Горячее
Лучшее
Свежее
Подписки
Сообщества
Блоги
Эксперты
Войти
Забыли пароль?
или продолжите с
Создать аккаунт
Я хочу получать рассылки с лучшими постами за неделю
или
Восстановление пароля
Восстановление пароля
Получить код в Telegram
Войти с Яндекс ID Войти через VK ID
Создавая аккаунт, я соглашаюсь с правилами Пикабу и даю согласие на обработку персональных данных.
ПромокодыРаботаКурсыРекламаИгрыПополнение Steam
Пикабу Игры +1000 бесплатных онлайн игр Захватывающая аркада-лабиринт по мотивам культовой игры восьмидесятых. Управляйте желтым человечком, ешьте кексы и постарайтесь не попадаться на глаза призракам.

Пикман

Аркады, На ловкость, 2D

Играть

Топ прошлой недели

  • AlexKud AlexKud 38 постов
  • Animalrescueed Animalrescueed 36 постов
  • Oskanov Oskanov 7 постов
Посмотреть весь топ

Лучшие посты недели

Рассылка Пикабу: отправляем самые рейтинговые материалы за 7 дней 🔥

Нажимая кнопку «Подписаться на рассылку», я соглашаюсь с Правилами Пикабу и даю согласие на обработку персональных данных.

Спасибо, что подписались!
Пожалуйста, проверьте почту 😊

Помощь Кодекс Пикабу Команда Пикабу Моб. приложение
Правила соцсети О рекомендациях О компании
Промокоды Биг Гик Промокоды Lamoda Промокоды МВидео Промокоды Яндекс Директ Промокоды Отелло Промокоды Aroma Butik Промокоды Яндекс Путешествия Постила Футбол сегодня
0 просмотренных постов скрыто
6
wowa.strah
2 дня назад

Новая видеокарта⁠⁠

Компания Nvidia анонсировала новую видеокарту для Искуственного Интелекта Nvidia GB300: 288 ГБ памяти, PCIe 6.0, 1400 Вт — монстр для ИИ-обработки.

NVIDIA GB300 представляет собой новое поколение высокопроизводительных ускорителей специально разработанных для задач искусственного интеллекта и сложных вычислительных нагрузок. Этот чип является частью линейки Blackwell Ultra и существенно превосходит предыдущие поколения по ключевым параметрам.

GB300 демонстрирует прирост производительности на 50% в вычислениях FP4 по сравнению с GB200. Это достигнуто за счет:

· Увеличения количества вычислительных ядер и их оптимизации для задач ИИ.
· Улучшенных Tensor Cores, которые обеспечивают ускорение attention-слоев в два раза и на 50% больше операций с плавающей запятой в секунду (FLOPS) по сравнению с GPU NVIDIA Blackwell.

👉https://t.me/tuzemunnews

[моё] IT Nvidia Текст
3
20
user11047070
user11047070
22 дня назад
Сообщество Ремонтёров

Как (не) нужно обслуживать видеокарту: поучительная история об RTX 3060⁠⁠

Привет, Пикабу! Сегодня ко мне на рабочий стол попал весьма поучительный экземпляр – видеокарта RTX 3060 от KFA2. История её появления у меня началась с тревожного звоночка от дружественного сервисного центра: клиент решил самостоятельно обслужить свою видеокарту, и спустя некоторое время она начала выдавать артефакты. Ну что ж, вводные данные есть, приступаем к вскрытию!

Как (не) нужно обслуживать видеокарту: поучительная история об RTX 3060 IT, Видеокарта, Пикабу, Ремонт, Компьютерная помощь, Техника, Железо, Rtx 3060, Nvidia, Nvidia RTX, Компьютер, Компьютерное железо, Игровой ПК, Длиннопост

Термопаста вместо термопрокладок: всему своё место

Первое, что бросилось в глаза, повергло меня в лёгкий шок: вместо заводских термопрокладок была нанесена… термопаста. И не просто нанесена, а буквально распределена по всей плате, включая пространство под всеми чипами! Видимо, владелец решил, что чем больше, тем лучше.

Как (не) нужно обслуживать видеокарту: поучительная история об RTX 3060 IT, Видеокарта, Пикабу, Ремонт, Компьютерная помощь, Техника, Железо, Rtx 3060, Nvidia, Nvidia RTX, Компьютер, Компьютерное железо, Игровой ПК, Длиннопост

Я решил долго не церемониться и начал ремонт с тщательной очистки платы от следов этого "термоинтерфейса". В первую очередь аккуратно поднял все чипы памяти, очистил посадочные места и установил их обратно.

Как (не) нужно обслуживать видеокарту: поучительная история об RTX 3060 IT, Видеокарта, Пикабу, Ремонт, Компьютерная помощь, Техника, Железо, Rtx 3060, Nvidia, Nvidia RTX, Компьютер, Компьютерное железо, Игровой ПК, Длиннопост
Как (не) нужно обслуживать видеокарту: поучительная история об RTX 3060 IT, Видеокарта, Пикабу, Ремонт, Компьютерная помощь, Техника, Железо, Rtx 3060, Nvidia, Nvidia RTX, Компьютер, Компьютерное железо, Игровой ПК, Длиннопост
Как (не) нужно обслуживать видеокарту: поучительная история об RTX 3060 IT, Видеокарта, Пикабу, Ремонт, Компьютерная помощь, Техника, Железо, Rtx 3060, Nvidia, Nvidia RTX, Компьютер, Компьютерное железо, Игровой ПК, Длиннопост

Диагностика: ошибка за ошибкой

К сожалению, после моей ювелирной работы артефакты никуда не исчезли. При попытке установить драйверы на эту многострадальную видеокарту система выдавала ошибку с кодом 103. Что ж, пришлось загружаться с внешнего накопителя и запускать тест mods/mats. Как и ожидалось, видеокарта его не прошла. Открыв отчёт, я увидел ошибки по каналам A1 и B0.

Как (не) нужно обслуживать видеокарту: поучительная история об RTX 3060 IT, Видеокарта, Пикабу, Ремонт, Компьютерная помощь, Техника, Железо, Rtx 3060, Nvidia, Nvidia RTX, Компьютер, Компьютерное железо, Игровой ПК, Длиннопост

В диагностических целях я попробовал поменять чипы памяти местами. Увы, это не принесло желаемого результата – ошибки остались ровно те же самые. И вот тут стало ясно: эксперименты клиента с термоинтерфейсом привели к тому, что его видеокарта стала полностью неремонтопригодной.

Как (не) нужно обслуживать видеокарту: поучительная история об RTX 3060 IT, Видеокарта, Пикабу, Ремонт, Компьютерная помощь, Техника, Железо, Rtx 3060, Nvidia, Nvidia RTX, Компьютер, Компьютерное железо, Игровой ПК, Длиннопост

Печальный итог

Пришлось собрать видеокарту обратно и выдать её без ремонта. Эта история – отличное напоминание о том, как важно доверять обслуживание сложной электроники профессионалам или хотя бы тщательно изучать инструкции перед тем, как браться за дело самостоятельно. Неправильное обслуживание может привести к гораздо более серьёзным проблемам, чем те, которые вы пытаетесь решить!

А у вас были подобные истории с самостоятельным ремонтом техники? Делитесь в комментариях

Показать полностью 7
[моё] IT Видеокарта Пикабу Ремонт Компьютерная помощь Техника Железо Rtx 3060 Nvidia Nvidia RTX Компьютер Компьютерное железо Игровой ПК Длиннопост
54
11
TechSavvyZone
TechSavvyZone
3 месяца назад

Технологии: "NVIDIA" доминант на рынке GPU для AI⁠⁠

Технологии: "NVIDIA" доминант на рынке GPU для AI Инженер, Компьютерное железо, IT, Компьютер, Технологии, Искусственный интеллект, Программа, Nvidia, Чип, Электроника, Длиннопост, Видеокарта

Компания NVIDIA является крупнейшим в мире производителем графических процессоров. Ее разработки на первом месте не только в игровых видеокартах, но и в решениях для различных вычислений. В том числе — в задачах искусственного интеллекта. В чем преимущества чипов NVIDIA, и почему конкурентам сложно их догнать в этом направлении?

Зарождение вычислений на ГП

GPU, или «графический процессор». Впервые это название было использовано в 1999 году для чипа видеокарты GeForce 256, в состав которого вошел блок аппаратной трансформации и освещения. В играх он выполнял эти нехитрые расчеты, освобождая от них центральный процессор ПК.

