании гидрофобных свойств тефлона и гидрофильных – оксида графена. Мелкие поры аэрогеля хорошо смачиваются водой и водным электролитом, крупные воду отталкивают. Во время работы топливного элемента мелкие поры заполняются водой из раствора электролита, а крупные остаются пустыми и пропускают через себя подаваемый извне кислород. Такая конфигурация ускоряет реакцию восстановления кислорода до воды на платине. В результате, топливный элемент вырабатывает электроэнергию более эффективно, чем применяемые сейчас топливные элементы с подложкой в виде сажи Vulcan XC-72.


Ранее мы рассказывали о гибком, мощном аккумуляторе на основе пористого графена, и сообщали о том, как графен увеличивает емкость литий-ионных аккумуляторов.

Показать полностью 2
[моё] Графен Топливные элементы Энергетика (производство энергии) Химия Длиннопост
10
Посты не найдены
О нас
О Пикабу Контакты Реклама Сообщить об ошибке Сообщить о нарушении законодательства Отзывы и предложения Новости Пикабу Мобильное приложение RSS
Информация
Помощь Кодекс Пикабу Команда Пикабу Конфиденциальность Правила соцсети О рекомендациях О компании
Наши проекты
Блоги Работа Промокоды Игры Курсы
Партнёры
Промокоды Биг Гик Промокоды Lamoda Промокоды Мвидео Промокоды Яндекс Маркет Промокоды Отелло Промокоды Aroma Butik Промокоды Яндекс Путешествия Постила Футбол сегодня
На информационном ресурсе Pikabu.ru применяются рекомендательные технологии