devlor1

devlor1

Пикабушник
5449 рейтинг 13 подписчиков 9 подписок 34 поста 32 в горячем
412

К сорокалетию рандеву «Вояджера-1» с Сатурном

40 лет назад «Вояджер-1» пролетел на расстоянии 124 тысячи километров от облаков Сатурна. За время сближения он сделал ряд наиболее детальных на тот момент снимков колец и атмосферы гиганта, а также его спутников. Спустя два десятка лет к окольцованному гиганту прибыла межпланетная станция «Кассини», которая долгие годы занималась его детальным изучением.

Сатурн был одной из главных целей «Вояджера-1», который отправился в космос в начале сентября 1977 года. На тот момент конфигурация внешних планет Солнечной системы была крайне удачной, и аппарат смог использовать пролеты мимо них для того, чтобы набрать скорость. До Юпитера зонд добрался 5 марта 1979 года, а встреча с Сатурном произошла 12 ноября 1980 года.

Первоначальный срок службы «Вояджера-1» составлял пять лет. Однако его полет продолжается вот уже 44-й год, аппарат поддерживает связь с Землей по сей день. В 2012 году зонд покинул гелиосферу и вышел в межзвездную среду, которую теперь исследует вместе с «Вояджером-2». Сейчас «Вояджер-1» находится на расстоянии почти 152 астрономических единиц от Земли — это самый удаленный от нашей планеты рукотворный объект.

На первый взгляд может показаться, что фотографии, переданные на Землю «Вояджером-1», обладают малой научной ценностью, однако это не так. Тогда, в далеком 1980 году это были наиболее четкие изображения миров, о которых у ученых были лишь смутные представления, и именно благодаря им, а также данным бортовых приборов, планетологи смогли сделать немало открытий.

Титан

Первые близкие снимки Титана сделал «Пионер-11», который был первым космическим аппаратом, посетившим систему Сатурна за год до «Вояджера-1», однако они дали ученым мало новых данных. Удалось лишь уточнить его массу и выяснить, что спутник слишком холоден для поддержания жизни. Так что для «Вояджера-1» изучение Титана было ключевой задачей. Зонд смог определить физические параметры спутника, а также исследовать его плотную, непрозрачную атмосферу, найдя в ней слои дымки и определив ее состав — тот оказался богат азотом и содержал углеводороды. Через четверть века «Кассини» при помощи обширного арсенала научных приборов заглянул под эту дымку и рассмотрел поверхность Титана. Выяснилось, что она во многом похожа на земную, только в роли воды на Титане выступают жидкие метан и этан.

Снимок Титана, сделанный «Вояджером-1» с расстояния 4,5 миллиона километров от спутника 9 ноября 1980 года. NASA / JPL

Инфракрасное изображение поверхности Титана, составленное по данным наблюдений «Кассини» 13 ноября 2015 года.

NASA / JPL / University of Arizona / University of Idaho



Мимас

На поверхности этого спутника Сатурна «Вояджер-1» увидел огромный кратер диаметром 139 километров. Кратер нарекли «Гершелем» в честь астронома, который открыл Мимас. Размер Гершеля — почти треть от диаметра самого спутника, что говорит о чудовищном столкновении с другим телом в прошлом, которое серьезно повлияло на эволюцию Мимаса. В дальнейшем «Кассини» прислал ряд прекрасных четких фотографий неровной поверхности спутника и рассмотрел Гершель в деталях.

Снимок Мимаса, сделанный «Вояджером-1» с расстояния 550 тысяч километров от спутника. Виден кратер Гершель.NASA / JPL


Снимок кратера Гершель на Мимасе, сделанный «Кассини» с расстояния 9,5 тысяч километров от спутника в феврале 2010 года. NASA / JPL / Space Science Institute


Энцелад

Этот ледяной спутник Сатурна впервые попал на снимки «Вояджера-1» в виде плохо различимого пятна. Тем не менее, зонд смог определить, что поверхность спутника лишена крупных кратеров и относительно гладкая, а кольцо Е может состоять из вещества Энцелада. Первые качественные фотографии поверхности Энцелада прислал на Землю «Вояджер-2» в 1981 году, а всемирная слава к спутнику пришла через много лет, когда станция «Кассини» обнаружила водяные гейзеры, бьющие из разломов на южном полюсе. С тех пор Энцелад стал для астробиологов одним из самых интересных мест в Солнечной системе

Снимок Энцелада, сделанный «Вояджером-1» 13 ноября 1980 года. «Хвост» в нижней части спутника представляет собой выбросы гейзеров.NASA / JPL-Caltech / Ted Stryk

Изображение гейзеров в районе южного полюса Энцелада, выбрасывающих в космос шлейфы из водяного пара. Снимок сделан станцией «Кассини» 30 ноября 2010 года, масштаб составляет 390 метров на пиксель. NASA / JPL-Caltech / Space Science Institute

Спицы

На снимках колец Сатурна, сделанных «Вояджером-1», исследователи заметили необычные структуры, названные «спицами», которые регистрировались впоследствии и станцией «Кассини». Это радиальные структуры отличаются длительной устойчивостью, и ни одна из теорий их формирования пока не стала общепринятой. Предполагается, что они состоят из мелких, электростатически заряженных частиц пыли и могут быть сезонным явлением. Кроме того, «Вояджер-1» продемонстрировал ученым, что кольца Сатурна состоят из сотен узеньких колечек.

Спицы в кольцах Сатурна. Снимок сделан «Вояджером-1» с расстояния 720 тысяч километров от плоскости колец 12 ноября 1980 года. NASA / JPL


Спицы в кольце В Сатурна. Снимок сделан станцией «Кассини» 22 сентября 2009 года. Масштаб снимка составляет 71 километр на пиксель. Яркие точки — спутники Прометей и Эпиметей.

