Корпус для микрокомпьютера Raspberry Pi 4 с экраном и без в виде Playstation
Если кому надо, вот на Алике
Взято с телеги Интересный Маркетплейс
Ввиду кризиса в последнее время и постоянной нехватки финансов, люди ищут альтернативные и бюджетные решения для автоматизации «Умных домов», теплиц, гаражей и т.п. А что делать тем, кто очень хорошо один язык программирования, а на дополнительное изучение просто не хватает времени? Ну, например я! Я знаю CoDeSyS достаточно хорошо. Не супер-профи, но хорошо. Тогда CoDeSyS Raspberry PI — это идеальное сочетание бюджетности и удобства программирования. Почему? Давайте рассмотрим…
Всем привет уважаемые коллеги, читатели и гости моего блога. На связи автор технического блога — Гридин Семён.
Raspberry PI — маленький одноплатный компьютер, выполняющий такие же основные функции, как и настольный ПК. Основная операционная система Это Linux и все её производные. Хотя можно установить абсолютно любую ОС под ваши определённые узкие задачи.
Весь список ОС вы можете увидеть на официальном сайте «Малины». Как вы видите основная система — это Raspbian. В будущем мы с вами будем опираться конкретно на неё.
Разработана эта плата в мае 2011 года. Её большим преимуществом является цена и многофункциональность. На данный момент последняя модель Raspberry PI 3 model B.
Да, и конечно самое важное — технические характеристики.
Процессор Broadcom 2837 quad-core ARM Cortex-A53 64bit (1,2GHz)
Оперативная память 1Gb
Видеовыход HDMI
А/V выход А/V выход 3.5мм jack 4 pin
USB порты USB 2.0 х 4
Сеть WiFi 802.11n, 10/100Mb RJ45 Ethernet Bluetooth
Bluetooth 4.1, Bluetooth Low Energy
Слот для карты памяти Micro SD
GPIO 40
Характеристики достаточно мощные, в отличие от старых моделей. Радует наличие 4-х портов USB и Bluetooth.
В последнее время на форумах и в интернете я всё чаще и чаще замечаю комментарии по поводу того, что на этом устройстве нельзя собрать «серьёзный проджект». Это игрушка для детей и т.д. Я считаю, что это не правда. Это инструмент.
В умелых и правильных руках можно творить воистину полезные и фантастические вещи. Ребят, это очень мощный инструмент, с интересными функциями. Просто в основном видеоблогеры выкладывают материалы про переделанные ретро-приставки и автоматы. Или проекты, которые просто на «поиграться». А как вы считаете?
Как прошивать любую операционную систему?? В интернете море информации по поводу установки. Всё расписано по шагам.
Я тогда не буду повторяться. Можете изучить вот этот материал. Или посмотрите 5-минутное видео о подключении малины:
Я думаю, здесь будет всё понятно. Если будут вопросы, пишите в комментах, я с удовольствием пообщаюсь.
Я кстати говоря давно искал решение вопроса — Где можно использовать CoDeSyS, кроме ПЛК? Так как большинство ПЛК различных производителей — это достаточно дорогие устройство. Для бытовой и домашней автоматизации такой вариант не подходит. Ещё и модули ввода вывода дорогие, если потребуется.
А языки программирования стандарта МЭК очень удобны и понятны. И крутую визуализацию можно накидать. Крутые инструменты!!!
Для того чтобы эта связка заработала у вас, что следует приобрести:
Сам одноплатный компьютер Raspberry PI
Сенсорную панель к нему или монитор
И сам RunTime CoDeSyS 3.5
RunTime — это некая операционная система с предустановленной средой разработки. В данном случае мы можем сразу же программировать на маленьком компьютере. В этом и заключается удобство. Рантайм CoDeSyS стоит примерно 50 евро, находится он в магазине CoDeSyS Store.
Обращаю ваше ВНИМАНИЕ!!! Единственный недостаток всей системы в том, что используется WEB-визуализация. Так что придётся открывать через браузер. На видеоролике Курта Брауна очень хорошо описывается процесс установки среды разработки на компьютер. Правда там используются модули расширения WAGO.
Но можно прикрутить любой, лишь бы поддерживал MODBUS TCP/IP. Если вы поставите преобразователь UART = RS-485, то сможете работать с MODBUS RTU.
Для «Умного» дома и теплиц шикарная вещь! Спасибо за внимание! Подписывайтесь на новости блога… Пишите письма!!!