Но это было только начало. В 2001 году в графических процессорах появились куда более сложные компоненты — шейдерные блоки. Вначале степень их программируемости была ограниченной. Но уже через пару поколений видеокарт шейдеры получили поддержку графических вычислений с плавающей запятой (Floating Point, FP), а их количество в чипах кратно возросло.

Технологии: "NVIDIA" доминант на рынке GPU для AI Инженер, Компьютерное железо, IT, Компьютер, Технологии, Искусственный интеллект, Программа, Nvidia, Чип, Электроника, Длиннопост, Видеокарта

В линейке GeForce 6000 родом из 2004 года вертексные шейдеры впервые научились выполнять вычисления формата FP32

Уже тогда некоторые исследователи стали проводить собственные испытания в попытках ускорить математические вычисления с помощью ГП. Этот процесс был сложным, так как для расчетов приходилось переформулировать задачи в вызовы графических API DirectX или OpenGL. Для доступности подобных вычислений в сторонних программах был необходим собственный API, который невозможно было создать без поддержки производителей видеокарт.

В 2006 году на конференции SIGGRAPH, посвященной компьютерной графике, компания ATI представила «Close to Metal». Это был первый API для выполнения неграфических вычислений на видеокартах ATI, который вскоре был переименован в ATI Stream.

Технологии: "NVIDIA" доминант на рынке GPU для AI Инженер, Компьютерное железо, IT, Компьютер, Технологии, Искусственный интеллект, Программа, Nvidia, Чип, Электроника, Длиннопост, Видеокарта

В это время в недрах NVIDIA была почти готова новая графическая архитектура Tesla, которая изначально проектировалась с учетом возможности неграфических расчетов. После выпуска первых игровых видеокарт на ее основе, в феврале 2007 года компания представила свой собственный API для вычислений — CUDA. А три месяца спустя были выпущены первые продукты NVIDIA, предназначенных специально для вычислений: Tesla С870, D870 и S870. Этот момент можно считать началом главы массово доступных вычислений на графических процессорах.

Технологии: "NVIDIA" доминант на рынке GPU для AI Инженер, Компьютерное железо, IT, Компьютер, Технологии, Искусственный интеллект, Программа, Nvidia, Чип, Электроника, Длиннопост, Видеокарта

Становление CUDA

Темп вычислений на графических чипах NVIDIA и ATI уже в 2007 году в несколько раз превышал значения, которые могли обеспечить центральные процессоры того времени. Топ NVIDIA обеспечивал 384 Гфлопс, а флагман ATI — 475 Гфлопс. По сравнению с 48 Гфлопс, которыми мог оперировать старший ЦП линейки Intel Core 2 Quad, разница была практически на порядок.

Однако все упиралось в возможность многопоточной обработки. NVIDIA G80 обладал 128 шейдерными процессорами, а конкурирующий ATI R600 — целыми 320. Распределить нагрузку между таким количеством вычислительных единиц в то время, когда даже четыре ядра процессора еще не везде использовались, было задачей не из простых. Но главный вектор продвижения все же нашелся — им стали научные проекты. Основная масса расчетов для них масштабируется практически линейно, поэтому именно они извлекали больше всего пользы из CUDA и Stream.

Технологии: "NVIDIA" доминант на рынке GPU для AI Инженер, Компьютерное железо, IT, Компьютер, Технологии, Искусственный интеллект, Программа, Nvidia, Чип, Электроника, Длиннопост, Видеокарта

Через некоторое время неграфические вычисления нашли применение и в домашних ПК. С их помощью мощности видеокарт стали использоваться в различных программах для конвертации и кодирования видео. А в августе 2008 года NVIDIA решила использовать CUDA для просчетов PhysX — движка физического поведения объектов в играх.

В 2009 году свет увидел DirectX 11, в состав которого был включен API для неграфических вычислений DirectCompute. Практически одновременно с ним появляется и другой похожий, но открытый API — Open CL. Именно в его пользу делает выбор AMD, потихоньку забросив развитие Stream. А вот NVIDIA хоть и реализовывает поддержку новых API, но при этом не отказывается от своей CUDA. И, как покажет практика, совсем не зря.

Глубокое обучение

После появления универсальных шейдерных процессоров их количество в чипах росло по экспоненте. Благодаря этому топовый чип GF100, появившийся через три года после G80, работал с вычислениями вчетверо быстрее своего «предка». Ускорение, которые давали вычисления на ГП по сравнению с ЦП, становилось все больше, а сами вычисления распространялись все шире.

В 2012 году c помощью API CUDA группа энтузиастов в университете Торонто решает создать одну из первых сверточных нейросетей для распознавания изображений. Для этого они используют более миллиона изображений и три терафлопса вычислительной мощности, которые обеспечили две видеокарты GTX 580 на базе ГП GF110. Проект получает название AlexNet. Он был представлен на конкурсе ImageNet Large Scale Visual Recognition Challenge, получив первое место за распознавание c минимальным количеством ошибок.

Технологии: "NVIDIA" доминант на рынке GPU для AI Инженер, Компьютерное железо, IT, Компьютер, Технологии, Искусственный интеллект, Программа, Nvidia, Чип, Электроника, Длиннопост, Видеокарта

Архитектура AlexNet оказала существенное влияние на многие последующие проекты в области глубокого обучения с помощью графических процессоров. И, как следствие, в разы увеличила интерес к самим ГП в роли вычислительных чипов для подобных расчетов.

До 2017 года NVIDIA продолжала наращивать «чистую» мощь своих графических процессоров. Если в 2007 году топовый G80 мог обеспечить 384 Гфлопс при расчетах, то в 2017 году чип GP102 достигал в них уже 12 Тфлопс. Но компания продолжала искать пути по более существенному наращиванию производительности, так как задачи для ГП со временем становились все сложнее и сложнее.

Конец 2017 года можно считать переломным моментом для нейросетевой отрасли. Тогда NVIDIA представила первый графический процессор с тензорными ядрами — GV100 на архитектуре Volta. В то время, как шейдерные процессоры могли работать с вычислениями полной точности (FP32), тензоры поддерживали только половинную (FP16), но с гораздо большим темпом. Вдобавок к этому появилась возможность использовать целочисленные вычисления (INT32) на шейдерах одновременно с плавающими. Для эффективного задействования всех вычислительных элементов вместе с чипом и видеокартами на его основе NVIDIA представила API CUDA версии 7.0.

Технологии: "NVIDIA" доминант на рынке GPU для AI Инженер, Компьютерное железо, IT, Компьютер, Технологии, Искусственный интеллект, Программа, Nvidia, Чип, Электроника, Длиннопост, Видеокарта

Эксперимент был успешным: производительность в задачах глубокого обучения возросла кратно, ведь высокая точность им была не нужна. Чипы AMD, до этого хоть как-то конкурирующие за счет вычислительной мощности шейдеров, остались далеко позади. А NVIDIA занялась разработкой следующей графической архитектуры — Turing. Теперь каждое поколение компания совершенствовала тензорные ядра. Помимо рабочих нагрузок, они пригодились и в играх для технологии повышения производительности DLSS. В 2022 году NVIDIA представила графическую архитектуру Ada Lovelace. Ее тензорные ядра поддерживают вычисления в менее точном формате FP8, но в двойном темпе по сравнению с FP16. Таким образом, даже без учета роста количества тензоров, пиковую производительность обучения удалось удвоить. В следующей архитектуре Blackwell появилась поддержка вычислений FP4, которая в очередной раз удваивает пиковую производительность тензоров.

Технологии: "NVIDIA" доминант на рынке GPU для AI Инженер, Компьютерное железо, IT, Компьютер, Технологии, Искусственный интеллект, Программа, Nvidia, Чип, Электроника, Длиннопост, Видеокарта

Сила ГП NVIDIA не только в «железе», но и в программной поддержке. С выходом каждой графической архитектуры компания обновляет API CUDA и предоставляет разработчикам подробные инструкции по работе с ним. Благодаря этому производители ПО своевременно учатся использовать особенности новых чипов, что позволяет «выжимать» из них в реальных задачах практически всю возможную производительность.

NVIDIA и ее конкуренты на рынке нейросетей

На сегодняшний день ГП NVIDIA — самые востребованные чипы для обучения и работы различных нейросетей. Высокая вычислительная мощность и постоянно развивающаяся программная платформа CUDA, совместимая со многими популярными фреймворками вроде TensorFlow и PyTorch, делают их лучшим выбором для вычислений глубокого обучения. И лидер этого рынка в лице Open AI, и недавно «выстрелившая» DeepSeek обучали свои модели именно на чипах от NVIDIA.