NASA / JPL-Caltech / Space Science Institute


Пастухи колец

Благодаря последовательностям снимков, которые делал «Вояджера-1», чтобы понять природу спиц, были открыты малые спутники Сатурна Прометей и Пандора. Они находятся по обе стороны от тонкого кольца F. Зонд смог определить, что они содержат много водяного льда, а также заметил искажения формы кольца F. Планетологи пришли к выводу, что эти спутники могут влиять на форму кольца, не давая частицам покидать его. Затем «Вояджер-1» нашел у внешней части кольца А еще один малый спутник, названный Атласом. Через много лет данные «Кассини» подтвердили, что все три спутника действительно являются «пастухами» своих колец: они поддерживают их форму за счет своего гравитационного поля. Заодно станция помогла ученым узнать, почему Атлас внешне похож на пельмень.

Облака и вихри Сатурна

Несмотря на то, что наблюдаемых деталей в атмосфере Сатурна оказалось меньше, чем на Юпитере, «Вояджер-1» все же смог разглядеть вихри и струйные течения в атмосфере окольцованного гиганта, а также широтные пояса. Зонд обнаружил, что около 7 процентов объема верхних слоев атмосферы Сатурна составляет гелий (по сравнению с 11 процентами в атмосфере Юпитера), что противоречило ожиданиям ученых. Более низкое содержание гелия говорило о возможном механизме его перераспределения в атмосфере и оседании в ее более глубоких слоях. Кроме того, в атмосфере Сатурна были найдены метан, этан, фосфин (да-да, тот самый потенциальный биомаркер Венеры!), а также аммиак и ряд углеводородов. «Вояджер-1» также зарегистрировал полярные сияния на Сатурне. Северное полушарие планеты оказалось темнее южного, а на северном полюсе планеты можно было заметить то, что было отдаленно похоже на вихрь. В дальнейшем «Вояджер-2» подтвердил, что это шторм необычной шестиугольной формы, а «Кассини» рассмотрел его в рекордных деталях.

Красный овал — устойчивое образование в облаках южного полушария Сатурна, сфотографированное «Вояджером-1» 6 ноября 1980 года с расстояния 8,5 миллионов километров от планеты. NASA / JPL


Один из мощнейших штормов на Сатурне, наблюдавшийся станцией «Кассини». Площадь шторма оценивается в 4 миллиарда квадратных километров, что в восемь раз превышает площадь поверхности Земли. Мозаичное изображение шторма составлено из 84 снимков, сделанных в конце февраля 2011 года. NASA / JPL-Caltech / Space Science Institute

Тень Сатурна, падающая на кольца. Снимок сделан «Вояджером-1» с расстояния 5,3 миллиона километров от планеты, через 4 дня после максимального сближения с ней. NASA / JPL

Мозаичное изображение Сатурна, составленное из кадров, сделанных станцией «Кассини» 2 января 2010 года с расстояния 2,3 миллиона километров от планеты.

NASA / JPL-Caltech / Space Science Institute


В заключение хотелось бы немного оживить старые снимки и показать прекрасную анимацию вращения Сатурна и движения его спутников, составленную из кадров, полученных «Вояджером-1».

Источник: https://nplus1.ru/material/2020/11/13/40-years-voyager-1-sat...

Показать полностью 12 1
80

Германия и Япония в 2024 году отправят зонд к астероиду Фаэтон

Аэрокосмические агентства Германии и Японии (DLR и JAXA) договорились в 2024 году отправить к астероиду Фаэтон совместную миссию DESTINY+, главной задачей которой будет исследование космической пыли — как по траектории перелета, так и в окрестностях пункта назначения, говорится в сообщении DLR. Аппарат призван помочь ученым ответить на вопрос: могут ли частицы космической пыли служить переносчиками органических молекул и какую роль они могли сыграть в зарождении жизни на Земле, а также какая часть этой пыли имеет галактическое происхождение.

Япония уже осуществила две миссии по исследованию астероидов: зонд «Хаябуса» в 2010 году доставил ученым 1500 частиц грунта с астероида Итокава, а «Хаябуса-2» сейчас несет к Земле образцы с астероида Рюгу. Новая миссия продолжает программу исследования примордиальных объектов Солнечной системы, астероидов, вещество которых осталось почти неизменным со времен формирования Солнечной системы.

Место назначения аппарата DESTINY+ — астероид Фаэтон. Его орбита похожа на кометную, кроме того, на нем фиксировались выбросы пыли, что позволило астрономам классифицировать его как каменную комету, лишенную летучих веществ. Фаэтон примечателен еще и тем, что он является материнским телом для одного из самых мощных метеорных потоков, известных астрономам — метеорного потока Геминиды, пик активности которого приходится на середину декабря.

Зонд DESTINY+(Demonstration and Experiment of Space Technology for INterplanetary voYage with Phaethon fLyby and dUst Science) по конфигурации во многом напоминает «Хаябусу». Это 400-килограммовый аппарат с солнечными батареями размахом более 12 метров. Как и «Хаябуса-2», он оснащен двигателями ориентации на гидразине, а также ионными двигателями с тягой в 40 миллиньютонов, которые в качестве рабочего тела используют ксенон (его запас — 60 килограмм).

Схема аппарата DESTINY+


Запустить аппарат предполагается в середине 2024 года с помощью японской легкой твердотопливной ракеты-носителя «Эпсилон-С» с космодрома Утиноура. После запуска DESTINY+ в течение нескольких месяцев будет постепенно поднимать орбиту на ионных двигателях, после чего совершит гравитационный маневр у Луны и отправится в перелет к Фаэтону, который займет примерно четыре года. В момент сближения расстояние до Земли составит примерно 1,7 астрономической единицы, аппарат пролетит на дистанции примерно в 500 километров от астероида с относительной скоростью 33 километра в секунду. Примерно через год он вернется к Земле, где сможет совершить еще один гравитационный маневр и отправится к другой цели, которая пока не определена.

Главный научный прибор на борту зонда — немецкий инструмент DDA (DESTINY+ Dust Analyzer), наследник работавшего на борту «Кассини» прибора CDA (Cassini Cosmic Dust Analyzer). Это уловитель космической пыли, который может с высокой точностью определить траекторию пылевых частиц, их массу, скорость — то есть определить их происхождение, например, есть ли среди них частицы, попавшие в Солнечную систему из галактического пространства. Кроме того, устройство сможет исследовать химический состав частиц, то есть фиксировать присутствие органических веществ, а также углерода, фосфора и ряда других элементов.