С уважением, Гридин Семён
Инженер нашей компании включил на прослушку шину rs485 и там валятся помехи😀. Шутка конечно для инженеров))
Спасибо за просмотр. Кстати забыл сказать, можно как записать, так и прочитать значение цветов диода. Подробнее устройство можно обсудить в нашем сообществе в телеге https://t.me/Antexgate
Знаю, без цены будете пинать, примерно 4999 рублей. Посмотрим отклик, если девайс ходовой то станет дешевле.
В своей жизни я обожаю как минимум три вещи: это C# (как и .NET в целом), интересное железо и одноплатные компьютеры. В Embedded-системах на Linux обычно принято писать код на C/C++ для решения чувствительных к производительности задач и интерпретируемых Lua/Python для быстрого прототипирования, которые стали популярны в встраиваемых устройствах сравнительно недавно. Однако о нативной разработке под одноплатники на C# практически ничего не слышно и я решил исправить это недоразумение! В сегодняшнем материале: рассмотрим, какие платформы .NET нам доступны на одноплатниках, научимся работать с GPIO и SPI в юзерспейсе, а также напишем практическое приложение, которое реализовывает драйвер дисплея и выводит на экран определенное изображение.
Одноплатники уже давно вошли в повседневную жизнь многих DIY-щиков, сисадминов и людей, которые интересуются мини-компьютерами. Казалось бы, одну и ту же задачу можно решить несколькими методами на самых разных языках: кто-то предпочитает писать нативный код на тех же плюсах, а особо прожженные — на Plain-C и ассемблере, стараясь получить максимальную производительность, а кто-то хочет сразу перейти к реализации своего устройства не заморачиваясь с подробным изучением того, как чип работает «под капотом» и какие шины существуют, ограничиваясь использованием готовых библиотек.
Но я лично очень люблю C# за его максимальную гибкость, позволяющую оптимизировать некоторые обращения к памяти путем получения прямых указателей на данные, умеет в удобные темплейты, а также имеет механизм для маршаллинга (прямой импорт функций из библиотек, возможность создать нативный трамплин на управляемый делегат, возможность быстрого копирования из unmanaged в managed окружение и т. п.). Потому всегда думал: почему бы его не использовать в своих embedded-проектах на базе одноплатников?
Сейчас .NET можно накатить на большинство современных одноплатников, за исключением самых слабых с 64Мб ОЗУ «бутербродом» на чипе (AllWinner F1C100s, AllWinner V3s, некоторые MStar и т. п.). Доступно два рантайма, которые предлагают разные профили и соответственно, разный функционал.
dotnet — официальный рантайм, который реализует профиль .NET Core (ой, простите, так уже не модно, теперь это просто .NET). Предоставляет весь современный базовый функционал дотнета вкупе с современными версиями самого C#, но в нём нет, например, Windows Forms для UI (если вы используете полноценные «иксы» и GTK), и System.Drawing для обработки графики и отрисовки текста. Это эталонная реализация дотнета и его можно без проблем накатить на любой одноплатник, для которого есть достаточно свежий Linux.
Mono — альтернативная реализация .NET Framework для Linux, ранее активно использовалась в Unity. В отличии от .NET Core, может работать и на более старых одноплатниках на прошлых версиях дистрибутивов Linux, в том числе и самой первой Raspberry Pi. Считается более медленной, чем dotnet, зато имеет значительно большую функциональность, почти идентичную фреймворку на Windows.
В сегодняшней статье мы будем писать программу на C# для OrangePi One, которая должна инициализировать дисплей из юзерспейса и выводить на него определенные данные. В качестве профиля используем .NET Framework 4 (да, я порой старомоден), а одноплатником выступит OrangePi One в стоковой конфигурации ядра, без правок devicetree, где по умолчанию у нас доступен spidev без аппаратных чипселектов, доступ к GPIO из /sys/ и i2cdev.
Для начала нам нужен образ системы для нашего одноплатника. Какой — выбирать вам. Для большинства устройств на чипсетах AllWinner доступны образы с ядром 3.x, которые более стабильны, но не используют devicetree и не входят в мейнлайн и 5.x, так называемый мейнлайн, но там всё ещё есть некоторые нюансы. Я выбрал Ubuntu Xenial с ядром 5.3.5.
Теперь самое время накатить рантайм, что мы и делаем командой:
apt-get install mono-all
Обратите внимание, Mono громоздкий и с учетом всех зависимостей может устанавливаться минут 30, если у вас достаточно медленная флэшка. Всё, теперь устройство готово к запуску программ на дотнете, нашу программу можно запустить следующей командой:
mono assembly.exe
Давайте же перейдём к фактической реализации нашей программы и узнаем как работать с периферией устройства!
