Выдающийся физик из Калифорнийского технологического института Ричард Фейнман однажды заметил, что, если свести историю науки к одному важному утверждению, оно прозвучит так: «Все вещи созданы из атомов». Атомы повсюду и составляют все сущее. Оглянитесь вокруг себя. Все это атомы. Не только твердые предметы вроде стен, столов или диванов, но и воздух между ними. И их число поистине непостижимо.
Основной рабочей конфигурацией атомов является молекула (от латинского «малая масса»). Молекула— это просто два атома или больше, действующие совместно в более или менее устойчивом сочетании: добавьте два атома водорода к одному атому кислорода и получите
молекулу воды. Химики склонны мыслить категориями молекул, нежели элементарных частиц. Так же как писатели мыслят словами, а не буквами, химики подсчитывают молекулы. А те весьма многочисленны, если не сказать больше. На уровне моря при нуле градусов по Цельсию один кубический сантиметр воздуха (примерно с кубик сахара) будет содержать 25 миллиардов миллиардов молекул. Столько же их в каждом кубическом сантиметре, которые вы видите вокруг себя. Представьте, сколько кубических сантиметров в мире за вашим окном — сколько нужно кубиков сахара, чтобы они заполнили все видимое вами пространство. Теперь представьте, сколько их надо, чтобы создать Вселенную. Короче говоря, атомов великое
множество.
Вдобавок к этому они еще и фантастически долговечны. В силу своей живучести атомы действительно повидали свет. Каждый атом вашего тела почти наверняка побывал в составе нескольких звезд и был частью миллионов живых организмов. В нас такое обилие атомов, и мы
подвергаемся такой решительной переработке после смерти, что значительное число наших атомов — предположительно, до миллиарда в каждом из нас — когда-то могли принадлежать Шекспиру. По миллиарду каждому досталось от Будды, Чингис-хана, Бетховена и любой другой
исторической личности, какая бы ни пришла на ум. (Личности, очевидно, должны быть историческими, поскольку для основательного перераспределения атомам требуется
несколько десятков лет; и как бы вам этого ни хотелось, вы вряд ли носите в себе атомы Элвиса Пресли.)
Так что все мы являемся перевоплощениями — правда, недолговечными. Когда мы умрем, наши атомы разберутся и разойдутся искать новое применение где-нибудь в другом месте — станут частью древесного листа, или другого человеческого существа, или капли росы. Сами атомы, однако, живут практически вечно. Никто, по сути, не знает, сколько может просуществовать атом, но, согласно Мартину Рису, вероятно, около 1035 лет — число настолько большое, что даже я рад изобразить его в математической нотации.
И, наконец, атомы еще и очень малы, то есть они действительно совсем крошечные. Полмиллиона их, выстроившись плечом к плечу, могли бы спрятаться позади человеческого волоса. При таких размерах отдельный атом, по существу, невозможно представить, но мы, конечно, попытаемся это сделать.
Начнем с миллиметра, линии вот такой длины «-». Теперь вообразите, что эта линия разделена на тысячу частей. Каждая из них — это микрон. Это масштаб микроорганизмов. Обычная парамеция (туфелька) — крошечное одноклеточное пресноводное живое существо — имеет толщину 2 микрона, или 0,002 миллиметра, — это очень мало. Если бы вы захотели увидеть туфельку невооруженным глазом в капле воды, вам пришлось бы увеличить каплю до диаметра примерно 12 метров. Ну а для того, чтобы увидеть в этой же капле атомы, ее пришлось бы увеличить до 24 километров.
Другими словами, атомы существуют в микроскопических масштабах совершенно другого порядка. Чтобы приблизиться к размерам атомов, нужно каждый микронный кусочек нарезать на десять тысяч еще более тонких ломтиков. Вот это и будет масштаб атома: одна десятимиллионная миллиметра. Эта мера тонкости даже отдаленно недоступна нашему воображению, но можно получить о ней какое-то представление, если учесть, что атом в
сравнении с изображенной выше миллиметровой черточкой — это все равно что толщина бумажного листа в сравнении с высотой небоскреба Эмпайр стейт билдинг.
Разумеется, именно изобилие и поразительная живучесть атомов делают их такими полезными, а из-за малых размеров их так трудно обнаружить и осмыслить. Каждый атом состоит из трех видов элементарных частиц: протонов, несущих положительный электрический заряд, отрицательно заряженных электронов и нейтронов, которые не несут никакого заряда. Протоны и нейтроны плотно упакованы в ядро, а электроны обращаются вокруг него. Химическую индивидуальность дает атомам количество протонов. Атом с одним протоном — это атом водорода, с двумя — атом гелия, с тремя — лития и так далее по таблице. Добавляя протон, вы каждый раз получаете новый элемент. (Ввиду того, что число протонов в атоме всегда уравновешивается равным числом электронов, иногда можно прочесть, что элемент определяется количеством электронов, что, в сущности, одно и то же. Как мне объяснили, протоны придают атому индивидуальность, а электроны определяют его личность.)
Нейтроны не влияют на идентичность атома, но увеличивают его массу. Число нейтронов обычно примерно такое же, как и протонов, хотя может несколько отличаться в ту или иную сторону. Добавьте или убавьте нейтрон-другой, и вы получите изотоп. Обозначения, которые вы
встречаете в связи с датированием пород в археологии, относятся к изотопам, например, термин «углерод-14» означает атом углерода с шестью протонами и восьмью нейтронами (в сумме получается четырнадцать).
Нейтроны и протоны занимают ядро атома. Оно совсем крошечное — всего одна миллионная миллиардной части полного объема атома, — но фантастически плотное, поскольку содержит практически всю массу атома. Как писал Кроппер, если атом увеличить до размеров собора,
ядро будет всего лишь размером с муху, но эта муха будет во много тысяч раз тяжелее собора.
По сей день у многих вызывает удивление мысль о том, что атомы в основном представляют собой пустое пространство, и твердость окружающих нас тел — не более чем иллюзия. Когда в реальном мире друг с другом сближаются два тела — чаще всего в качестве иллюстрации берут
биллиардные шары, — они на самом деле не ударяются друг о друга. «Правильнее сказать, — поясняет Тимоти Феррис, — что отрицательные заряды обоих шаров взаимно отталкиваются... Не будь у них электрических зарядов, они могли бы, подобно галактикам, беспрепятственно пройти сквозь друг друга». Сидя на стуле, вы на самом деле не сидите на нем, а висите над ним на высоте одного ангстрема (стомиллионная доля сантиметра), ваши электроны и электроны стула отчаянно противятся любой более тесной близости.
Билл Брайсон "Краткая история почти всего на свете"