Прибор DDA в разрезе

Прибор будет работать в течение всего полета. Как ожидается, в окрестностях Фаэтона обязательно должны присутствовать его собственные частицы, то есть прибор сможет исследовать вещество астероида. Кроме того, прибор поможет ученым проверить, может ли космическая пыль, 40 тысяч тонн которой каждый год падает на Землю, служить транспортом для органических веществ, узнать больше о первичном веществе Солнечной системы и метеорных потоках. На борту аппарата также будут работать две камеры — TCAP (Telescopic Camera for Phaethon) и MCAP (Multiband Camera for Phaethon), которые должны будут снимать поверхность Фаэтона и исследовать его состав.

Источник: https://nplus1.ru/news/2020/11/12/dda

Показать полностью 2
106

Europa Clipper определит состав льда на Европе по его свечению

NASA / JPL-Caltech


Планетологи выяснили, что ледяная поверхность спутника Юпитера Европы может светиться под воздействием потоков заряженных частиц из магнитосферы Юпитера. Это поможет межпланетной станции Europa Clipper определить, какие именно соли содержатся во льду спутника. Статья опубликована в журнале Nature Astronomy.

Европа считается одним из интереснейших тел в Солнечной системе с точки зрения астробиологии. Подобное внимание вызвано существующим под ее ледяной корой водным океаном, который не замерзает из-за разогрева недр спутника под действием приливных сил со стороны Юпитера. Одним из доказательств наличия океана являются гейзеры, выбрасывающие водяной пар, которые были зарегистрированы телескопом «Хаббл» и зондом «Галилео». На дне океана Европы могут идти гидротермальные процессы, что дает возможность для возникновения и поддержания жизни.

Интенсивные потоки заряженных частиц (электроны, протоны и ионы) из магнитосферы Юпитера влияют на состав ледяной коры спутника и, возможно, на океан, если существует механизм их транспорта. Для проверки моделей обмена веществом между океаном и поверхность Европы и оценки степени его солености ученым необходимо знать с большой точностью состав коры, в частности содержание в ней катионов.

Группа планетологов во главе с Мурти Гудипати (Murthy Gudipati) из Лаборатории реактивного движения NASA решила в лабораторных условиях выяснить, что происходит при бомбардировке заряженными частицами смеси водяного льда и солей. Для этой цели они использовали установку ICE-HEART (Ice Chamber for Europa's High-Energy Electron and Radiation Environment Testing), где смесь, охлажденная до температуры сто кельвинов, подвергалась облучению пучком электронов с энергиями до 25 мегаэлектронвольт.

В ходе экспериментов наблюдалось свечение льда в оптическом диапазоне, при этом в спектрах были выделены три характерные эмиссионные полосы, а максимум излучения приходился на длину волны 525 нанометров. Добавление в лед хлорида или карбоната натрия подавляло свечение, в то время как сульфат натрия частично восстанавливал интенсивность свечения, а эпсомит (MgSO4•7H2O) усиливал его. Если температура льда увеличивалась до 142 кельвин, то интенсивность эмиссионных полос на длинах волн 330 и 525 нанометров увеличивалась, дальнейшее повышение температуры до 183 кельвин вело к уменьшению интенсивности излучения на этих длинах волн. После прекращения облучения свечение затухало в течение 0,1 секунды.

Свечение водяного льда, охлажденного до температуры сто кельвинов, при облучении потоком электронов с энергией 10,5 МэВ. Свечение исходит из камеры, где находится образец.

Планетологи считают, что результаты работы можно использовать как метод для определения состава льда Европы. Предполагается, что бортовые камеры межпланетной станции Europa Clipper, запуск в космос которой намечен на 2025 год, смогут зарегистрировать радиационное свечение льда на ночной стороне спутника, что позволит определить, где поверхность спутника содержит больше натрия и хлора или магния или сульфатов.

Источник: https://nplus1.ru/news/2020/11/12/dda

Показать полностью 1
638

Зачем нужен магнит, для доставки которого в Дубну обесточили полгорода

В прошлую пятницу многие жилые дома подмосковного города Дубны остались без электричества, воды и отопления. Закрылись некоторые магазины, перестал работать сайт местного Объединенного института ядерных исследований. Дубненский «конец света» не стал сюрпризом для тех, кто обратил внимание на листовки, которые появились в городе накануне. Те предупреждали, что с 10 до 12 часов «будет осуществляться перемещение магнита MPD для проекта NICA от причала на реке Дубна до площадки Лаборатории физики высоких энергий ОИЯИ».

Магнит для детектора MPD в путешествии по Дубне.

Дубненский коллайдер


Коллайдер — это один из типов ускорителей, в котором разогнанные заряженные частицы — электроны, протоны, ионы и так далее — сталкиваются с другими такими же частицами. Коллайдеров в мире много: прямо сейчас работает семь, а самый известный из них — Большой адронный коллайдер — использует в качестве снарядов протоны (на нем проводятся и эксперименты с ионами свинца, но это не основная часть его рабочего времени), и предназначен для поиска новых частиц и «новой физики».


Коллайдер NICA, который уже давно строится в Дубне, будет сталкивать тяжелые ионы и изучать экстремальное состояние вещества — кварк-глюонную плазму. Ее температура и плотность настолько высока, что осколки элементарных частиц, кварки, не «склеиваются» в адроны, частицы привычной для нас материи (глюоны, соответственно, это тот самый «клей», калибровочный бозон, который отвечает за сильное взаимодействие кварков друг с другом).


У кварк-глюонной плазмы, как у любого другого вещества, есть фазовая диаграмма. В случае воды эта диаграмма показывает, как на координатной плоскости «температура — давление» проходят границы между тремя агрегатными состояниями — жидкостью, газом (паром) и твердым состоянием (льдом). На этой плоскости есть критические точки, например, тройная точка воды, где все три ее состояния могут существовать одновременно. Ученые рассчитывают с помощью «Ники» выяснить, как выглядит фазовая диаграмма кварк-глюнной плазмы, и где на ней находятся критические точки.