Начинаем с GPIO или «ногодрыга». В Linux есть удобный интерфейс, позволяющий экспортировать пины общего назначения в юзерспейс и рулить ими прямо из sysfs, в том числе и из терминала! Для реализации софтварного SPI или быстрого опроса цифровых пинов такой способ не подойдет — слишком большой оверхед, но для моргания светодиодами, обработки кнопок или… программного ногодрыга чипселектом — вполне подойдет :)
Как я и говорил выше, GPIO сначала нужно сделать видимым в sysfs — т. е. экспортировать, путём записи номера нужного пина в «файл» /sys/class/gpio/export. Посчитать ID нужного пина можно с помощью простой формулы: (позиция буквы в алфавите — 1) * 32 + номер пина. То есть, для PA10 ID будет 10. При ошибке, системный вызов close выбросит ошибку, а поток в C# — IOException.
После этого, по пути /sys/class/gpio/gpio10/ появится директория с файлами direction, куда нужно записать направление нашего пина («in» — ввод, «out» — вывод) и value, куда мы будем записывать или читать значение пина. Реализовать управление пином можно так:
Да, всё так просто! Мигалка светодиодом в нашем случае будет выглядеть так:
Переходим к чему посложнее, а именно к SPI из всё того-же юзерспейса!
Для управления SPI нам потребуется вызов ioctl, который позволяет отправлять устройству различные пакеты с описанием команд. Для этого нам пригодится PInvoke:
Для каждой аппаратной шины SPI создаётся одно устройство spidev. В случае OrangePi One, по умолчанию экспортирована только одна шина (поскольку и SPI-контроллер на гребенке лишь один) — spidev0.0. Для начала открываем наше устройство для записи:
Драйвер spidev работает по принципу транзакций — вы посылаете IOCTL с запросом SPI_IOC_MESSAGE (в оригинале это макрос с возможностью послать сразу несколько транзакций в драйвер) и указателем на структуру spi_ioc_transfer с описанием отправляемых или получаемых данных, а драйвер уже сам решает что и когда отправить, при этом вызов ioctl — блокирующий, то есть управление в поток вернется только когда драйвер завершит работу. Но есть нюанс — драйвер SPI у чипсетов AllWinner не может отправлять более 128-байт (на AllWinner A10/A13 — 64-байт) данных за транзакцию, поэтому большой массив данных придётся разбивать на несколько мелких:
Уже в шоке от обилия указателей в коде на шарпе? :) Надеюсь, комментарии помогут вам разобраться.
Тоже самое и для чтения данных с шины, только вместо txBufPointer — rxBufPointer.
Пример работы прост до безобразия:
Имея GPIO и SPI уже можно переходить к реализации чего-то более конкретного!
В качестве дисплея я буду использовать стандартную дешёвую 2.4" матрицу с разрешением 240x320 и контроллером ST7789 с интерфейсом SPI. Для использования дисплея с питанием 3.3В нужно поставить перемычку на позиции J1, как показано на фото ниже.
Для подключения такого дисплея, достаточно всего лишь 4 (5, если нужен чипселект) сигнальные линии на 40-пиновой гребенке RPi One, плюс один для ШИМ (если нужно регулировать подсветку) и два на питание. Обратите внимание, что лучше сдуть гребенку и паяться к одноплатнику напрямую — у меня из-за китайских дюпонтов постоянно помехи на дисплее и мусор на шине.
Схема подключения:
VCC -> 3.3V
GND -> Масса
CS -> PA9
RESET - PA10
D/C - PA20
MOSI - PC0
SCK - PC2
LED -> 3.3V
Начинаем с подготовки необходимых GPIO. Для управления дисплеем всегда нужен аппаратный RESET и D/C (бит команда/данные). Чипселект необязателен (его можно кинуть на массу), если это будет единственное устройство на шине, однако в случае ST7789 почему-то в таком случае нужно использовать SPI MODE 3.
Переходим к реализации коммуникации с дисплеем. Здесь всё просто — ставим CS в низкий уровень, начиная транзакцию, устанавливаем D/C в низкий уровень в случае команды, либо высокий в случае данных и отправляем байт контроллеру, после чего устанавливаем чипселект обратно в высокий уровень.
Теперь дисплей нужно инициализировать. Здесь нужно сконфигурировать регистры контроллера дисплея для установки режима адресации, цветности и порядка байт в пикселях (BGR или RGB).
Если всё сделано правильно — то после этого вы должны увидеть «мусор» на дисплее, поскольку состояние ОЗУ не определено после подачи питания на контроллер (но при сбросе содержимое DRAM останется на месте).