Для вычислительных центров компания выпускает отдельную линейку карт GPU Accelerator (бывшая Tesla). Многие из них основаны на тех же графических процессорах, что и игровые видеокарты. Но для наиболее производительных решений NVIDIA в последнее время разрабатывает отдельные чипы, совершенствуя их чуть раньше более доступных решений.

Технологии: "NVIDIA" доминант на рынке GPU для AI Инженер, Компьютерное железо, IT, Компьютер, Технологии, Искусственный интеллект, Программа, Nvidia, Чип, Электроника, Длиннопост, Видеокарта

Тем не менее, все основные элементы графической архитектуры даже в таких «больших» чипах схожи с теми, что используются в игровых видеокартах GeForce. Поэтому их тоже можно использовать для несложных задач глубокого обучения, если хватает видеопамяти. В этом кроется огромный плюс: единая графическая архитектура и поддержка CUDA для игровых, профессиональных и вычислительных решений делает ГП NVIDIA доступными как для крупных фирм, так и для небольших стартапов.

В этом плане NVIDIA поступает умно: даже с одной игровой картой вместе с CUDA и ее развитыми инструментами разработчик может получить желаемый результат — пусть и заметно медленнее, чем с вычислительным сервером. При этом он привязывается к API, и при переходе на более производительные решения вновь будет использовать ГП NVIDIA.

Технологии: "NVIDIA" доминант на рынке GPU для AI Инженер, Компьютерное железо, IT, Компьютер, Технологии, Искусственный интеллект, Программа, Nvidia, Чип, Электроника, Длиннопост, Видеокарта

Но лавры CUDA не дают покоя многим другим компаниям, в частности — Intel. В ответ она разработала открытый стандарт oneAPI, который призван унифицировать вычисления на различных чипах: центральных и графических процессорах, программируемых матрицах и специализированных ускорителях. В 2024 году Intel вместе с Google, Qualcomm, Samsung, ARM, Fujitsu, Imagination и VMware создали консорциум Unified Acceleration Foundation. Его целью будет дальнейшее развитие инициатив oneAPI.

Технологии: "NVIDIA" доминант на рынке GPU для AI Инженер, Компьютерное железо, IT, Компьютер, Технологии, Искусственный интеллект, Программа, Nvidia, Чип, Электроника, Длиннопост, Видеокарта

Изменит ли как-то это баланс оборудования на рынке нейросетей — вопрос будущего, причем не самого ближнего. Сегодня реальный конкурент у NVIDIA на этом направлении все также один: это компания AMD с картами Instinct. С 2020 года «красные» разделили свою графическую архитектуру на две параллельно развивающиеся ветви. RDNA предназначена для игровых и профессиональных видеокарт, а CDNA — для центров обработки данных. Современные чипы AMD используют программный стек ROCm, и могут ускорять вычисления невысокой точности с помощью матричных блоков. Но до возможностей API CUDA и производительности тензорных ядер NVIDIA им все еще далеко.

Технологии: "NVIDIA" доминант на рынке GPU для AI Инженер, Компьютерное железо, IT, Компьютер, Технологии, Искусственный интеллект, Программа, Nvidia, Чип, Электроника, Длиннопост, Видеокарта

Возможно, в скором времени определенную конкуренцию NVIDIA смогут предложить и чипы от Huawei. Компания разрабатывает собственные ИИ-ускорители, и последнее решение в лице Ascend 910C выглядит довольно неплохо. Однако стоит учитывать, что Huawei ограничена санкциями и не имеет доступа к самым современным техпроцессам. Поэтому, скорее всего, ускорители компании останутся эксклюзивным решением для китайского рынка, а будущие поколения из-за ограничений техпроцесса не получат существенного роста производительности на чип.

Технологии: "NVIDIA" доминант на рынке GPU для AI Инженер, Компьютерное железо, IT, Компьютер, Технологии, Искусственный интеллект, Программа, Nvidia, Чип, Электроника, Длиннопост, Видеокарта

А пока лидерство NVIDIA в этой сфере не подлежит сомнению. Благодаря буму нейросетей ее доходы от вычислительных решений впервые превысили аналогичные от игровых видеокарт уже в 2023 году. 2024 год оказался для компании еще более успешным: на оборудовании для вычислений она заработала вчетверо больше, чем на игровом рынке. посмотрим что ей принесет год грядущий. Важно то, что NVIDIA не забывает вкладывать часть полученной прибыли в новые разработки. Каждый год компания представляет их на конференции GPU Technology Conference (GTC), основной темой которой в последнее время является искусственный интеллект. В этом году GTC прошел с 17 по 21 марта. NVIDIA раскрыла подробности о будущих графических архитектурах Blackwell Ultra и Rubin, а также презентовала новый вычислительный чип B300.

К сведению:

В 2006 году на конференции SIGGRAPH, посвященной компьютерной графике, компания ATI представила «Close to Metal»

Самое интересное, что первоначально ATI удалось реализовать вычисления не на универсальных шейдерах, а на пиксельных. Для этого в чипе R580, который стал основой для первой вычислительной карты, они уместили аж 48 (!) пиксельных шейдеров с продвинутым управляющим блоком. 

Технологии: "NVIDIA" доминант на рынке GPU для AI Инженер, Компьютерное железо, IT, Компьютер, Технологии, Искусственный интеллект, Программа, Nvidia, Чип, Электроника, Длиннопост, Видеокарта

Для сравнения: у старшего R520 из того же поколения, который был выпущен на 3 месяца раньше, было всего 16 пиксельных шейдеров, а у G70/G71 от главного конкурента - 24.

Показать полностью 13
Инженер Компьютерное железо IT Компьютер Технологии Искусственный интеллект Программа Nvidia Чип Электроника Длиннопост Видеокарта
3
98
TechSavvyZone
TechSavvyZone
3 месяца назад

Технологии : "NVIDIA" тензорные ядра, что это и с чем едят?⁠⁠

Технологии : "NVIDIA" тензорные ядра, что это и с чем едят? Технологии, IT, Компьютерное железо, Компьютер, Инженер, Nvidia, Видеокарта, Производство, Электроника, Чип, Компьютерная графика, Ядро, Длиннопост

Выпуск серии видеокарт RTX20 в свое время стал важнейшим событием в сфере компьютерных технологий. Десктопные видеокарты впервые получили отдельные тензорные ядра. Что это такое? Как работают эти ядра и для чего используются?

CUDA и тензорные ядра

Работа с графикой — специфическая задача для компьютерного «железа». Здесь требуется выполнять довольно однообразные команды с большим объемом данных. Архитектура CPU для этого подходит плохо. Из-за ограниченного числа ядер и АЛУ (арифметико-логических устройств) процессоры не могут быстро делать объемные операции по сложению и умножению.

Был необходим максимальный параллелизм — одновременная обработка данных. Одним из решений стали CUDA-ядра — технология, созданная Nvidia больше десяти лет назад. Эти ядра создали специально для параллельной работы. На чипе помещались сотни и тысячи CUDA-ядер, а их число стало одним из критериев оценки производительности видеокарты.

Технологии : "NVIDIA" тензорные ядра, что это и с чем едят? Технологии, IT, Компьютерное железо, Компьютер, Инженер, Nvidia, Видеокарта, Производство, Электроника, Чип, Компьютерная графика, Ядро, Длиннопост

CUDA-ядра имеют высокоскоростной доступ к видеопамяти, так что обработка выполняется с минимальными задержками. Это важнейший показатель для быстрого вывода подготовленных кадров на монитор.

Технологии : "NVIDIA" тензорные ядра, что это и с чем едят? Технологии, IT, Компьютерное железо, Компьютер, Инженер, Nvidia, Видеокарта, Производство, Электроника, Чип, Компьютерная графика, Ядро, Длиннопост

Однако обработка больших объемов данных нужна не только при выводе графики. Она требуется для научных вычислений, моделирования физических процессов и машинного обучения. Во всех этих задачах одна из главных операций — перемножение матриц.