Фазовая диаграмма адронного вещества. По оси x отложена плотность вещества, по оси y — температура. Источник: nica.jinr.ru


Для того, чтобы получить кварк-глюонную плазму и разобраться в том, что в ней происходит, недостаточно просто столкнуть ионы в коллайдере. Нужно еще собрать данные о результатах этого столкновения. Для этого, помимо ускорителя и источника частиц нужны детекторы в точках столкновения пучков ионов.

Зачем нужен магнит?


В сентябре 120-тонный саркофаг ярко желтого цвета погрузили в порту Генуи на корабль, который отправился в Петербург. 28-го октября его пересадили уже на речной транспорт, и неделю спустя баржа встала на рейд строго на границе между Тверской и Московской областью — на реке Дубна. На следующий день к ней подогнали плавучий кран, тот перегрузил итальянскую посылку с баржи на автомобильный тягач, и тот отправился с берега Дубны в Лабораторию физики высоких энергий. Под эту трехкилометровую поездку пришлось обесточить несколько районов города: саркофагу высотой семь метров надо было проехать под линиями электропередач, которые висели слишком низко — поэтому линию отключили а провода приподняли краном, чтобы пропустить под ними грузовик. Поскольку водоснабжение и вышки сотовой связи тоже нуждаются в электричестве, часть жителей города осталась без воды и связи.


Внутри «коробки», проделавшей этот путь — главный элемент детектора MPD (Multi-Purpose Detector). В центре этого детектора, похожего по форме на гигантскую металлическую бочку, и будут сталкиваться пучки тяжелых ионов. Детектор будет определять массу и скорость всех получившихся при столкновении осколков и новых частиц. А физики, анализируя эти данные, будут реконструировать физические процессы, возникающие при столкновениях. Точно так же данные о столкновениях собирают детекторы Большого адронного коллайдера CMS и ATLAS, которые почти десять лет назад засекли следы рождения бозона Хиггса, существование которого было предсказано за полвека до того.


«Если речь идет о столкновениях ядер [атомов] золота с прицельным параметром (максимальным отклонением от центра), скажем, пять фемтометров, то при каждом столкновении будет рождаться около двух тысяч заряженных частиц. Частота таких столкновений при проектной светимости коллайдера будет около 7 тысяч в секунду, то есть 7 килогерц. Детектор должен каждую из таких частиц зафиксировать, то есть определить, что это за частица, измерить ее траекторию», — объясняет Кекелидзе.

Сборка детектора MPD


Роль главного «чувствительного элемента» в MPD играет камера TPC (Time Projection Chamber — «времяпроекционная камера»). Это тоже бочка — диаметром 2,6 метра и длиной 3,4 метра, которую посередине пересекает «перепонка»-катод, подключенная к источнику высокого напряжения. «Дно» и «крышка» бочки — это аноды. Пространство в бочке заполнено инертным газом (90 процентов аргона и 10 процентов метана). Когда заряженная частица пролетает сквозь него, она ионизирует его и получившиеся электроны начинают дрейфовать к анодам, где их встречают позиционные детекторы, которые определяют не только точку прихода этих электронов, но и время их прихода.




Схема TPC-камеры


«Точка определяет позицию X-Y, а время — если знать скорость дрейфа электронов с учетом напряжения — определяется расстоянием вдоль оси этого цилиндра», — говорит Кекелидзе.


Помимо TPC в детекторе есть еще несколько чувствительных элементов: времяпролетная камера (TOF), которая восстанавливает траекторию полета, калориметры, осевые детекторы — все они призваны собрать достаточно данных, чтобы восстановить трехмерную картину разлета «осколков» с помощью дубненского суперкомпьютера «Говорун».


Однако вся эта машинерия будет бесполезной, если не будет выполнено главное условие: в камере детектора должно было постоянное магнитное поле определенной конфигурации. Магнитное поле играет роль той «руководящей и направляющей силы», благодаря которой заряженные частицы летят не в случайных направлениях, а по траекториям, которые определяются их скоростью и массой.

TPC-камера в процессе сборки


В однородном магнитном поле заряженные частицы летят по криволинейной траектории, поворачивая поперек силовых линий. На этом эффекте построен принцип действия масс-спектрометров: чем круче поворачивает частица в магнитном поле, тем меньше ее масса.


«По радиусу траектории и величине магнитного поля можно однозначно определить импульс частицы. Если вы знаете импульс, вы можете измерить ее массу. Если у вас будет время пролета, оно даст вам скорость. Зная скорость и импульс, вы можете посчитать массу и восстановить всю кинематику миллионов рожденных при столкновении частиц», — говорит Кекелидзе.


Чтобы эта восстановленная картина была достаточно точной, нужно, чтобы магнитное поле было очень, очень однородным. «Перед разработчиками магнита была поставлена задача, чтобы во всем объеме TPC-камеры — 2,6 метра на 3,4 метра — поле было идеально, чтобы силовые линии были точно параллельны оси. Мы потребовали такой однородности, которой еще ни в одном эксперименте я не помню», — говорит ученый. Магнитное поле MPD не слишком велико — 0,5 теслы, максимум — 0,65 теслы. Похожий соленоид детектора CMS рассчитан на поле 4 теслы. Однако здесь самое важное не «сила» магнита, а его «точность».

Конфигурация магнитного поля в детекторе MPD


Отношение поперечной составляющей поля к осевой должно быть не более, чем 3*10⁻⁴ Любое отклонение будет означать, что вся установка будет бесполезна для ученых. Если поле будет неоднородным, у вас будет ошибка измерений параметров, а значит научный результат вы получить не сможете.

Как строили магнит


Итальянская компания ASG Superconductors специализируется на производстве мощных сверхпроводящих магнитов, именно здесь делали значительную часть магнитов как для Большого адронного коллайдера и его детекторов CMS и ATLAS, так и для его предшественника — электрон-позитронного коллайдера LEP.


Магнит для детектора MPD устроен примерно так же, как магнит детектора CMS. Это два вложенных друг в друга цилиндра из нержавеющей стали диаметром 5,4 метра и 4,6 метра. Торцы закрыты фланцами. В пространстве между ними — катушка с намотанным на нее сверхпроводящим кабелем общей длиной 27 километров и массой 6,4 тонны, и трубки системы охлаждения. В пространстве между цилиндрами должен поддерживаться вакуум (10−5 торр — примерно одна десятитысячная доля миллиметра ртутного столба).