Теперь нам надо установить границы нашего изображения, в пределах которых работает автоинкермент контроллера дисплея. Нужно это для того, чтобы мы могли, например, пнуть уже готовую картинку в DMA-контроллер и уйти заниматься своими делами, а когда картинка отправилась — установить новые границы и нарисовать что-то ещё. В моём случае, всё рисование производится во второй буфер, который затем рисуется на дисплей — поэтому мне нужны размеры всего дисплея сразу:
После этого, достаточно лишь непрерывно слать изображение на контроллер дисплея и всё будет работать!
Поскольку ни один формат изображений не соответствовал моим требованиям (RGB565, без выравнивания), я быстренько накостылил конвертер в самопальный:
Загрузчик такого формата выглядит так:
А фактическое использование — так:
Как мы видим, писать программы для одноплатников на C# отнюдь не сложно и можно пользоваться всеми приятными фишками языка. Часть кода из этой статьи выдрана из моего сайд-проекта, о котором хочу рассказать вам в ближайшее время — поэтому местами код совсем не причесан, но надеюсь — всё было понятно :)
Также у меня есть канал в Telegram, куда я выкладываю посты с тематикой DIY, ремонта и моддинга, а также программирования под гаджеты прошлых лет и вовремя ссылки на новые статьи.
HTTP <AntexGate> Modbus конвертор Linux
В мире промышленной автоматизации интерфейсы HMI устарели, выглядят пугающе и бытует мнение, что чем дороже программно-аппаратный комплекс, тем лучше он будет работать. Молодёжь, которая умеет рисовать красивые "WEB-морды" в этот бизнес не суется, всех пугает так называемые Machine to machine протоколы и интерфейсы, индустрия обросла опытными мужиками, которые понимают как выглядит два байта данных в одном регистре Modbus.
Итак статья для тех, кто столкнулся с задачей преобразовать Modbus RTU TCP в протокол HTTP, который уже можно вытянуть на любую красочную "web-морду", либо другой сервис.
Представим, что вы пришли на производство, в котором уже стоят промышленные приборы - датчики температуры, станки, принимающие\передающие данные по протоколу Modbus RTU TCP, а Вам нужно закинуть некоторые данные в систему мониторинга. Действительно подавляющее большинство систем мониторинга не смогут опросить устройства по Modbus без специального программно-аппаратного шлюза.
Предлагаем бесплатное программное обеспечение Node-Red и контроллер AntexGate и получаем мощный программно-аппаратный комплекс для преобразования различных протоколов. В предыдущей статье мы уже рассмотрели конвертацию ModbusTCP2ModbusRTU.
Первое, что необходимо – это установить программный продукт Node-Red, это делается одним скриптом:
bash <(curl -sL https://raw.githubusercontent.com/node-red/linux-installers/...)
Сделать Node-Red после установки сервисом:
sudo systemctl enable nodered.service
Перезагружаем "железяку":
sudo reboot
Теперь попадаем в среду нашего программного конвертора Node-Red через web браузер по ссылке ip шлюза:1880
В настройках справа устанавливаем плагин node-red-contrib-modbus.
После того, как плагин установлен приступаем к настройке, делается это так же просто из web интерфейса. Нажимаем кнопку меню, импорт, примеры, Modbus-HTTP, импорт.
Итак, настройка почти закончилась, нам остается настроить наши модули опроса и записи на нужные параметры Modbus соединения.
Итак мы настраиваем все 4 узла. В моем случае это опрос Modbus RTU устройства с параметрами аппаратного порта /dev/ttyRS485-1 115200 - 8 - 1 - N. Еще 2 узла отвечают за автоматическое чтение из предустановленных регистров, поэтому я сразу настроил чтение массива 4х регистров начиная с 512, функцией (3) Read Holding Register. Кстати не забудьте собственно подключить конечное устройство к RS485 шине.
Теперь в блоке комментариев вы можете встретить rest API для взаимодействия, ниже с ними познакомимся.
## Read
### Flex Read
http://ip:1880/modbus/flex/read?value=0&unitid=1&fc=3&address=0&quantity=1 http://ip:1880/modbus/flex/read?value=0&unitid=1&fc=4&address=0&quantity=1 http://ip:1880/modbus/flex/read?value=0&unitid=1&fc=3&address=0&quantity=5 http://ip:1880/modbus/flex/read?value=0&unitid=1&fc=4&address=0&quantity=5 ### Read http://ip:1880/modbus/read ## Write ### Test HTTP without Modbus http://ip:1880/modbus/flex/write/test?value=[1,2,3,4,5]&unitid=1&fc=16&address=0&quantity=5 ### Flex Write
http://ip:1880/modbus/flex/write?value=10&unitid=1&fc=6&address=0&quantity=1 http://ip:1880/modbus/flex/write?value=[1,2,3,4,5]&unitid=1&fc=16&address=0&quantity=5 ###
Write
http://ip:1880/modbus/write
Мне были интересны пару запросов, которые прекрасно сработали.