Технологии : "NVIDIA" тензорные ядра, что это и с чем едят? Технологии, IT, Компьютерное железо, Компьютер, Инженер, Nvidia, Видеокарта, Производство, Электроника, Чип, Компьютерная графика, Ядро, Длиннопост

Задача непростая. Скажем, для решения вышеописанного примера нужны целых 64 умножения и 48 сложений. Не говоря о том, что промежуточные результаты нужно еще где-то хранить. Для операций чтения и записи нужны дополнительные регистры и достаточно скоростная кэш-память.

Технологии : "NVIDIA" тензорные ядра, что это и с чем едят? Технологии, IT, Компьютерное железо, Компьютер, Инженер, Nvidia, Видеокарта, Производство, Электроника, Чип, Компьютерная графика, Ядро, Длиннопост

Может ли с этой задачей справиться CPU? Вообще-то, да. Специально для таких вычислений в процессорах начали появляться инструкции MMX, SSE и (самые совершенные) AVX. Однако видеокарты с их многочисленными CUDA-ядрами — более предпочтительный вариант. Они могут распараллелить большую часть простых операций сложения и умножения. Но даже для них задача просчета матриц оставалась трудоемкой. Решением стали тензорные ядра.

Одно такое ядро способно перемножить две матрицы за один такт. В то время как CUDA-ядрам требуется несколько тактов.

Технологии : "NVIDIA" тензорные ядра, что это и с чем едят? Технологии, IT, Компьютерное железо, Компьютер, Инженер, Nvidia, Видеокарта, Производство, Электроника, Чип, Компьютерная графика, Ядро, Длиннопост

Первое тензорное ядро представляло собой микроблок, выполнявший суммирование-произведение матриц 4x4. Могли использоваться значения FP16 (числа с плавающей запятой размером 16 бит) или умножение FP16 с добавлением FP32.

Технологии : "NVIDIA" тензорные ядра, что это и с чем едят? Технологии, IT, Компьютерное железо, Компьютер, Инженер, Nvidia, Видеокарта, Производство, Электроника, Чип, Компьютерная графика, Ядро, Длиннопост

Размерность рабочих матриц невелика. Ядра при обработке реальных наборов данных обрабатывают небольшие блоки более крупных матриц, в итоге формируя окончательный ответ.

Технологии : "NVIDIA" тензорные ядра, что это и с чем едят? Технологии, IT, Компьютерное железо, Компьютер, Инженер, Nvidia, Видеокарта, Производство, Электроника, Чип, Компьютерная графика, Ядро, Длиннопост

Решение оказалось крайне эффективным. Специалисты из Anandtech провели замеры производительности топовых решений от Nvidia — без тензорных ядер и с ними.

Технологии : "NVIDIA" тензорные ядра, что это и с чем едят? Технологии, IT, Компьютерное железо, Компьютер, Инженер, Nvidia, Видеокарта, Производство, Электроника, Чип, Компьютерная графика, Ядро, Длиннопост
Технологии : "NVIDIA" тензорные ядра, что это и с чем едят? Технологии, IT, Компьютерное железо, Компьютер, Инженер, Nvidia, Видеокарта, Производство, Электроника, Чип, Компьютерная графика, Ядро, Длиннопост

В операциях перемножения матриц (GEMM) прирост производительности с использованием тензорных ядер колоссальный.

Применение тензорных ядер

Научные вычисления

Тензорная математика активно используется в физике и инженерии для решения всех видов сложных вычислений. Например, в механике жидкостей, электромагнетизме, астрофизике, медицине и климатологии. В суперкомпьютерах для этих задач обычно используют крупные кластеры с тысячами высокопроизводительных процессоров уровня Xeon Platinum или AMD Epyc. Однако видеоускорители стали неотъемлемой частью практически любого суперкомпьютера. Подавляющее число машин из рейтинга Top500 работают на базе решений от Nvidia.

Технологии : "NVIDIA" тензорные ядра, что это и с чем едят? Технологии, IT, Компьютерное железо, Компьютер, Инженер, Nvidia, Видеокарта, Производство, Электроника, Чип, Компьютерная графика, Ядро, Длиннопост
Технологии : "NVIDIA" тензорные ядра, что это и с чем едят? Технологии, IT, Компьютерное железо, Компьютер, Инженер, Nvidia, Видеокарта, Производство, Электроника, Чип, Компьютерная графика, Ядро, Длиннопост

Машинное обучение

Задача глубокого обучения в самом простом смысле — это работа с математическими выражениями. Простейший вариант — нейронная сеть, состоящая из одного слоя с двумя нейронами и линейными функциями активации. Представлена она вот таким умножением вектора на матрицу:

Технологии : "NVIDIA" тензорные ядра, что это и с чем едят? Технологии, IT, Компьютерное железо, Компьютер, Инженер, Nvidia, Видеокарта, Производство, Электроника, Чип, Компьютерная графика, Ядро, Длиннопост

Задача обучения сводится к поиску наилучших коэффициентов W. То есть предполагаются матричные операции.

На практике нейросети чаще всего многослойные, и математические выражения получаются куда сложнее. Однако принципиально используются все те же действия — умножение и сложение матриц. Тензорные ядра как раз ориентированы на эти действия.

Самый яркий пример — суперкомпьютер, созданный Microsoft совместно c OpenAI. В нем использовали 10 тысяч графических процессоров Nvidia V100. Именно этот компьютер применили для обучения ChatGPT-3. Продукты Nvidia можно найти в Microsoft Azure, Oracle Cloud и Google Cloud.

Технологии : "NVIDIA" тензорные ядра, что это и с чем едят? Технологии, IT, Компьютерное железо, Компьютер, Инженер, Nvidia, Видеокарта, Производство, Электроника, Чип, Компьютерная графика, Ядро, Длиннопост

Илон Маск для своего ИИ Grok также задействует продукцию Nvidia. Изначально это был кластер на 20 тысяч графических процессоров H100. Недавно для обучения версии GROK 3 миллиардер запустил суперкомпьютер с сотней тысяч NVIDIA H100! Теперь вы можете понять, почему NVIDIA стала самой дорогой компанией и продолжает наращивать прибыль.

Инференс нейросети

Инференс — это запуск уже обученной модели, «скармливание» данных и получение результата. Процесс менее требователен к вычислительной мощности. Но здесь все так же используются матричные операции. Сюда входит распознавание текста (например, в голосовых помощниках), поиск объектов на изображении (распознавание лиц, номерных знаков), шумоподавление и не только.

Тензорные ядра и здесь предлагают высокую производительность. Они позволяют запускать «легкие» нейросети прямо на домашних видеокартах средневысокого ценового сегмента. Например, запустить Chat with RTX — тут достаточно RTX 30 или 40 серии с минимум 8 ГБ видеопамяти. Stable Diffusion также можно запустить локально на видеокартах. Однако производительность каждой модели зависит еще и от ПО. Оно не всегда в полной мере задействует те же тензорные или CUDA-ядра.

DLSS (Deep Learning Super Sampling)

Один из самых доступных вариантов инференса нейросетей — технология DLSS. Специально обученная на игре нейросеть запускается на тензорных ядрах видеокарты, повышая разрешение картинки в реальном времени. Игрок, в свою очередь, получает более высокий FPS. DLSS 3 работает только на видеокартах серии RTX40.

Технологии : "NVIDIA" тензорные ядра, что это и с чем едят? Технологии, IT, Компьютерное железо, Компьютер, Инженер, Nvidia, Видеокарта, Производство, Электроника, Чип, Компьютерная графика, Ядро, Длиннопост

Где имеются тензорные ядра

Nvidia

Поскольку это авторская разработка «зеленых», то именно «тензорные ядра» можно найти лишь в продукции этой компании.

Впервые появились в Nvidia TITAN V в 2017 году — карта имела 640 ядер. После этого ядра стали неотъемлемой частью профессиональных ускорителей

Технологии : "NVIDIA" тензорные ядра, что это и с чем едят? Технологии, IT, Компьютерное железо, Компьютер, Инженер, Nvidia, Видеокарта, Производство, Электроника, Чип, Компьютерная графика, Ядро, Длиннопост
Технологии : "NVIDIA" тензорные ядра, что это и с чем едят? Технологии, IT, Компьютерное железо, Компьютер, Инженер, Nvidia, Видеокарта, Производство, Электроника, Чип, Компьютерная графика, Ядро, Длиннопост

С каждой новой архитектурой появлялось усовершенствованное поколение тензорных ядер. Так что сравнивать их число в рамках разных поколений некорректно. Есть и различия в поддерживаемых форматах данных. Первые ядра могли складывать матрицы с данными только FP16, а современные имеют поддержку куда больших форматов.