Несмотря на сходство с магнитами для Большого адронного коллайдера, магнит для MPD — штучное изделие. По словам Кекелидзе, только для того, чтобы создать инструменты и оснастку для постройки, понадобилось два года. Пришлось повозиться и со сверхпроводящим кабелем. Первоначально планировалось заказать его компании из Бразилии, но кабель был забракован, потом из Америки — тоже не пошел. В конце концов японский вариант подошел. Только работа с кабелем заняла полтора года.


Сверхпроводящий кабель сделан из собственно сверхпроводящего провода (сплав ниобия и титана), и матрицы из сверхчистого алюминия, в которую он внедрен. Для того, чтобы намотать получившийся кабель на катушку, потребовалась построить намоточную машину высотой с трехэтажный дом, — сложное инженерное сооружение, с электромоторами, точной подачей, с контролем намотки. После намотки катушку залили густой жидкостью на базе эпоксидной смолы и запекли в специально построенной печи. Нельзя было допустить, чтобы даже один пузырек воздуха остался в этой смоле. Пришлось бы все делать заново.

Соленоид с системой труб системы охлаждения поместили в вакуумный криостат и примерно год испытывали и проверяли. Затем магнит уложили в специально построенный семиметровый саркофаг, оснащенный датчиками ускорений, и 18 сентября отправили морем из Генуи в Петербург. Всего постройка магнита заняла почти пять лет — переговоры российских физиков с подрядчиками начались еще в 2014 году, а формальный контракт подписан в 2016 году.


Что дальше?


Пока саркофаг будет стоять на специальных опорах в экспериментальном зале детектора MPD. Вскроют его только после того, как в Дубну приедут итальянские специалисты. Те должны будут, в частности, проверить датчики ускорений: нужно убедиться, что в процессе перевозки магнит нигде не «приложили». «Надеюсь, что пандемия не задержит их приезд», — говорит Кекелидзе.


После того, как саркофаг будет вскрыт, криостат установят в железное «ярмо» детектора. Оно собрано пока что лишь наполовину и стоит в экспериментальном зале на рельсах, в стороне от линии, по которой в будущем будет лететь поток тяжелых ионов. Когда коллайдер начнет работать, детектор нужно будет просто подкатить к этой линии.

Сборка ярма детектора MPD

Сложность заключается в том, что точность размещения криостата, точность самого ярма должна быть очень высокой. Несмотря на большие размеры и вес, речь идет о «сотках», то есть точность позиционирования составляет 300-400 микрон. От этого зависит качество магнитного поля.

Потом начнется процедура подключения. «Туда надо вести криогенные линии с гелием, с азотом, коммуникации, и все это надо подключить к большой криогенно-компрессорной станции, которая сейчас еще строится. Это крупнейшая в России криогенно-компрессорная станция по сжижению жидкого гелия наработке жидкого азота. Туда подключаются все силовые линии, источники питания, коммуникации. Мы надеемся, что все это будет закончено где-то к весне», — говорит ученый.

Криостат с магнитом после установки в ярмо детектора MPD

Когда все линии будут подключены, специалисты начнут тестировать магнит, чтобы убедиться в устойчивости магнитного поля, что все сооружение в целом выдерживает нагрузки. Начнутся измерения магнитного поля. Для этого в ЦЕРНе специально по заказу ОИЯИ изготовили измеритель магнитного поля. Похожий измеритель на базе датчиков Холла использовался для измерения поля на детекторах Большого адронного коллайдера.

По словам Кекелидзе, специально для измерений в Дубну приедут специалисты ЦЕРНа. «Часть из этих ребят из ЦЕРНа уже вышла на пенсию в этом году, мы должны будем извлечь их из пенсионного отдыха во Франции и Швейцарии. Но они сами переживают за нас и готовы помочь, приехать. Месяц-два будем измерять магнитное поле. Когда магнитное поле будет измерено, только тогда закончится наш контракт с итальянцами, потому что они отвечают за параметры магнитного поля, которые там должны быть достигнуты».

Углепластиковая ферма для детектора MPD, желтым показаны гнезда для калориметров

Только после этого сборка детектора продолжится: внутрь криостата будет установлена углепластиковая ферма, которую создают в подмосковном ЦНИИ специального машиностроения. В эту раму будут помещены электронные калориметры, TPC-камера и другие «чувствительные элементы» детектора.

«Мы надеемся, что сборка закончится в середине 2022 года, — говорит Кекелидзе. — Тогда начнется калибровка и тесты, подключится весь компьютинг и онлайн-системы, все кабели, коммуникации. Начнем испытывать это все на космиках (частицах космических лучей) и проводить калибровки с тем, чтобы к концу 2022 года, когда появятся первые пучки, закатить на место и начать набор данных. Такой план».

Источник: https://nplus1.ru/material/2020/11/09/coldmass

Показать полностью 9
142

«Хаббл» начал свою крупнейшую наблюдательную программу

«Хаббл» начал свою крупнейшую наблюдательную программу

NASA, ESA, J. Roman-Duval (STScI), ULLYSES program, and R. Gendler

Цели для наблюдений телескопа в рамках программы ULLYSES в галактике Большое Магелланово Облако. Желтыми кружками отмечены звезды из архивных данных, синим — из новых данных.

Космический телескоп «Хаббл» начал новую наблюдательную программу ULLYSES, которая станет крупнейшей для обсерватории с точки зрения объема наблюдательного времени. В течение трех лет телескоп будет изучать более 300 молодых звезд в Млечном Пути и близких галактиках, что позволит разобраться в процессах их формирования и эволюции, сообщается на сайте NASA.

«Хаббл» работает на околоземной орбите уже более тридцати лет и считается наиболее известной и результативной космической обсерваторией. Общий объем научных данных, переданных на Землю телескопом за все время функционирования, оценивается в десятки терабайт, которые позволили астрономам сделать огромное количество открытий в области астрофизики, планетологии и космологии. В частности, наблюдения, проведенные телескопом, сыграли ключевую роль в открытии ускоренного расширения Вселенной. Ожидается, что в следующем году будет запущена обсерватория «Джеймс Уэбб», которая продолжит вести наблюдения, начатые «Хабблом».