Сначала тестируем функцию записи - пишем значение 123 в Modbus RTU устройство с адресом 16 функцией 6 в регистр 512 ну и длина записи 1 значение. Можно писать и сразу массивы функцией 16 например [1,2,3,4,5] тогда и длина записи соответственно 5.
Теперь проверим, записалось ли наше значение в нужное адресное пространство и прочитаем состояние 5-ти регистров начиная с 512 функцией 3.
Как видим значение записалось. Теперь мы можем внедрить наши данные в любое web приложение.
ВНИМАНИЕ: в таким виде без авторизации ни в коем случае не пускаем в интернет и обязательно создаем как минимум связку логин + пароль.
Контроллер AntexGate в связке с Node-Red или другим софтом является отличным универсальным решением для обработки, пересылки и хранения данных. Прошу прощения за рекламу, однако выше представленный проект Вы можете реализовать на любом "железе" и любой ОС.
Присоединяйтесь к нашему сообществу в Telegram обсудим свободно программируемые продукты.
"Железо" можно получить на тесты, пишите на почту: info@antexcloud.ru (на три месяца для ЮР лиц и ИП)
1) Доплеровский датчик движения за 33 рубля.
Доплеровский датчик движения RCWL-0516 — способен определять движение объектов (препятствий), которые полностью или частично отражают радиоволны (люди, животные, металлы и т.д.), даже если они находятся за деревом (дверью), стеной (гипс, бетон), пластиками, стеклами и т.д. Стоит такой 33 рубля. Ссылка на модуль
2) Wi-Fi модуль с антенной за 168 рублей
Радиомодуль WiFi Serial ESP8266 необходим для того, чтобы управлять устройством дистанционно или чтобы снимать показания с сенсоров через интернет. Также он позволяет подключить гаджеты к социальным сетям или получать данные через API от веб-сервисов. Стоит набор на данный момент 168 руб. Ссылка
3) Переходник USB Type-C/DIP за 27 руб.
Переходая плата для проектов Arduino (Ардуино) для соединения электронных устройств. Плата содержит разъем USB type C и выводы на контакты шагом 2.54 мм. Стоит такой модуль на данный момент 27 руб. Ссылка
4) Разъём для наушников за 26 руб.
Модуль для наушников 3,5 мм с контактами. Стоит 26 руб. Ссылка
5) Модуль защиты аккумуляторов за 26 руб.
BMS-платы — платы, предназначенные для защиты аккумуляторов. Такие платы могут защищать аккумулятор от переразряда, больших токов потребления, коротких замыканий и тд. Стоит модуль на данный момент 26 руб. Ссылка
6) Понижающий стабилизатор
Плата AMS1117- 3.3 позволяет понизить напряжение 4,6-12 вольт в стабилизированное 3.3 вольта.Стоит такой 35 руб. Ссылка
7) Отсек для батареек
Батарейный блок на 4 AA. Стоит около 70 руб.. Ссылка
8) USB светильник
Модуль USB светильника с 3 светодиодами. Стоит 1 штука 37 руб. Ссылка
9) Датчик напряжения
Модуль Voltage Sensor – специальный модуль, созданный для удобного измерения напряжения без пайки. На модуле реализован резистивный делитель напряжения с коэффициентом 1:5, то есть на входе модуля напряжение может изменяться от 0 до 25 В, а на выходе оно будет пропорционально распределено по отрезку от 0 до 5 В. Стоит такой 38 руб. Ссылка
10) Повышающий преобразователь
Модуль повышающего DC-DC преобразователя из 3.7В в 5В/8В/9В/12В. Стоит такой 39 руб. Ссылка
11) ИК-модуль
Модуль ИК приёмника KY-022 на базе VS1838B представляет собой высокочувствительный приёмник инфракрасных сигналов. Совместим с широким спектром устройств, позволяя управлять различной техникой (робототехникой) с помощью ИК-пульта. Стоит 39 руб. ссылка
12) Пищалка
Пьезоизлучатель – это компактный модуль на плате, который преобразует электрические колебания в звук. Его отличие от обычного электромагнитного динамика состоит в том, что он может подключаться к микроконтроллеру Ардуино напрямую без использования электронного усилителя. В сравнении с активным пьезоизлучателем данный тип требует дополнительной установки генератора колебаний с частотой, находящейся внутри диапазона 2 – 5 кГц.