Технологии : "NVIDIA" тензорные ядра, что это и с чем едят? Технологии, IT, Компьютерное железо, Компьютер, Инженер, Nvidia, Видеокарта, Производство, Электроника, Чип, Компьютерная графика, Ядро, Длиннопост

В десктопных и мобильных видеокартах технология стала доступна с приходом серии RTX20.

Технологии : "NVIDIA" тензорные ядра, что это и с чем едят? Технологии, IT, Компьютерное железо, Компьютер, Инженер, Nvidia, Видеокарта, Производство, Электроника, Чип, Компьютерная графика, Ядро, Длиннопост

Именно благодаря тензорным ядрам пользовательские карты RTX можно использовать для работы с нейросетями. А также получить апскейл с использованием ИИ. Альтернативные технологии вроде XeSS и FSR базово специальных ядер не требуют.

AMD

Компания «красных» на рынок ИИ вышла относительно недавно. Аналогом тензорных ядер у них является Matrix Core Technologies, которая появилась в архитектуре CDNA 3.

Технологии : "NVIDIA" тензорные ядра, что это и с чем едят? Технологии, IT, Компьютерное железо, Компьютер, Инженер, Nvidia, Видеокарта, Производство, Электроника, Чип, Компьютерная графика, Ядро, Длиннопост

Ядра Matrix Core Technologies пока встречаются только в AMD Instinct MI300A (912 штук) и MI300X (1216 штук). Новые ИИ-ускорители планируют поставить в немецкие суперкомпьютеры Hunter и Herder — в 2025 и 2027 годах соответственно. Сейчас же у немцев работают суперкомпьютеры Hawk и JUWELS на базе Nvidia A100.

Технологии : "NVIDIA" тензорные ядра, что это и с чем едят? Технологии, IT, Компьютерное железо, Компьютер, Инженер, Nvidia, Видеокарта, Производство, Электроника, Чип, Компьютерная графика, Ядро, Длиннопост

Intel

У «синих» используются ядра XMX (Xe Matrix Extensions), созданные специально для матричных вычислений. На них аппаратно работает и фирменный апскейлер Intel XeSS. Встретить ядра XMX можно в линейке видеокарт ARC.

Технологии : "NVIDIA" тензорные ядра, что это и с чем едят? Технологии, IT, Компьютерное железо, Компьютер, Инженер, Nvidia, Видеокарта, Производство, Электроника, Чип, Компьютерная графика, Ядро, Длиннопост
Технологии : "NVIDIA" тензорные ядра, что это и с чем едят? Технологии, IT, Компьютерное железо, Компьютер, Инженер, Nvidia, Видеокарта, Производство, Электроника, Чип, Компьютерная графика, Ядро, Длиннопост

Ядра XMX используются и в Intel Xᵉ HPC 2, установленных в Data Center GPU Max. Графика Xe2-LPG будет встроена в процессоры Lunar Lake. Там также будут использоваться XMX-ядра для задач, связанных с работой ИИ.

Google

В компании не стали изобретать отдельные ядра, а нацелились сразу же на разработку полноценных плат. Они получили название TPU — Tensor Processing Unit. Эти платы специализируются на обработке матриц. Они подходят как для тренировки, так и выполнения нейросетей.

Технологии : "NVIDIA" тензорные ядра, что это и с чем едят? Технологии, IT, Компьютерное железо, Компьютер, Инженер, Nvidia, Видеокарта, Производство, Электроника, Чип, Компьютерная графика, Ядро, Длиннопост
Показать полностью 23
Технологии IT Компьютерное железо Компьютер Инженер Nvidia Видеокарта Производство Электроника Чип Компьютерная графика Ядро Длиннопост
6
13
EngineerMikhail
EngineerMikhail
4 месяца назад

NVIDIA сожгла видеокарты драйвером 576.02⁠⁠

Утилиты мониторинга GPU могут перестать сообщать температуру GPU после выхода ПК из спящего режима [5231307]

Видеокарты просто плавились, так как охлаждение не включалось.

1 [Серия RTX 50] Некоторые игры могут отображать мерцание/повреждение теней после обновления до GRD 576.02 [5231537]

2 Lumion 2024 вылетает на видеокарте GeForce RTX 50 series при входе в режим рендеринга [5232345]

3 Утилиты мониторинга GPU могут перестать сообщать температуру GPU после выхода ПК из спящего режима [5231307]

4 [Серия RTX 50] Некоторые игры могут вылетать при компиляции шейдеров после обновления до GRD 576.02 [5230492]

5 [Ноутбук GeForce RTX 50 series] Возобновление из Modern Standy может привести к черному экрану [5204385]

6 [Серия RTX 50] SteamVR может отображать случайные микрозадержки V-SYNC при использовании нескольких дисплеев [5152246]

7 [Серия RTX 50] Более низкие тактовые частоты бездействующего графического процессора после обновления до GRD 576.02 [5232414]

источник

чтобы это исправить был выпущен патч 576.15

Последний хотфикс 576.15 также включает исправления для более низких тактовых частот GPU в режиме ожидания для владельцев серии RTX 50 и некоторые улучшения для определенных игр, мерцающих после обновления до драйвера 576.02. Обновление обязательно рекомендуют установить, если вы используете GPU серии RTX 50 или регулярно переводите свой ПК в спящий режим и используете утилиты мониторинга GPU, такие как Afterburner.

Впрочем, даже после установки этого патча участники форума Nvidia по-прежнему сообщают о множестве сбоев в играх, проблемах с производительностью и подтормаживаний при использовании G-Sync в некоторых играх. В настоящее время Nvidia отслеживает не менее 15 открытых проблем с драйвером 576.02, которые, остается надеяться, будут устранены в следующем официальном выпуске.

Некоторые отзывы:

-Эти последние драйверы сделали мою 3090 совершенно бесполезной. Когда я был на 566, никаких проблем вообще не было, все работало отлично. Последний патч заставляет мой компьютер зависать; 

-Ничего не улучшило на моей 3070ti. Я даже не могу продать свой компьютер после установки драйверов;

-Появились артефакты в Red Dead Redemption 2;

-Моя видеокарта — RTX 4060, после обновления стабильность системы упала;

-После обновления драйвера до версии 576.02-576.15, NZXT COM перестал показывать правильную температуру, полное удаление и откат не помогают!!! Это полный ужас. Что вы делаете?

источник

Показать полностью
Nvidia Fail Драйвер Текст IT
13
180
MajorLettuce
MajorLettuce
5 месяцев назад
Лига Геймеров

У них даже прически одинаковые⁠⁠

А вы знали, что глава Nvidia Дженсен Хуанг и глава AMD Лиза Су — двоюродные племянники?

Nvidia AMD IT Компьютерная графика Искусственный интеллект Короткопост Текст Повтор
79
65
TechSavvyZone
TechSavvyZone
5 месяцев назад

Технологии: Эволюция графики "AMD/ATI" путь развития Часть Первая⁠⁠

Технологии: Эволюция графики "AMD/ATI" путь развития Часть Первая Компьютерное железо, Компьютер, Технологии, Инженер, IT, Игровой ПК, Видеокарта, Производство, Изобретения, Компьютерная графика, Компьютерные игры, История развития, Электроника, Процессор, AMD, Nvidia, Микроконтроллеры, Длиннопост

AMD. Второй по величине производитель дискретных графических процессоров, давний и бессменный противник NVIDIA. Как появились и развивались видеокарты AMD/ATI.

Wonder и Mach: 2D, ничего более

Компания ATI была основана задолго до NVIDIA — в 1985 году. О 3D-ускорителях графики тогда речи не шло, под «графической картой» понималась плата для вывода 2D-изображения.

Дебютной серией карт ATI стала линейка, позже получившая название Wonder. Первая модель, выпущенная в 1986 году, имела 64 КБ памяти и могла выводить как монохромное, так и цветное изображение. В первом случае поддерживалось разрешение до 720x348 точек, во втором — 320×200 при четырех цветах или вдвое меньше при 16 цветах.

Последняя модель серии под названием Wonder XL24 была выпущена в 1992 году. Она имела до 1 МБ памяти и поддерживала изображение разрешением 800x600 при 16-битной глубине цвета. Для подключения карт Wonder к системе использовалась шина ISA.