5 ноября 2020 года Институт исследований космоса с помощью космического телескопа в Балтиморе объявил о старте новой научной программы «Хаббла», получившей название ULLYSES (UV Legacy Library of Young Stars as Essential Standards), которая станет крупнейшей для обсерватории с точки зрения объема времени, выделенного на наблюдения. В рамках программы телескоп в течение трех лет будет изучать в ультрафиолетовом и оптическом диапазонах длин волн более 300 молодых звезд разной массы, находящихся в десяти областях звездообразования в Млечном Пути и в четырех близлежащих карликовых галактиках, в том числе в Магеллановых Облаках. В дальнейшем из накопленных данных сформируют общедоступный каталог, который можно сопоставлять с данными наблюдений в других диапазонах.

Цель ULLYSES заключается в расширении нашего понимания процессов рождения и эволюции звезд в течение первых 10 миллионов лет их жизни. В частности, астрономы хотят узнать, как именно ультрафиолетовое излучение от звезд влияет на состав и свойства околозвездного диска, в котором образуются планеты, как формируются джеты у молодых звезд и как звездные ветра влияют на локальный темп звездообразования в туманностях.

Источник: https://nplus1.ru/news/2020/11/07/hubble-ullyses

Показать полностью 1
26

Планетарная туманность Abell 39

Abell 39 - планетарная туманность с низкой поверхностной яркостью в созвездии Геркулеса . Это 39-я запись в Каталоге планетарных туманностей Абелла 1966 года Джорджа Абелла (и 27-я в его каталоге 1955 года) из 86 старых планетарных туманностей, которые Абель или Альберт Джордж Уилсон обнаружили до августа 1955 года в рамках обзора неба Паломарской обсерватории Национального географического общества. По оценкам, она находится на расстоянии около 6800 световых лет от Земли и 4600 световых лет над галактической плоскостью . Это почти идеально сферическая форма.

Сам факт существования одной из самых больших сфер в нашей Галактике является источником ценной информации о химическом составе звезд.

Планетарная туманность Эйбелл 39, поперечник которой сейчас составляет шесть световых лет, представляет собой внешние слои атмосферы звезды солнечного типа, сброшенные ею 5 - 6 тысяч лет назад. Почти идеальная сферическая форма Эйбелл 39 позволила астрономам с высокой точностью оценить соотношение в ней поглощающего и излучающего вещества. Согласно данным наблюдений, содержание кислорода в Эйбелл 39 примерно в два раза меньше солнечного -- весьма интересный, хотя и не удивительный результат, подтверждающий различия химического состава двух звезд.

Причина нецентрального положения центральной звезды туманности (она смещена на 0.1 световых года), еще не установлена.

Эйбелл отметил, что «новые» планетарные туманности открытые им, скорее всего, довольно старые, поскольку представляют класс объектов, имеющих низкую поверхностную яркость и большой угловой диаметр. «Так как планетарные туманности уменьшают поверхностную яркость по мере расширения вокруг родительских звезд», — писал он, — «эти объекты, вероятно, находятся на продвинутой стадии своей эволюции в качестве планетарных туманностей».

Показать полностью
102

Атмосфера Венеры

5 фактов о температуре и давлении на поверхности второй внутренней планеты Солнечной системы


Земля и Венера — это планеты-близнецы, которые образовались в одной части Солнечной системы, получают почти одинаковое количество солнечной энергии и имеют почти одинаковые размеры. Однако оказалось, что они совершенно разные с точки зрения климатических условий. Главный вопрос, который сегодня интересует ученых: почему две планеты, которые еще 4,5 миллиарда лет назад были близнецами, стали впоследствии совершенно разными объектами?

Атмосфера Венеры


1. Температура верхних слоев атмосферы


На Земле существуют вполне комфортные условия, в то время как на Венере очень высокая температура и высокое давление на поверхности. Именно поэтому исследованиям Венеры уделялось огромное внимание как в советской космической программе, так и в программе Соединенных Штатов. С 2006 года около Венеры вращается космический аппарат, созданный Европейским космическим агентством, который детально исследует атмосферу планеты и ее плазменное окружение.


Температурная структура атмосферы Венеры во многом похожа на ту, что мы видим на других планетах, в частности на Земле. Верхняя атмосфера (выше 100 километров) называется «термосфера». Процессы молекулярной диффузии и радиационного обмена на этих высотах приводят к установлению профиля температуры, который растет с увеличением высоты. Примечательно то, что в дневные и ночные часы температура достигает достаточно низких значений — всего около 200 градусов Кельвина, поэтому данная часть атмосферы была названа криосферой. На Земле на этих высотах температура порядка тысячи градусов Кельвина. Основной причиной является то, что атмосфера Венеры состоит из двуокиси углерода, который является очень активным радиационно-охлаждающим агентом, способствующим понижению температуры.

2. Облачный слой Венеры


Ниже 100 км находится мезосфера, или средняя атмосфера, в основании которой начинается облачный слой Венеры. Здесь температура практически постоянна, как в мезосфере и стратосфере Земли. Ниже тропопаузы, которая находится у верхней границы облаков, расположена тропосфера, где температура регулируется в основном конвективными процессами. Из-за того, что атмосфера Венеры очень глубокая, температура у поверхности возрастает до 475 градусов Цельсия благодаря действию мощного парникового эффекта. Облачный слой состоит из частичек серной кислоты, и это тоже одно из отличий от земных облаков, которые состоят из воды. Серная кислота образуется в так называемой фотохимической «лаборатории» у верхней границы облаков из двуокиси серы, кислорода и воды под воздействием ультрафиолетового излучения Солнца.

Основным компонентом атмосферы является двуокись углерода, и давление у поверхности достигает практически 90 атмосфер. На Земле такие условия достигаются в океане на глубине около одного километра. Из-за такой плотной двуокиси углерода появляется сильный парниковый эффект. Вторым компонентом атмосферы является азот. В атмосфере также присутствует небольшое количество водяного пара, двуокиси серы и окиси углерода, которые играют важную роль в химических процессах. Среднее количество воды на Земле — это почти трехкилометровый слой океанов, в то время как если собрать всю воду на поверхности Венеры, то получится «океан» глубиной всего три сантиметра.

