Горячее
Лучшее
Свежее
Подписки
Сообщества
Блоги
Эксперты
Войти
Забыли пароль?
или продолжите с
Создать аккаунт
Регистрируясь, я даю согласие на обработку данных и условия почтовых рассылок.
или
Восстановление пароля
Восстановление пароля
Получить код в Telegram
Войти с Яндекс ID Войти через VK ID
ПромокодыРаботаКурсыРекламаИгрыПополнение Steam
Пикабу Игры +1000 бесплатных онлайн игр Управляй роботом-мутантом чтобы исследовать загадочный мир, находи классное оружие и сражайся с различными врагами, чтобы выжить!

Зомботрон Перезагрузка

Экшены, Платформеры, Шутер

Играть

Топ прошлой недели

  • AirinSolo AirinSolo 10 постов
  • Animalrescueed Animalrescueed 46 постов
  • mmaassyyaa21 mmaassyyaa21 3 поста
Посмотреть весь топ

Лучшие посты недели

Рассылка Пикабу: отправляем самые рейтинговые материалы за 7 дней 🔥

Нажимая «Подписаться», я даю согласие на обработку данных и условия почтовых рассылок.

Спасибо, что подписались!
Пожалуйста, проверьте почту 😊

Помощь Кодекс Пикабу Команда Пикабу Моб. приложение
Правила соцсети О рекомендациях О компании
Промокоды Биг Гик Промокоды Lamoda Промокоды МВидео Промокоды Яндекс Маркет Промокоды Пятерочка Промокоды Aroma Butik Промокоды Яндекс Путешествия Промокоды Яндекс Еда Постила Футбол сегодня
0 просмотренных постов скрыто
192
AlexBitner
AlexBitner
Лига образования

Тригонометрия 10 кл. Самое начало⁠⁠

1 год назад

Школа Битнера

[моё] Образование Тригонометрия Математика просто Видео Видео ВК
34
25
NaukaPRO
NaukaPRO
Наука | Научпоп
Серия Математика

История математики в Ростовском университете | История математики – математик Вячеслав Пырков⁠⁠

1 год назад

Чем занимаются историки математики и в чём заключается феномен Ростовской научной историко-математической школы? В лекции будет рассказано о предпосылках формирования в Ростове-на-Дону исследований историко-математической тематики, о наиболее крупных ростовских математиках, работавших в этой области, и их достижениях, о современном состоянии и перспективах историко-математических исследований в ЮФУ.

Рассказывает Вячеслав Пырков, кандидат педагогических наук, доцент кафедры теории и методики математического образования Института математики, механики и компьютерных наук им. И.И. Воровича ЮФУ.

Показать полностью
[моё] НаукаPRO Наука Научпоп Исследования Математика Занимательная математика Математическая логика Математика просто Прикладная математика Высшая математика Математики Дискретная математика Математический анализ Ростов-на-Дону Ростовская область Видео YouTube
5
6
user9207417
user9207417

Смарт кенгуру⁠⁠

1 год назад
Смарт кенгуру

Смарт кенгуру скетчи

Я нашла в шкафу стикеры XP

Показать полностью 1
[моё] Фурри Животные Математика просто Рисунок
0
7
Аноним
Аноним
Школьный уголок

Ответ на пост «Первый кусок ОГЭ по математике»⁠⁠1

1 год назад

Именно из-за неспособности решать такие задания Россия показывает скромные результаты в международных тестах PISA.

Вы говорите, что лично у вас с такими заданиями трудности. Либо вы прибедняетесь, либо у вас проблемы с некоторыми (нематематическими) когнитивными способностями. Судя по малосвязности и многословности ваших постов, второе не исключено.

Обычно у людей, соображающих в математике, таких трудностей нет. И тут отличие между школьными образовательными подходами в России и, например, в Финляндии или Канаде.

В России программа нацелена на то, что вы сами считаете правильным. Не будем тратить время на тупых, попытаемся научить всех, что такое синус и как решать квадратные уравнения.