Технологии: Эволюция графики "AMD/ATI" путь развития Часть Первая Компьютерное железо, Компьютер, Технологии, Инженер, IT, Игровой ПК, Видеокарта, Производство, Изобретения, Компьютерная графика, Компьютерные игры, История развития, Электроника, Процессор, AMD, Nvidia, Микроконтроллеры, Длиннопост

С начала 90-х линейку Wonder постепенно сменила серия 2D-ускорителей Mach, которые были призваны разгрузить ЦП системы от «рисования» интерфейса системы и программ. Новые модели Mach выпускались вплоть до 1996 года. Последняя модель Mach 64 имела от 1 до 4 МБ видеопамяти и поддерживала вывод картинки с разрешением до 1280x1024. Ранние модели использовали шину ISA, более поздние перешли на PCI.

Технологии: Эволюция графики "AMD/ATI" путь развития Часть Первая Компьютерное железо, Компьютер, Технологии, Инженер, IT, Игровой ПК, Видеокарта, Производство, Изобретения, Компьютерная графика, Компьютерные игры, История развития, Электроника, Процессор, AMD, Nvidia, Микроконтроллеры, Длиннопост

3D Rage: переход в 3D

Первая карта с поддержкой 3D-ускорения была выпущена ATI в апреле 1996 года под именем 3D Rage. Чип карты производился по техпроцессу 500 нм и работал на частоте 40 МГц. Он сочетал в себе блок работы с 2D-графикой от Mach 64 с 3D-ускорителем, в составе которого один пиксельный конвейер, растровый блок (ROP) и текстурный модуль (TMU). По 64-битной шине чип соединялся с 2 МБ памяти EDO RAM, обладавшей пропускной способностью чуть больше 500 МБ/c.

Как и поздние Mach 64, карта имела исполнение PCI. В отличие от NVIDIA STG-2000, модель работала с треугольными полигонами. 3D Rage стала одной из первых карт с поддержкой DirectX 5, но OpenGL для игровых приложений был недоступен. Для демонстрации способностей карты была разработана специальная версия игры MechWarrior 2: 31st Century Combat, использующая ускорение Direct3D.

Технологии: Эволюция графики "AMD/ATI" путь развития Часть Первая Компьютерное железо, Компьютер, Технологии, Инженер, IT, Игровой ПК, Видеокарта, Производство, Изобретения, Компьютерная графика, Компьютерные игры, История развития, Электроника, Процессор, AMD, Nvidia, Микроконтроллеры, Длиннопост

Спустя пять месяцев была выпущена обновленная 3D Rage II. Частоту ядра увеличили в полтора раза, а в качестве памяти могла использоваться как EDO RAM, так и более быстрые SGRAM/SDRAM объемом от 2 до 8 МБ. Благодаря этим изменениям и обновленным драйверам под новую (на тот момент) Windows 95, модель до двух раз опережала предшественника. Наряду с PCI карте добавили поддержку шины AGP 1x. К тому же графический чип 3D Rage II распаивался и на материнские платы — это был первый прообраз встроенной графики ATI.

3D Rage Pro: эпоха DirectX 6

В марте 1997 года ATI представила новую модель — 3D Rage Pro. Чип, лежавший в основе карты, получил новый движок полигонального рендеринга, поддержку прозрачности, тумана и бликов, таким образом став одним из первых с поддержкой DirectX 6. Он производился по техпроцессу 350 нм, что позволило достичь частоты в 75 МГц. Как и предшественник, карта могла использовать один из трех типов памяти, объем которой варьировался от 4 до 16 МБ.

Технологии: Эволюция графики "AMD/ATI" путь развития Часть Первая Компьютерное железо, Компьютер, Технологии, Инженер, IT, Игровой ПК, Видеокарта, Производство, Изобретения, Компьютерная графика, Компьютерные игры, История развития, Электроника, Процессор, AMD, Nvidia, Микроконтроллеры, Длиннопост

Хотя 3D Rage Pro поддерживала шину PCI, она проектировалась в первую очередь для нового интерфейса AGP. Первые модели работали в режиме AGP 1x, но с выходом RIVA 128 от NVIDIA компания решила задействовать режим AGP 2x, чтобы лучше противостоять сопернику.

По производительности 3D Rage Pro был на уровне конкурента, однако сырые драйвера досаждали просадками производительности в Direct3D, а поддержка OpenGL для игр все также отсутствовала. Доработанные драйвера вышли позже, когда RIVA 128 и другая конкурирующая карта Voodoo Graphics от 3dfx стали массовыми. В итоге 3D Rage Pro не удалось завоевать популярность, хотя технически модель была достаточно продвинутой для своего времени.

В августе 1998 года была выпущена Rage XL, представляющая собой недорогую карту на базе 3D Rage Pro с памятью SDRAM.

3D Rage 128: упор на 32-битный цвет

К началу 1998 года карты Voodoo пользовались огромной популярностью. В феврале была выпущена Voodoo 2, продолжившая дело первой модели. В июне NVIDIA ответила на нее своей RIVA TNT. Конкурент от ATI вышел на рынок последним — это была пара моделей Rage 128.

В чипе Rage 128 было удвоено количество конвейеров, ROP и TMU — точно так же, как и в RIVA TNT. Благодаря новой технологии SuperScalar Rendering чип обрабатывает два пикселя в двух конвейерах одновременно. Rage 128 имеет два отдельных кэша для текстур и пикселей, повышающих эффективность работы подсистемы памяти.

За счет техпроцесса 250 нм частота ядра достигла 100 МГц. Шину памяти расширили до 128 бит, вследствие чего полоса пропускания возросла до 1.6 ГБ/c у старшей модели Rage 128 GL. Младшая Rage 128 VR получила урезанную до 64 бит шину. Карты оснащались от 8 до 32 МБ памяти SGRAM или SDRAM. Помимо дискретных карт, чип Rage 128 VR распаивался на материнские платы в качестве встроенной графики.

Rage 128 показывала сравнимую с RIVA TNT производительность, а при использовании 32-битного цвета даже опережала ее. К тому же поддержка OpenGL в этот раз имелась уже со старта. Погубило модель слишком позднее появление: выйди карта на полгода раньше, ей удалось бы отвоевать гораздо большую часть рынка.

Технологии: Эволюция графики "AMD/ATI" путь развития Часть Первая Компьютерное железо, Компьютер, Технологии, Инженер, IT, Игровой ПК, Видеокарта, Производство, Изобретения, Компьютерная графика, Компьютерные игры, История развития, Электроника, Процессор, AMD, Nvidia, Микроконтроллеры, Длиннопост

В начале 1999 года появились более быстрые RIVA TNT2 и Voodoo 3, на что ATI ответила новыми моделями Rage 128 с приставками Pro и Ultra — но опять с опозданием в полгода. Картам добавили поддержку шины AGP 4x, ускорили ядро и память на четверть, что помогло приблизиться к оппоненту. Однако на носу была гораздо быстрая GeForce 256, и ATI нужно было чем-то ответить прямо здесь и сейчас…

Этим ответом стала первая двухчиповая карта компании — Rage Fury MAXX, выпущенная в октябре 1999 года. Два чипа от Rage 128 Pro рендерили кадры по очереди, что позволяло практически вдвое повысить производительность. Каждый из чипов имел 32 МБ памяти SDRAM.

Технологии: Эволюция графики "AMD/ATI" путь развития Часть Первая Компьютерное железо, Компьютер, Технологии, Инженер, IT, Игровой ПК, Видеокарта, Производство, Изобретения, Компьютерная графика, Компьютерные игры, История развития, Электроника, Процессор, AMD, Nvidia, Микроконтроллеры, Длиннопост

Производительность карты приближалась к GeForce 256, но последняя все же была быстрее и выглядела предпочтительнее за счет поддержки аппаратной трансформации и освещения (T&L) и DirectX 7, которого у ATI еще не было.

Первый Radeon: DirectX 7, и даже немного больше

Битва с GeForce 256 была проиграна, но ATI не собиралась сдаваться. В ее недрах кипела разработка нового графического ядра, которое было быстрее GeForce 256 и с успехом соревновалось бы со следующим поколением конкурента. Встречайте, первый чип для карт нового семейства Radeon — R100.

R100 получил новый геометрический движок Charisma Engine, имеющий некоторые возможности более поздних вершинных шейдеров, что позволяло ATI заявлять о поддержке шейдерных эффектов. В Charisma Engine входит аппаратный блок T&L, движки смешения вершин и интерполяции по ключевым кадрам. У чипа два пиксельных конвейера, на каждый из которых приходится один блок ROP и три TMU.

