Создан фотосинтетический живой материал для связывания углекислого газа
Швейцарские исследователи разработали принципиально новый строительный материал, обладающий необычными свойствами: он может "дышать", расти и при этом активно очищать воздух от углекислого газа.
Этот уникальный биоматериал был создан в лабораториях ETH Zurich. Его особенность заключается в сочетании передовых технологий с живыми микроорганизмами — цианобактериями, известными своей способностью к фотосинтезу. Ученые поместили эти древние организмы в специальный гидрогель, который позволяет создавать из него конструкции с помощью 3D-печати. Цианобактерии не только преобразуют CO₂ в органические вещества, но и способствуют образованию минеральных карбонатов, тем самым связывая углерод в стабильной форме.
Разработка получила название "фотосинтетический живой материал". Он со временем становится прочнее, требуя для жизнедеятельности лишь свет, углекислый газ и питательный раствор, имитирующий морскую воду. Благодаря работе бактерий материал производит собственную биомассу и изменяет окружающую среду, запуская процесс образования экологически безопасных минералов. Таким образом, связывание углерода происходит двумя способами, что делает технологию особенно эффективной и перспективной для борьбы с парниковыми газами.
В ходе экспериментов было установлено, что материал способен устойчиво поглощать CO₂ на протяжении как минимум 400 дней. По оценкам ученых, каждый грамм такого материала за это время связывает около 26 миллиграммов углекислого газа — результат, превосходящий многие существующие биологические методы и сопоставимый с эффективностью химической минерализации углерода в переработанном бетоне. Кроме того, накапливающиеся карбонаты усиливают структуру материала, повышая его прочность.
Для поддержания жизнеспособности цианобактерий учёные разработали оптимальную структуру гидрогеля — полимерного вещества с высоким содержанием воды. Гель обеспечивает свободное проникновение света, CO₂ и питательных веществ, необходимых для роста и активности микроорганизмов. Благодаря 3D-печати удалось создать сложные геометрические формы с увеличенной площадью поверхности, что улучшило распределение влаги и питательных элементов внутри конструкции. Это позволило бактериям сохранять активность более года.
Первые практические испытания материала состоялись в рамках архитектурного проекта "Picoplanktonics", представленного на Венецианском архитектурном биеннале. Докторант ETH Андреа Шин Линг применила технологию в реальном масштабе, построив два трёхметровых объекта из живого материала. Каждый из них способен ежегодно поглощать до 18 кг CO₂ — столько же, сколько усваивает взрослая сосна за год. Для поддержания жизнедеятельности бактерий конструкция была оснащена системой контроля влажности, температуры и освещения.
Ученые видят в этом материале перспективную альтернативу традиционным технологиям улавливания углерода. В будущем он может использоваться как декоративная или функциональная облицовка зданий, превращая городскую инфраструктуру в мощные природные фильтры. Такой подход открывает новые горизонты в проектировании экологичных городов и демонстрирует, как синтез биологии, архитектуры и инженерии может менять лицо современного строительства.