Чтобы не отнимать время у членов ЛЛ, отвечаю сразу: нет, не зависит. Но дьявол как всегда кроется в деталях. Вообще говоря, жизненный опыт подсказывает нам, что тяжёлые предметы разогнать и остановить куда тяжелее, чем лёгкие. И вообще, если одновременно бросить камень и пёрышко, то камень приземлится на землю первым. Что же ты нам, ТС, втираешь? А мне сказать нечего – да, камень приземлится раньше пера. Это очевидно. Но только пока мы находимся в воздушном пространстве. Вспомните-ка опыт, который наверняка показывали в школе: в длинной стеклянной колбе находятся пёрышко и камушек. Пока колба заполнена воздухом, камень падает на дно колбы гораздо быстрее пера. Но стоит откачать воздух, как рвутся все наши шаблоны: перо и камень приземляются одновременно.
Ладно, ладно! Дураку понятно, что тут виной сопротивление воздуха. Но ведь всё равно камень же тяжелее пёрышка! Земля притягивает камень сильнее, чем перо. И с этим утверждением тоже трудно поспорить. Тогда какого чёрта они в вакууме падают одновременно? Масса-то у них разная! И вот тут нужно сделать одно важное отступление. Вообще говоря, в физике различают инертную массу и гравитационную. Так уж было угодно демиургам нашей вселенной, что они в точности совпадают, поэтому в жизни мы не делаем различия между этими видами масс. Килограмм – он и в Африке килограмм. Однако, различие заключается в проявлении этих масс. Инертная масса показывает, насколько тяжело вывести тело из состояния покоя (или равномерного прямолинейного движения, что в сущности, по заветам первого закона Ньютона, одно и то же). Представьте себе тяжёлый маятник, подвешенный на длинной нитке. Масса его, допустим, 1 тонна. Сможете ли вы раскачать его? Скорее всего да, но это будет очень тяжело и долго. Точно так же трудно будет вам и остановить такой маятник, если он будет раскачиваться. Вот она – инертная масса.
С гравитационной массой всё немного проще. Именно она определяет то, с какой силой все тела притягиваются к Земле (ну а в общем случае то, как сильно тянутся друг к другу любые два тела в пространстве). И если 1000-килограммовый маятник вы хоть и с трудом, но сдвинуть в воздухе сможете, то приподнять его даже на миллиметр не сможет никто. Даже втроём. Забавно, что окажись этот маятник на Луне, то три человека его вполне бы подняли. А вот раскачать этот маятник было бы точно так же тяжело, как и на Земле. И даже на борту МКС. Инертная сущность массы проявляется в том, что чем она больше, тем тяжелее ей придать какое-то ускорение. А гравитационное проявление массы связано с массой второго тела, к которому она притягивается (но поскольку 99,9999999% людей живут на Земле, то мы волей-неволей считаем вторым телом нашу hjlye. планету, и даже ввели константу g - ускорение свободного падения на Земле, с помощью которой отождествляем МАССУ тела и СИЛУ, с которой оно притягивается к Земле). Надеюсь, с видами масс разобрались.
Вернемся к камню и пёрышку. Почему же в вакууме они падают одновременно? А потому, что насколько сильнее камень притягивается к Земле, нежели пёрышко, настолько же тяжело ему сдвинуться из состояния покоя. Допустим, камень весит 100 грамм, а перо – 1 грамм. Чтобы разогнать более тяжёлый и инертный камень, нужна сила в 100 раз бОльшая, чем для пера. Но, с другой стороны, камень в 100 раз сильнее притягивается к Земле, нежели пёрышко. И вот оно – наглядное подтверждение равенства инертной и гравитационной массы тела.
Ну что за нудятина? И при чём тут торможение вообще? Где сравнение КамАЗа и легковушки? Спокойно! Сейчас всё будет!
Итак, на картинке у нас два автомобиля: первый давит на опору всеми своими 10 000 килограммами, а второй только 1 000 кг. При этом опора (дорога, асфальт) по третьему закону Ньютона отвечает автомобилям с точно такой же силой N, но направленной в противоположную сторону, т.е. вверх. Представим, что оба движутся с одинаковой скоростью V, например, 72 километра в час, что равняется 20 метрам в секунду. Едут они по одной и той же дороге. Дорога идеально ровная, сухой асфальт. И вот в один и тот же момент они резко бьют по тормозам, колёса идут юзом, и автомобили останавливаются. Давайте разбираться, что же при этом происходит.
Как мы помним из нашей любимой физики, движущееся тело обладает кинетической энергией. Численно она равна половине произведения массы на квадрат скорости (в коментах напишите, кто при встрече с бетонной стеной ухандокается сильнее: 1000-килограммовый седан на скорости 110 км/ч или же 2-тонный внедорожник на 75 км/ч?). А у остановившегося автомобиля кинетической энергии нет, ибо скорость нулевая. Но мы же помним, что энергия просто так никуда не пропадает, она лишь переходит из одного вида в другой. Куда же перешла вся кинетическая энергия при торможении? А перешла она в тепловую – асфальт и шины тупо нагрелись. И заставила их нагреться сила трения Fтр. При этом, до момента торможения автомобиль проходит какой-то путь S. Таким образом, сила трения (которая зависит от массы m, ускорения свободного падения g и коэффициента трения µ) совершает работу по остановке автомобиля, равную произведению силы трения на это расстояние. И, поскольку вся кинетическая энергия пошла на работу по нагреву шин и асфальта, мы их тупо приравниваем:
Как нетрудно заметить, в третьей строке у нас сократились массы в левой и правой части. Физический смысл такого сокращения описан выше – это эквивалентность инертной (в левой части) и гравитационной (в правой) масс. Чем сильнее разогнать массивное инертное тело, тем неохотнее оно будет останавливаться. С другой стороны, чем больше масса тела, тем сильнее оно прижимается к Земле, тем выше сила трения, которая тормозит эту массу. Таким образом, тормозной путь автомобиля зависит только от скорости и коэффициента трения µ.
НО! Всё вышесказанное справедливо только при условии, что дорога идеально ровная, и все колёса обоих сравниваемых автомобилей тормозят юзом. Впрочем, пока что информации хватит. Если тема покажется интересной, то обо всех этих нюансах и об отличиях теории от реалий поговорим в следующий раз.