3. Динамика атмосферы Венеры


Следующая интересная особенность Венеры — это динамика ее атмосферы. Она очень интересная и экзотическая, вся атмосфера вращается с огромной скоростью вокруг планеты. У верхней границы облаков скорость ветра достигает 120–150 метров в секунду. На полюсах Венеры существуют огромные вихри, очень похожие на наши земные циклоны, но гораздо больших размеров. Эта структура циркуляции связана с температурными полями в мезосфере Венеры, но до сих пор не совсем понятно, какие механизмы ее поддерживают.


Венера, как и все планеты, теряет свою газовую оболочку. Особенность Венеры состоит в том, что эта планета не имеет собственного магнитного поля, и поэтому солнечная плазма или солнечный ветер напрямую взаимодействуют с ионосферой планеты, что приводит к потере газов. Все эти процессы проистекают не в джинсовском режиме, когда горячие или энергичные молекулы улетают просто из-за того, что они более энергичны и у них большие скорости, а в режиме плазменных взаимодействий. Такие ионы и атомы, как водород, кислород и гелий, покидают атмосферу в достаточно большом количестве — примерно 1025 молекул в секунду.


При сравнении потерь газов земной атмосферой и венерианской был обнаружен очень интересный факт. Известно, что Земля обладает сильным магнитным полем, и раньше считалось, что это магнитное поле как бы предохраняет планету от потери газов. Измерения на космических аппаратах показали, что Земля теряет на порядок больше вещества, нежели незащищенная Венера. Это сравнение дало повод задуматься, все ли знаем о том, как функционирует взаимодействие планет с солнечным ветром.


4. Парниковый эффект


Парниковый эффект — это «визитная карточка» Венеры. Он определяется как разница температуры на поверхности планеты с атмосферой и той температуры, которую имела бы эта планета, не имея атмосферы. То есть это влияние газов, аэрозолей, облаков, которые находятся в атмосфере. На Венере этот парниковый эффект составляет около 500 градусов. Это огромная величина, и она создается за счет того, что атмосфера очень плотная и двуокись углерода имеет огромное количество очень сильных полос поглощения в инфракрасной области, которые препятствуют охлаждению планеты через излучение инфракрасного диапазона спектра. Именно поэтому поверхность планеты разогревается практически до «красного каления».


На Земле парниковый эффект тоже работает. Он составляет всего около 30–40 градусов. Сейчас мы очень заботимся о том, чтобы не увеличивать количество газов в нашей атмосфере из-за боязни глобального потепления, но в то же время надо понимать, что именно эти 30–40 градусов создают нам комфортные условия для жизни. Если бы мы убрали парниковый эффект, то всюду, включая, например, Африку, был бы арктический климат, все бы замерзло.


5. Перспективы исследования атмосферы Венеры


Несмотря на то, что мы имеем огромное количество информации о Венере, которая была получена усилиями всего мирового сообщества, многих экспедиций космических аппаратов (больше 25), мы все же не можем сказать, что до конца понимаем нашу соседку. Очень многие процессы как в динамике атмосферы, так в химии и геологии планеты по-прежнему остаются для нас загадкой. Думая о будущем, мы готовим новые проекты, новые идеи о том, какими могут быть космические аппараты, посланные к этой планете, включая посадочные зонды и баллоны. Они могли бы дать исключительно интересные и полезные данные о глубинных слоях, то, чего не может дать большинство спутников, так как они летают на орбите, и им сложно заглянуть во все уголки подоблачной атмосферы. И поэтому, несмотря на огромное количество данных, мы все-таки ожидаем новых миссий, новых проектов и новых полетов к этой планете.

Показать полностью 1
182

Пять открытий телескопа Spitzer

Космический телескоп Spitzer завершил свою миссию после более 16 лет исследований инфракрасного излучения Вселенной.



Новорожденные звезды под покрывалом космической пыли

Новорожденные звезды выглядывают из-под своей облачной колыбели на четком изображении туманности ρ Змееносца (ρ Oph), полученном телескопом Spitzer в 2008 году. Эта область, находящаяся в 407 световых годах от Земли, является одним из ближайших к нашей Солнечной системе центров звездообразования. Она названа так, поскольку лежит рядом со звездой ρ Змееносца (ρ Ophiuchi) в созвездии Змееносец, у границы с созвездием Скорпион.

В туманности ρ Oph особенно выделяется большое главное облако, состоящее из молекулярного водорода — ключевой молекулы, позволяющей новым звездам образовываться из холодного космического газа. Исследователям удалось найти более 300 молодых звездных объектов в пределах этого центрального облака. Их средний возраст составляет всего 300 тысяч лет, что очень мало по сравнению с некоторыми из старейших звезд Вселенной, которым более 12 миллиардов лет. Из-за чрезвычайной молодости обнаруженных звезд мы можем наблюдать за ними на очень ранних стадиях звездной эволюции.

Цвета на изображении отражают относительную температуру и эволюционный статус различных звезд. Самые молодые звезды окружены газовыми дисками, которые отображаются красным цветом. В них и формируются молодые звезды и будущие планетные системы. Некоторые из дисков окружены собственными компактными туманностями. Более взрослые звезды, уже сбросившие с себя часть протозвездного вещества, на изображении показаны синим цветом.

Протоскопление COSMOS-AzTEC3

В 2011 году с помощью телескопа Spitzer астрономы обнаружили очень далекую растущую группу галактик, названную COSMOS-AzTEC3. Свет от этих галактик путешествовал до Земли более 12 миллиардов лет. Астрономы считают, что такие объекты, называемые протоскоплениями, в конечном счете выросли в современные скопления галактик, которые связаны взаимной гравитацией.

Как только ученые обнаружили это скопление галактик, они с помощью Spitzer измерили его полную массу. На этом расстоянии оптический свет от звезд смещается за счет эффекта Доплера до инфракрасных длин волн, которые может наблюдать Spitzer. Общая масса галактик в группе оказалась как минимум 400 миллиардов Солнц — достаточно, чтобы понять, что астрономы действительно обнаружили массивное протоскопление. Наблюдения Spitzer также помогли подтвердить, что массивная галактика в центре скопления формирует звезды с впечатляющей скоростью.