Питание на пассивный пьезоизлучатель можно подавать в диапазоне от 3.3 до 5 В. Если вы часто будете использовать пьезоизлучатель на максимальном пределе питания, это приведёт к искажению звука и быстрому износу модуля. Стоит такой 39 руб. Ссылка
13) Датчик уровня воды (жидкости)
Датчик предназначен для определения уровня воды в различных емкостях, с целью предупреждения перенаполнения емкости водой через критическую отметку. Имеет погружаемый тип установки. Cнятие показателей уровня воды производится при помощи аналогового анализа сопротивления. Стоит 42 рубля. ссылка
14) Датчик вибрации
Модуль изготовлен на базе датчика вибрации SW-420, который представляет из себя два контакта, замыкающиеся металлическим шариком при встряске. Операционный усилитель LM393, установленный на плате и включенный по схеме компаратора, служит для устранения дребезга и реализации регулировки чувствительности датчика.Стоит такой 44 рубля. Ссылка
15) Индикатор ёмкости акб
Модуль с индикатором уровня зарядки АКБ 12.6V. Стоит 49 руб. Ссылка
16) Контроллер
Эта плата построена на основе контроллера STM32F103C8T6, работающего на ядре ARM Cortex-M3, еще часто эту плату называют Maple Mini или Blue Pill. Мощное ядро способно работать на частоте до 72 МГц с производительностью до 1,25 DMips, то есть этот микроконтроллер мощнее типовой Arduino более чем в 5,5 раз. Всего у данного микроконтроллера 64 Кб памяти программ и 20 Кб ОЗУ - теперь можно не экономить на строках. Стоит такой 94 рубля. Ссылка
17) Модуль RTC часов
RTC DS3231 часы специально спроектированы для подключения к контроллеру Raspberry Pi, но они так же легко подключаются и работают с Ардуино. В RTC модуле можно настроить два будильника. Питание модуля DS3231, может находиться в пределах 2,5 - 5,5 В. Напряжение внешнего источника питания постоянно отслеживается микросхемой DS3231 и при падении ниже 2,5 В, часы переходят на питание от встроенной батареи. Стоит такой модуль около 160 руб. Ссылка
18) Вольтметр
Модуль вольтметра для различной робототехники и других электронных самоделок с синими цифрами. Стоит 54 руб. Ссылка
19) Контроллер
Контроллер для сборки питания на основе элементов 18650. 5V 2.4A. Стоит такой около 107 руб. Ссылка
20) RFID-модуль
Радиочастотная идентификация (RFID) — это технология бесконтактной идентификации объектов при помощи радиочастотного канала связи. Идентификация объектов производится по уникальному идентификатору, который имеет каждая электронная метка. Стоит такой набор 89 руб. Ссылка
21) Bluetooth модуль
JDY-62 -Bluetooth 4.0 стерео аудио модуль с рабочим напряжением 5В. Стоит 75 руб. Ссылка
22) Ультразвуковой дальномер
Ультразвуковой датчик расстояния (дальномер) HC-SR04 - может измерять расстояние при помощи ультразвука. TX сенсор излучает ультразвуковой импульс, который отражается от препятствия и принимается RX сенсором. Расстояние вычисляется по времени прохождения ультразвука от TX передатчика -> препятствие -> к RX приемнику. Скорость звука при температуре 20° C составляет 1235 км/ч или 343 м/с. При программировании датчика расстояния? нужно полученный результат поделить на 2. Так как ультразвук сначала движется до препятствия, а потом отразившись от него движется назад. То есть он преодолевает одно и тоже расстояние 2 раза. Еще стоит учитывать влажность воздуха и его температуру, скорость ультразвука изменяется в зависимости от этих параметров. Стоит такой 62 рубля. Ссылка
23) Модуль GSM, GPRS
Миниатюрный модуль GSM/GPRS сотовой связи на основе компонента SIM800L. Стандартный интерфейс управления компонента SIM800L предоставляет доступ к сервисам сетей GSM/GPRS 850/900/1800/1900МГц для отправки звонков, СМС сообщений и обмена цифровыми данными GPRS. Поставляется с встроенной антенной, также можно подключить дополнительные антенны для улучшения качества сигнала.