В условной Финляндии подход такой: фиг с ними, с квадратными уравнениями, давайте сперва обучим последних дебилов решать задачи на площадь садовых участков, натренируем их извлекать смысл из простых графиков и таблиц.

Поэтому в тестах с задачами про садовые участки, например PISA, Россия плетется позади, а в тестах на квадратные уравнения, например TIMSS, обгоняет все страны, кроме некоторых азиатских.

Дополнительный эффект, искажающий картину. Чтобы отличать случайно угадавших от реально понимающих, в простых задачах часто просят дать текстовое пояснение. Когда решение слишком простое и очевидное, российский школьник, не привыкший к таким заданиям, не может понять, что именно от него хотят. "У Кати пять горшков по три цветка, сколько всего цветов? Запиши формулу, ответ и пояснение на два предложения". В некоторых западных странах подобные задания даются на протяжении всей начальной школы, так что ученики хорошо пишут тесты.

Показать полностью
ОГЭ Неизвестные слова Математика просто Текст Ответ на пост
5
MaryRabinovich
MaryRabinovich
Школьный уголок

Первый кусок ОГЭ по математике⁠⁠1

1 год назад

Преподаю я давным-давно, сама, понятное дело, ОГЭ и ЕГЭ решаю быстро и безболезненно... Ну почти. Кроме первых пяти ОГЭшных задач. Сейчас объясню.

Там такие задачи... Такие... Ну вот как вырезка из газеты. Или как будто вам прислали письмо из управляющей организации про задолженности по ежеквартальной премии... Короче, бредово звучит примерно так через раз на второй.

И для себя я даже не пробую разобраться. Прямо так и предупреждаю с порога: первые пять номеров в ОГЭ вы подготовите сами.

- А как? Как подготовим? - спрашивают, разумеется, отдельные люди. Спрашивают отдельные, а лучше бы все бы спрашивали. Там потому что проблемы всегда у всех.

Короче. Берёте сто задач №1. Тексты там всё равно повторяются от №1 к №5. И подготовка по ним нужна как раз именно с текстом.

Из этих обрывков газет и домовых книг текстов выписываете непонятные слова. И там их будет вагон. На сотню задач легко наберётся полсотни слов, которых не слышали даже друзья родителей.

Слова эти надо погуглить. И с новым знанием перечитать задачи №1 сотню штук (см. выше).

ЗЫ если вы на физмате, вас это тоже касается - вы же небось не заглядывали в №№1-5, типа там тривиальное. А вы загляните. Пусть этот ужас накроет вас до экзамена - пусть у вас будет время что-нибудь с этим сделать.

Показать полностью
[моё] ОГЭ Неизвестные слова Математика просто Текст
54
Аноним
Аноним

Почему на 0 делить нельзя (на пальцах)?⁠⁠

1 год назад

Если a / b = c, то b * c = a. Соответственно, если b = 0, то c * 0 = a. Если в этом случае a равно 0, то подходит любое число. Если же a не равно 0, то заметим, что если любое число умножить на 0, то будет 0. А значит, ни одно число не подходит

Математика Математика просто Текст
9
26
Mercury13
Лига упоротой математики
Серия Детские вопросы

Порядок операций и мем 6:2(1+2)⁠⁠

2 года назад
Мем врёт: порядок операций не был определён в 1912, просто кодифицирован в одном из западных учебников.

Мем врёт: порядок операций не был определён в 1912, просто кодифицирован в одном из западных учебников.

Сначала попробую рассказать, откуда взялся порядок операций. Вот видео, перескажу его вкратце.

Итак, пересказ видео

Порядок операций по умолчанию — не математическая истина, а договорённость.

Чтобы явно указать этот порядок, используют скобки. Экстремальный вариант — взять в скобки каждую операцию (т.н. полная скобочная запись), но тогда даже очень простое выражение быстро становится нечитаемым.