Большинство галактик в нашей Вселенной связаны вместе в скопления, которые усеивают космический ландшафт, как города, где многочисленные звездные системы сосредоточены вокруг одной старой, огромной галактики, содержащей массивную черную дыру. Астрономы полагали, что примитивные версии этих скоплений, все еще формирующихся и собирающихся вместе, должны были существовать в ранней Вселенной, и свет от COSMOS-AzTEC3 помог подтвердить эту гипотезу.

Протоскопление COSMOS-AzTEC3 было самым удаленным из когда-либо обнаруженных к тому моменту. Наблюдая его с помощью крупнейших наземных и космических телескопов разных диапазонов — от радиодиапазона до рентгеновского, — астрономы обнаружили, что COSMOS-AzTEC3 буквально гудит от вспышек звездообразования и огромной черной дыры в его центре.

Самое большое кольцо Сатурна

В 2009 году с помощью телескопа Spitzer обнаружили новый пояс частиц, который обращается вокруг Сатурна гораздо дальше известных его колец. Основная часть обнаруженного пояса начинается примерно в 6 миллионах километров от планеты и простирается еще на 12 миллионов километров. Кольцо шире примерно в 170 раз диаметра Сатурна и в 20 раз — диаметра планеты.

Один из самых удаленных спутников Сатурна, Феба, движется внутри кольца и, вероятно, является источником его вещества. Относительно небольшое количество частиц в кольце не отражает достаточно видимого света, особенно на орбите Сатурна, где солнечный свет слаб, поэтому пояс так долго оставался скрытым. Инфракрасные датчики Spitzer смогли различить излучение прохладной пыли, температура которой всего около 80 кельвинов.

Фотография Япета, полученная космическим аппаратом Cassini

Это открытие может помочь решить извечную загадку одного из спутников Сатурна. Япет имеет странный вид: одна его сторона яркая, а другая темная. Астроном Джованни Кассини впервые заметил этот спутник Сатурна в 1671 году, а годы спустя выяснил, что у него есть темная сторона, теперь названная Cassini Regio в его честь. Открытие дальнего пояса системы Сатурна могло бы объяснить, как появился Cassini Regio. Кольцо обращается в том же направлении, что и Феба, тогда как Япет, другие кольца и большинство спутников Сатурна движутся в противоположном направлении. По словам ученых, часть темного пылевого вещества из внешнего кольца движется навстречу Япету, ударяясь в ледяной спутник, как жуки о стекло, и покрывая темным слоем его переднее полушарие.

Самая удаленная планета

В 2015 году космический телескоп NASA Spitzer объединился с польским телескопом OGLE, находящимся на Земле, чтобы найти удаленную на 13 тысяч световых лет газовую планету — одну из самых отдаленных известных планет.

Spitzer с его уникальным положением в космосе был использован для решения задачи о том, как планеты распределены в объеме нашей дисковой спиральной галактики Млечный Путь: являются более распространенными планеты в центральной выпуклости Галактики или в ее диске?

Польский телескоп OGLE в обсерватории Лас-Кампанас в Чили сканирует небо для поиска планет с помощью метода, называемого микролинзированием. Этот подход основан на явлении гравитационного линзирования, при котором свет изгибается и усиливается под действием силы тяжести. Когда звезда проходит перед более удаленной звездой, гравитация ближней звезды может искривлять и усиливать свет далекой звезды. Если планета обращается вокруг ближней звезды, то гравитация планеты может оставить свой отпечаток на усиленном свете.

Астрономы используют эти вспышки света, чтобы найти и изучить планеты, удаленные на десятки тысяч световых лет в центральной части нашей Галактики, где звезды теснее расположены на небе. Наше Солнце находится на окраине Галактики, примерно в ⅔ пути от центра. Метод микролинзирования в целом дал к настоящему времени около 30 открытий планет, причем самая дальняя из них находится на расстоянии около 25 000 световых лет.

Spitzer благодаря своей удаленной орбите в настоящее время находится примерно в 207 миллионах километров от Земли. Он дальше от Земли, чем Земля от Солнца. Из-за большого расстояния между телескопом на Земле и телескопом Spitzer одно и то же событие микролинзирования они видят не одновременно, а с небольшой разницей во времени. Это позволяет своеобразным методом параллакса определять расстояние до наблюдаемого объекта. Такой вариант этого метода использован впервые и позволил измерить очень большое расстояние.

Большие ранние галактики

Spitzer внес вклад в изучение самых ранних из когда-либо изученных галактик. Свет от них идет к Земле миллиарды лет, и ученые видят, какими эти галактики были в далеком прошлом. Самые отдаленные, которые наблюдал Spitzer, излучили свой свет около 13,4 миллиарда лет назад — менее чем через 400 миллионов лет после рождения Вселенной.

Одним из самых удивительных открытий в этой области было обнаружение больших ранних галактик. Две из крупнейших обсерваторий NASA — космические телескопы Spitzer и Hubble — объединились, чтобы «взвесить» звезды в нескольких отдаленных галактиках. Одна из них, названная HUDF-JD2, кажется необычайно массивной и зрелой для своего места в молодой Вселенной. Считалось, что современные крупные галактики, такие как Млечный Путь, образовались в результате постепенного слияния меньших. Но открытие HUDF-JD2 показало, что массивные звездные системы существовали уже в начале истории Вселенной.

Галактика HUDF-JD2 была обнаружена на инфракрасных снимках телескопа Hubble на небольшом клочке неба, называемом сверхглубоким полем Хаббла (Hubble Ultra Deep Field). Обнаружившие ее ученые ожидали, что она будет молодой и маленькой, как и другие известные галактики на подобных расстояниях. Большим сюрпризом для астрономов стало то, насколько ярче выглядит эта галактика на длинноволновых инфракрасных снимках космического телескопа Spitzer, который обычно чувствителен к свету более старых, более красных звезд, из которых в основном состоит галактика. Поэтому инфракрасная яркость галактики HUDF-JD2 говорит о том, насколько она массивна.

Показать полностью 6
Отличная работа, все прочитано!