Технологии: Эволюция графики "AMD/ATI" путь развития Часть Первая Компьютерное железо, Компьютер, Технологии, Инженер, IT, Игровой ПК, Видеокарта, Производство, Изобретения, Компьютерная графика, Компьютерные игры, История развития, Электроника, Процессор, AMD, Nvidia, Микроконтроллеры, Длиннопост

Чип производился по техпроцессу 180 нм и работал на частоте до 183 МГц. ГП обладал полной совместимостью с DirectX 7, но также поддерживал некоторые функции DirectX 8: глубину резкости, размытие в движении и полноэкранное сглаживание. Шина памяти 128-битная, возможно использование как SDRAM, так и вдвое более быстрой DDR c пропускной способностью до 5.8 ГБ/c. Она используется более эффективно благодаря технологии сжатия Z-буфера под названием Hyper-Z. Radeon с памятью DDR была выпущена в апреле 2000 года, одновременно с первыми GeForce 2. Карта обладала 32 или 64 МБ памяти и чаще всего была наравне с продуктами NVIDIA при использовании 32-битного цвета, но отставала при 16-битном. Спустя два месяца была выпущена более медленная модель с памятью SDR, которая превосходила GeForce 2 MX. Позже для того, чтобы отличить карты от более новых моделей, обе Radeon вдобавок к имени получили цифровой индекс 7200.

Технологии: Эволюция графики "AMD/ATI" путь развития Часть Первая Компьютерное железо, Компьютер, Технологии, Инженер, IT, Игровой ПК, Видеокарта, Производство, Изобретения, Компьютерная графика, Компьютерные игры, История развития, Электроника, Процессор, AMD, Nvidia, Микроконтроллеры, Длиннопост

Voodoo 4 и 5 в этот раз появились позже конкурентов. К тому времени многие игры научились использовать аппаратный T&L, которого у карт от 3dfx не было. В итоге новые модели от 3dfx чаще всего были медленнее конкурирующих решений при более высокой цене. NVIDIA воспользовалась упадком компании и в конце 2000 года купила 3dfx. С того момента на рынке остались только два серьезных конкурента — NVIDIA и ATI.

Технологии: Эволюция графики "AMD/ATI" путь развития Часть Первая Компьютерное железо, Компьютер, Технологии, Инженер, IT, Игровой ПК, Видеокарта, Производство, Изобретения, Компьютерная графика, Компьютерные игры, История развития, Электроника, Процессор, AMD, Nvidia, Микроконтроллеры, Длиннопост

В феврале 2001 года была выпущена бюджетная Radeon VE, позже получившая номер 7000. В ее основе упрощенный чип RV100 c 64-битной шиной памяти, который является «половинкой» R100 без движка Charisma Engine и блока T&L.

Radeon 8500: продвинутый DirectX 8

В феврале 2001 года NVIDIA выпускает первую карту с поддержкой DirectX 8 — GeForce 3. В ответ на это спустя полгода ATI выпускает две новые модели: Radeon 7500 и 8500.

В составе Radeon 7500 обновленный чип RV200. Он представляет из себя R100, перенесенный на техпроцесс 150 нм, за счет чего удалось в полтора раза повысить частоту ядра. Использование памяти более быстрой DDR позволило увеличить полосу пропускания до 7.3 ГБ/c.

А вот основой Radeon 8500 стала действительно новая разработка. Чип R200 получил движок Charisma Engine II, в котором нестандартные средства для работы с геометрией сменили два вершинных шейдера. На каждый из четырех конвейеров приходится по одному блоку ROP и пиксельному шейдеру версии 1.4, которые позволяют заявлять о полной поддержке DirectX 8.1. Таким образом, R200 обладает более совершенной программируемой шейдерной архитектурой, чем его конкурент NV20.

Технологии: Эволюция графики "AMD/ATI" путь развития Часть Первая Компьютерное железо, Компьютер, Технологии, Инженер, IT, Игровой ПК, Видеокарта, Производство, Изобретения, Компьютерная графика, Компьютерные игры, История развития, Электроника, Процессор, AMD, Nvidia, Микроконтроллеры, Длиннопост

ГП получил поддержку TruForm — технологии, позволяющей увеличивать геометрическую сложность сцены посредством разбиения существующих полигонов на более мелкие. По сути, TruForm является собственной реализацией N-патчей DirectX 8 и предком современной тесселяции. Чип обзавелся поддержкой адаптивного сглаживания SmoothVision. А 128-битная шина памяти с быстрыми чипами DDR позволили достигнуть пропускной способности в 8.8 ГБ/c. Благодаря обновленной технологии Hyper-Z II чип более эффективно распоряжается ей по сравнению с предшественниками.

Технологии: Эволюция графики "AMD/ATI" путь развития Часть Первая Компьютерное железо, Компьютер, Технологии, Инженер, IT, Игровой ПК, Видеокарта, Производство, Изобретения, Компьютерная графика, Компьютерные игры, История развития, Электроника, Процессор, AMD, Nvidia, Микроконтроллеры, Длиннопост

Radeon 8500 и его слегка замедленная версия 8500LE навязали соперничество семейству GeForce 3, хотя топовая модель Ti 500 была немного быстрее. Обе карты выпускались в двух версиях — с 64 и 128 МБ памяти.

Radeon 9700: первый DirectX 9

Следующих новинок ATI пришлось ждать целый год. К августу 2002 года семейство GeForce 4 уже распространилось, и пара новых моделей Radeon 9000 как раз противопоставлялась младшим GeForce 4 MX.

ATI не стала повторять ошибки NVIDIA с отсутствием шейдеров в бюджетной видеокарте. Чип RV250 получил вдвое меньше вершинных блоков и TMU по сравнению с R200, но сохранил 128-битную шину памяти, а также четыре пиксельных конвейера с ROP и пиксельным шейдером на каждом. Это позволяло ему быть быстрее конкурента при сохранении поддержки новых игр, использующих DirectX 8. А вот прямого конкурента GeForce 4 Ti компания разрабатывать не стала. Эпоха DirectX 8 подходила к закату, и ATI решила сосредоточить силы на новом чипе с поддержкой DirectX 9, который превосходил бы текущий топ NVIDIA и составил конкуренцию следующему. Встречайте, первая карта с поддержкой DirectX 9: Radeon 9700 Pro на базе чипа R300.

Технологии: Эволюция графики "AMD/ATI" путь развития Часть Первая Компьютерное железо, Компьютер, Технологии, Инженер, IT, Игровой ПК, Видеокарта, Производство, Изобретения, Компьютерная графика, Компьютерные игры, История развития, Электроника, Процессор, AMD, Nvidia, Микроконтроллеры, Длиннопост

R300 получил восемь пиксельных и четыре вершинных шейдера, которые значительно переработаны для поддержки шейдерной модели 2.0. Компанию им составляют восемь блоков ROP, столько же TMU и 256-битная шина памяти DDR с пропускной способностью 17.3 ГБ/c. Чип получил более качественную анизотропную фильтрацию и поддержку шины AGP 8x. Теперь доступно адаптивное сглаживание SmoothVision 2.0 на базе MSAA, которое работает значительно быстрее более ранних методов. Из-за энергопотребления, превысившего возможности шины AGP, карте впервые понадобилось дополнительное питание с помощью разъема MOLEX.

Технологии: Эволюция графики "AMD/ATI" путь развития Часть Первая Компьютерное железо, Компьютер, Технологии, Инженер, IT, Игровой ПК, Видеокарта, Производство, Изобретения, Компьютерная графика, Компьютерные игры, История развития, Электроника, Процессор, AMD, Nvidia, Микроконтроллеры, Длиннопост

В октябре 2002 года линейка карт на чипе расширяется обычным Radeon 9700 и парой Radeon 9500/9500 Pro. Первая модель отличается от 9700 более низкими частотами, а 9500 Pro — еще и урезанной до 128 бит шиной. Radeon 9500 без приставки Pro «пострадал» больше всего: количество пиксельных шейдеров, ROP и TMU ему урезали вдвое. Впрочем, карты этого поколения славились возможностью разблокировки нерабочих блоков: программно или с помощью перепаивания резисторов. Таким образом, благодаря ловкости рук младшую карту можно было превратить в аналог старшей.