((2·(x²)) + (3·x)) − 5

Потому хотелось бы уменьшить количество скобок, отсюда порядок операций «если иное не указано».

Но давайте сначала сделаем две ремарки.

  1. В математике плюс и умножение переместительны и сочетательны (коммутативны и ассоциативны, как говорят в вузе) — a+b=b+a, a+(b+c)=(a+b)+c. На компьютере формально нет сочетательности, но глюки значимы очень редко. То есть не важно, в каком порядке суммировать/множить.

  2. Вычитание — это нечто близкое к сложению: a−b = a+(−b). А деление — нечто близкое к умножению: a/b = a·(b⁻¹). Потому то и другое будет иметь одинаковый приоритет.

Из этих ремарок автоматически отпадает одна скобка: (2·(x²)) + (3·x) − 5.

А почему остальные скобки выпали до 2·x² + 3·x − 5 — есть очень много аргументов.

Аргумент точности и гипероператоров

Степень обычно приводит к большим цифрам. Умножение — к меньшим. Сложение — к совсем маленьким. Если нужно очень приближённо вычислить что-то, сначала получают самые большие члены (например, степенны́е), а потом всё ближе и ближе подходят к ответу, умножая и прибавляя, пока точности не будет хватать. И математики это обобщили в гипероператоры.

Гипероператор нулевого порядка — это следующее число x′ = x+1.

Гипероператор первого порядка — это сложение a+b = a″…″ (много штрихов) = a+1+…+1.

Гипероператор второго порядка — это умножение a·b = a+a+…+a.

Гипероператор третьего порядка — это степень aᵇ = a·a·…·a.

А гипероператор четвёртого порядка называется тетрация и приводит к вообще астрономическим числам.

Аргумент анализа размерностей

Считать по формулам обычно нужно потому, что эти числа имеют какое-то отношение к реальности — то есть тащат за собой единицы измерения. И запрещается складывать самолёты с часами, можно только самолёты с самолётами и часы с часами. А множить самолёты на часы не возбраняется, и получаются самолёто-часы — часы авиационной работы.

Анализ размерностей заключается вот в чём: смотрим, в каких единицах каждый член, и всё это должно совпадать. Вот несложная формула из физики: s = vt + at²/2. Считаем: s — метры. vt — (м/с)·с — тоже метры. И так далее.

Мне, Mercury13, приходилось делать несложную мобильную гонку. Да, она несложная, но движок работал на единицах СИ, и подобным анализом я исправлял очень много ошибок.

Аргумент алгебры

Сложение и умножение обладают также распределительностью (дистрибутивностью) — a·(b+c) = a·b + a·c. Порядок «сначала умножение, потом сложение» позволяет легче видеть в выражениях подобные шаблоны.

Аргумент многочленов

Многочлены вроде ax²+bx+c играют большую роль во многих отраслях математики, и хотелось бы их держать без скобок.

…В общем, на Западе всё это объясняют аббревиатурой PEMDAS.

  • Parentheses — скобки

  • Exponent — возведение в степень

  • Multiplication/Division — умножение/деление

  • Addition/Subtraction — сложение/вычитание

Но откуда тогда взялся мем, если порядок типа-определённый?

А взялся он из одного разночтения и трёх дополнительных факторов. Напоминаю, порядок операций — не математическая истина, а договорённость, призванная уменьшить количество скобок.

  • Первое и главное. Имеет ли неявное умножение ab (то есть умножение без явно прописанного знака «умножить») приоритет перед делением?

  • В профессиональной математике — и даже в старших классах — крайне редко делят двоеточием a:b. Чаще используется дробная черта, явно показывающая, что на что делить. В некоторых договорённостях эти знаки неравноценны, но забьём.

  • На компьютерах математикам приходится вытягивать свои выражения в строчку. Не столько для программирования (там поставят столько скобок, сколько комп требует), сколько для передачи другим математикам через системы общего назначения вроде форумов или электронной почты.