Управлять модулем можно при помощи персонального компьютера через преобразователь интерфейса USB-UART или непосредственно через UART модулем микроконтроллера самостоятельной разработки или Arduino, Raspberry Pi и аналогичными. Стоит такой 177 руб. Ссылка
24) Модуль камеры
Камера для установки на различных роботов, машинок и тд. Стоит 102 рубля. Ссылка
25) Микрофон с усилителем MAX9814
МАХ9814 - это устройство которое состоит из электретного микрофона и малошумящего микрофонного усилителя с автоматической регулировкой усиления (АРУ). Коэффициент усиления arduino микрофона можно настроить при помощи входа GAIN. Если оставить вход не подключенным, то активируется максимальное усиление 60 дБ. При подключении к входу сигнала GND, получим усиление 50 дБ. И минимальное усиление в 40 дБ можно получить подав на вход Gain напряжение питания. Также можно отрегулировать соотношение Attack/Release - время срабатывания/время восстановления АРУ. Подключив пин AR к VDD получим соотношение 1:2000ms. Оставив вывод открытым, получим 1:4000ms. Подключив вход на GND, получим минимальное время спада 1:500ms. Время запуска АРУ не изменяется и всегда в пределах 30 мс. Стоит 130 руб. ссылка на микрофон.
Добрый день коллеги, поговорим о прозрачном конверторе Modbus TCP в Modbus RTU.
Казалось бы, что выбор ограничен несколькими проприетарными продуктами которые не всегда удовлетворяют нашим потребностям.
Мы предложим свободно программируемый контроллер AntexGate с помощью которого можно получить конвертер Modbus tcp – Modbus rtu – can – profitnet – bacnet – mqtt – http – opc UA – другой протокол.
Итак, рассмотрим первую связку Modbus TCP – Modbus RTU, нам понадобится сам контроллер AntexGate либо другой компьютер с linux/windows на борту и периферией RS485.
Первое, что необходимо – это установить программный продукт Node-Red, это делается одним скриптом в командной строке:
bash <(curl -sL https://raw.githubusercontent.com/node-red/linux-installers/...)
Далее после установки делаем Node-red сервисом:
sudo systemctl enable nodered.service
Перезагружаем железяку:
sudo reboot
Теперь попадаем в среду нашего программного конвертора Node-red через web браузер по ссылке ip шлюза:1880
Далее настроим скрипт, который конвертирует посылку Modbus TCP в RTU, посылает в RS485/232 порт, ждет ответ и тут же преобразует ответ обратно в Modbus TCP.
Заходим в "меню" > "импорт"
Проект конвертора Modbus TCP <> RTU (прошу прощения в пикабу нет спойлера)
[ { "id": "22ff3060.54da6", "type": "function", "z": "de082ac2.4b8bf8", "name": "Convert TCP to RTU", "func": "var MBAPHeader = [5];\nvar crc = 0xFFFF;\n\nMBAPHeader[0]= msg.payload[0];\nMBAPHeader[1]= msg.payload[1];\nMBAPHeader[2]= msg.payload[2];\nMBAPHeader[3]= msg.payload[3];\nMBAPHeader[4]= msg.payload[4];\nflow.set('MBAP_HEADER', MBAPHeader);\n\nvar ReqLen = msg.payload[5];\nvar MBLen = (msg.payload.length)-ReqLen;\nvar MBReq = [MBLen];\n\nfor (let x=0; x < MBLen;x++){\n MBReq[x] = msg.payload[x+ReqLen];\n}\n\nfor (var req = 0; req < ReqLen; req++) {\n crc ^= MBReq[req]; // XOR byte into least sig. byte of crc\n \n for (var i = 8; i !== 0; i--) { // Loop over each bit\n if ((crc & 0x0001) !== 0) { // If the LSB is set\n crc >>= 1; // Shift right and XOR 0xA001\n crc ^= 0xA001;\n } else { // Else LSB is not set\n crc >>= 1; // Just shift right\n }\n }\n}\n\nvar MyCRC = crc.toString(16);\nMBReq[MBLen+1] = parseInt(MyCRC.substring(0,2),16);\nMBReq[MBLen] = parseInt(MyCRC.substring(2,4),16);\n\nvar buf = new Buffer(MBReq);\nmsg.payload = buf;\nreturn msg;", "outputs": 1, "noerr": 0, "initialize": "", "finalize": "", "libs": [], "x": 300, "y": 100, "wires": [ [ "7e62bbbc.bd8ea4" ] ], "outputLabels": [ "XO" ] }, { "id": "7e62bbbc.bd8ea4", "type": "serial request", "z": "de082ac2.4b8bf8", "name": "", "serial": "27dabad398437b7e", "x": 490, "y": 100, "wires": [ [ "db79ee80.1d792", "9e53f02d0a4e04fb" ] ] }, { "id": "db79ee80.1d792", "type": "function", "z": "de082ac2.4b8bf8", "name": "Convert RTU to TCP", "func": "if (msg.payload.length > 0) {\n var resLen = msg.payload.length - 2;\n var respond = [];\n respond[0] = flow.get('MBAP_HEADER')[0];\n respond[1] = flow.get('MBAP_HEADER')[1];\n respond[2] = flow.get('MBAP_HEADER')[2];\n respond[3] = flow.get('MBAP_HEADER')[3];\n respond[4] = flow.get('MBAP_HEADER')[4];\n respond[5] = resLen;\n\n for (let req = 6; req < resLen+6; req++) {\n respond[req]= msg.payload[req-6];\n }\n msg.payload = new Buffer(respond);\n return msg;\n} else {\n return null;\n}\n", "outputs": 1, "noerr": 0, "initialize": "", "finalize": "", "libs": [], "x": 640, "y": 60, "wires": [ [ "2622a1e893f52bed", "140a62f5366490d9" ] ] }, { "id": "55423964225fa869", "type": "comment", "z": "de082ac2.4b8bf8", "name": "Convert Modbus TCP to Modbus RTU", "info": "", "x": 170, "y": 40, "wires": [] }, { "id": "cbd6e86861af643d", "type": "tcp in", "z": "de082ac2.4b8bf8", "name": "Modbus TCP - IN", "server": "server", "host": "", "port": "5002", "datamode": "stream", "datatype": "buffer", "newline": "", "topic": "", "trim": false, "base64": false, "tls": "", "x": 100, "y": 100, "wires": [ [ "22ff3060.54da6", "48471bdeae3a1d30" ] ] }, { "id": "2622a1e893f52bed", "type": "tcp out", "z": "de082ac2.4b8bf8", "name": "Modbus TCP - OUT", "host": "127.0.0.1", "port": "502", "beserver": "reply", "base64": false, "end": false, "x": 850, "y": 100, "wires": [] }, { "id": "9e53f02d0a4e04fb", "type": "debug", "z": "de082ac2.4b8bf8", "name": "debug 17", "active": true, "tosidebar": true, "console": false, "tostatus": false, "complete": "false", "statusVal": "", "statusType": "auto", "x": 640, "y": 220, "wires": [] }, { "id": "140a62f5366490d9", "type": "debug", "z": "de082ac2.4b8bf8", "name": "debug 18", "active": true, "tosidebar": true, "console": false, "tostatus": false, "complete": "false", "statusVal": "", "statusType": "auto", "x": 820, "y": 200, "wires": [] }, { "id": "48471bdeae3a1d30", "type": "debug", "z": "de082ac2.4b8bf8", "name": "debug 19", "active": true, "tosidebar": true, "console": false, "tostatus": false, "complete": "false", "statusVal": "", "statusType": "auto", "x": 260, "y": 200, "wires": [] }, { "id": "27dabad398437b7e", "type": "serial-port", "serialport": "/dev/ttyUSB0", "serialbaud": "115200", "databits": "8", "parity": "none", "stopbits": "1", "waitfor": "", "dtr": "none", "rts": "none", "cts": "none", "dsr": "none", "newline": "5", "bin": "bin", "out": "time", "addchar": "", "responsetimeout": "1000" } ]
Настраиваем порт для просушки в узле Modbus TCP IN, рекомендуем не использовать стандартный 502, а использовать нестандартный порт более 1024, для них не нужны дополнительные разрешения в Linux.
Настраиваем последовательный порт RS485/232 на скорость конечного железа, поддерживающего протокол Modbus RTU.
Жмем "Развернуть" и наш конвертер готов!
Настраиваем Ваш инструмент верхнего уровня, например Modbus TCP OPC сервер стандартно: ip_адре_ шлюза:5002:id_RTU_устройства.
Все работает стабильно, чтение и запись! Посылки как видим между запросом и ответом 100-200мс, что равно пингу. Удаленный шлюз AntexGate работает на встроенном LTE модеме.
Бонусом, для тех, у кого софт верхнего уровня поддерживает функцию Modbus RTU поверх TCP включаем это правило.
В Node-Red упрощаем поток и исключаем функции RTU TCP обработки, и наш проект в Node-Red становится без единой строчки кода.
Контроллер AntexGate в связке с Node-red является отличным универсальным решением для обработки, пересылки и хранения данных. Прошу прощения за рекламу, однако выше представленный проект Вы можете реализовать на любом железе и любой ОС.
Присоединяйтесь к нашему сообществу в Telegram
Железо можно получить на тесты, пишите на почту: info@antexcloud.ru (на три месяца для ЮР лиц и ИП)