  • Как видите, есть разночтения, и комп их усилил. Отбивка пробелами также призвана их закрыть: операции, отбитые пробелами, считаются менее приоритетными, чем записанные слитно.

О калькуляторах и зарубежных учебниках будет рассказ в этом видео. В общем, есть калькуляторы, у которых неявное умножение имеет более высокий приоритет, есть те, у которых наравне с остальным. На одни калькуляторы ругались учителя, на другие — профессионалы.

А я попробую рассказать про наши родные источники. В любом случае в наших учебниках разночтений типа a/b(c+d) не будет: вылезут из кожи, но сверстают настоящую дробь. В профессиональной литературе такие места единичны, и пролистав доступные книги, получаю такое.

  • Бейко ИВ и др. Методы и алгоритмы решения задач оптимизации. К: 1983. Набор металлический. С.149 первая формула (что-то там)/(γ+1)||g(yᵏ)|| — неявное умножение раньше дробной черты, с учётом ремарок VI на с.147 и (ii) на с.148. Также нашёл на с.324.

  • Каханер Д и др. Численные методы и программное обеспечение. М: 1998. Набор неизвестной издательской системой (Word?). Вытянутых в строчку формул очень мало, но с. 201 третья строка — 1/√π ∫ в интеграле ошибок явно говорит, что дробная черта раньше неявного умножения. В другом месте на с.328 написали (что-то там)/(2L).

А теперь различные докомпьютерные источники по этому правилу.

  • Репьёв ВВ. Методика преподавания алгебры в восьмилетней школе. М: 1967. — с.81.

  • Шустеф ФМ. Методика преподавания алгебры. Минск: 1967. — с.43.

Уже видно, что с этим разногласие даже у методистов.

А теперь разрешите процитировать одного комментатора из-за бугра: «В этом примере смешаны запись из начальной школы и институтская, причём бессмысленно. Те, кто помнит арифметику, ответят 9. Те, кто больше помнят алгебру, вероятнее, ответят 1».

Кто в курсе, почему я добавил эту картинку?

Показать полностью 3 2
[моё] Математический юмор Математика просто Мемы Математический парадокс Видео YouTube Длиннопост
16
131
NaukaPRO
NaukaPRO
Наука | Научпоп
Серия Математика

Почему нельзя делить на ноль? – Алексей Савватеев | Лекции по математике | Научпоп⁠⁠

2 года назад

Каково математическое определение такой «привычной» нам операции, как деление? Почему невозможно получить результат деления на ноль? Можно ли разделить ноль сам на себя и что из этого получится? Как невозможность деления на ноль можно объяснить физически?

Рассказывает Алексей Савватеев, математик и матэкономист, доктор физико-математических наук, член-корреспондент РАН, популяризатор математики среди детей и взрослых, научный руководитель Кавказского математического центра АГУ, профессор Московского физико-технического института, ведущий научный сотрудник ЦЭМИ РАН.

Ролик создан при поддержке Ассоциации волонтёрских центров в рамках Международной премии МЫВМЕСТЕ.

Показать полностью
[моё] НаукаPRO Исследования Наука Научпоп Математика Математический анализ Занимательная математика Высшая математика Математики Математика просто Прикладная математика Математическая логика Алексей Савватеев Видео YouTube
35
Посты не найдены
О нас
О Пикабу Контакты Реклама Сообщить об ошибке Сообщить о нарушении законодательства Отзывы и предложения Новости Пикабу Мобильное приложение RSS
Информация
Помощь Кодекс Пикабу Команда Пикабу Конфиденциальность Правила соцсети О рекомендациях О компании
Наши проекты
Блоги Работа Промокоды Игры Курсы
Партнёры
Промокоды Биг Гик Промокоды Lamoda Промокоды Мвидео Промокоды Яндекс Маркет Промокоды Пятерочка Промокоды Aroma Butik Промокоды Яндекс Путешествия Промокоды Яндекс Еда Постила Футбол сегодня
На информационном ресурсе Pikabu.ru применяются рекомендательные технологии