Ответ NVIDIA последовал лишь в начале 2003 года. Линейка GeForce FX5000 также поддерживала DirectX 9 и технически даже в чем-то превосходила оппонента из-за усовершенствованной шейдерной модели 2.0a. Однако перегнать топовые Radeon 9700 в новом API первые карты серии не смогли. Лишь в мае 2003 года с выходом FX5900 на чипе NV35 картам на базе R300 пришлось «подвинуться». Однако за два месяца до этого на рынке уже появился его преемник R350 с более высокими частотами.

R350 представляет собой оптимизированную и разогнанную версию R300. На нем основан обновленный флагман компании — Radeon 9800 Pro. Помимо более высоких частот чипа и памяти, карты отличаются объемом памяти: модели с 64 МБ теперь нет, зато доступна новая с 256 МБ. Старшая версия встречается с как с памятью DDR, так и с новой GDDR2. Вместе с топом был выпущен и Radeon 9800SE, повторяющий конфигурацию Radeon 9500. Чуть позже появились модели Radeon 9800 и 9800XL с полным чипом, но сниженными относительно флагмана частотами.

Технологии: Эволюция графики "AMD/ATI" путь развития Часть Первая Компьютерное железо, Компьютер, Технологии, Инженер, IT, Игровой ПК, Видеокарта, Производство, Изобретения, Компьютерная графика, Компьютерные игры, История развития, Электроника, Процессор, AMD, Nvidia, Микроконтроллеры, Длиннопост

За средний сегмент «отдувался» упрощенный чип RV350, представляющий собой «половинку» от R300/350 по всем блокам. Память у него 128-битная. На RV350 основаны Radeon 9600 Pro, 9600 и 9550. Radeon 9550 SE и 9600 SE также используют RV350, но с урезанной до 64 бит шиной памяти. Бюджетные модели серии Radeon 9200 базируются на RV280, который поддерживает лишь DirectX 8.1 — это реинкарнация чипа RV250, использовавшегося в Radeon 9000.

В сентябре 2003 года выходит Radeon 9800XT на чипе R360, который отличается от R350 только частотой. Ядро достигает 412 МГц, а память — пропускной способности в 23.2 ГБ/c, что помешало стать лидером выпущенной спустя месяц GeForce FX 5950 Ultra. Со сниженной частотой R360 нашел применение и в поздних Radeon 9800 Pro.

Radeon X: появление CrossFire

Карты следующего поколения вышли у конкурентов почти одновременно. В конце апреля 2004 года NVIDIA выпускает первых представителей топовой линейки GeForce 6800, на что ATI в начале мая отвечает новинками серии Radeon X800. В отличие от NVIDIA, которая использовала чип-мост HSI для реализации карт с новомодным интерфейсом PCI-E, ATI создала две версии одного чипа с разными интерфейсами — R420 (AGP 8x) и R423 (PCI-E x16). Отличались и способы подвода дополнительного питания: для AGP-карт — пара MOLEX, для PCI-E карт — один разъем 6-pin.

Внутреннее устройство новых ГП ATI достаточно схоже с конкурирующим NV40 от NVIDIA. Пиксельные шейдеры имеют по два вычислительных векторных ALU. Четыре таких шейдера и четыре TMU сгруппированы в пулы квадов, которые работают с фрагментами картинки размером 2х2 пикселя. В чипе четыре пула, что дает 16 пиксельных шейдеров и 16 TMU. Компанию им составляют шесть вершинных шейдеров и 16 блоков ROP — точно так же, как и в NV40.

Технологии: Эволюция графики "AMD/ATI" путь развития Часть Первая Компьютерное железо, Компьютер, Технологии, Инженер, IT, Игровой ПК, Видеокарта, Производство, Изобретения, Компьютерная графика, Компьютерные игры, История развития, Электроника, Процессор, AMD, Nvidia, Микроконтроллеры, Длиннопост

Интерфейс памяти 256-битный. Используется GDDR3, пропускная способность которой у топовой модели достигает 35.8 ГБ/c. Чип получил поддержку шейдеров версии 2.0b, временного сглаживания на базе MSAA и метода компрессии текстур 3Dc, предназначенного для сжатия карт нормалей. Благодаря 130 нм техпроцессу потолок частот ГП удалось увеличить до 520 МГц, что вкупе с увеличенным количеством блоков ускорило новые карты до двух раз по сравнению с прошлым поколением.

Старшие модели X800 XT и X800 XT PE были наравне с конкурентной GeForce 6800 Ultra в большинстве новых игр, но иногда уступали в старых проектах. Для обеспечения превосходства по производительности в сентябре 2004 года ATI выпускает линейку Radeon X850 на чипе R480 (а через полгода — на его AGP-клоне R481), который является оптимизированным и разогнанным вариантом R420/R423. Модели серии X850 первыми получили поддержку технологии CrossFire, которая позволяла объединить две карты для увеличения графической производительности. Для этого требовалась особая карта CrossFire Edition, которая соединялась с обычной картой посредством специального кабеля.

Технологии: Эволюция графики "AMD/ATI" путь развития Часть Первая Компьютерное железо, Компьютер, Технологии, Инженер, IT, Игровой ПК, Видеокарта, Производство, Изобретения, Компьютерная графика, Компьютерные игры, История развития, Электроника, Процессор, AMD, Nvidia, Микроконтроллеры, Длиннопост

Одновременно был выпущен чип R430, представляющий еще одну вариацию R420/R423, перенесенную на 110 нм техпроцесс. Он стал основой обычной X800, а также X800XL — первой карты компании, получившей разновидность с 512 МБ памяти. ГП обладает нативной поддержкой интерфейса PCI-E, а для реализации AGP-вариантов используется чип-мост Rialto.

Таким образом, линейка Radeon X800 стала довольно обширной: различные модели основывались на четырех разных чипах R4xx, отличаясь между собой частотами и количеством активных блоков. Основная масса карт оснащалась 256 МБ памяти, хотя встречались и модели со 128 МБ.

Вместе с серией X850 ATI запускает бюджетные линейки карт X600 и X300. В их основе чипы RV380 и RV370, которые являются слегка улучшенным вариантом RV350, применявшимся в прошлых сериях Radeon 9600 и 9500. В отличие от предшественника, оба чипа обладают интерфейсом PCI-E, а RV370 вдобавок производится по более тонкой 110 нм технологии. Интересной особенностью RV370 была поддержка технологии HyperMemory, позволяющей использовать для нужд ГП часть системной оперативной памяти. В середине 2005 года на базе RV370 была выпущена пара бюджетных карт Radeon X550 c интерфейсом AGP.

В декабре 2004 года компания анонсирует первые модели линейки X700 на базе нового чипа RV410. Он является «половинкой» R430 по всем блокам, за исключением вершинных шейдеров — их, как и в старшем чипе, шесть штук. Шина памяти 128-битная. Основная масса карт X700 получила полный чип, упрощению подверглись лишь модели с приставками LE и SE: обе получили 64-битную шину, а вторая — еще и урезанный по блокам чип. В январе 2007 года на базе X700 SE были выпушены две бюджетные модели серии Radeon X550 с интерфейсом PCI-E.

Radeon X1000: запоздалый DirectX 9.0c

Большинство карт прошлой серии были немного быстрее GeForce 6000, но в козырях последней была поддержка шейдеров версии 3.0, которые спустя год после выхода конкурирующих линеек понемногу станут появляться в играх. В июле 2005 NVIDIA выпустила следующее поколение карт GeForce 7000. Тогда ATI стало окончательно ясно, что пора прекращать делать ставку на шейдеры 2.x и начинать ориентироваться на третьи шейдеры.

Технологии: Эволюция графики "AMD/ATI" путь развития Часть Первая Компьютерное железо, Компьютер, Технологии, Инженер, IT, Игровой ПК, Видеокарта, Производство, Изобретения, Компьютерная графика, Компьютерные игры, История развития, Электроника, Процессор, AMD, Nvidia, Микроконтроллеры, Длиннопост

ATI запустила новую линейку карт с поддержкой DirectX 9.0c и шейдеров версии 3.0 в октябре 2005 года, представив сразу семь видеокарт линеек X1800, X1600 и X1300. В их основе три разных чипа: бюджетный RV515, средний RV530 и старший RV520. Все ГП получили поддержку адаптивного сглаживания прозрачных текстур.

Строение чипов подобно предшественникам, хотя есть и несколько важных отличий. У топового чипа R520 все также четыре пула квадов. В каждом из которых четверка TMU и пиксельных шейдеров, которые стали сложнее: теперь в каждом из них, помимо пары векторных ALU, имеется еще два скалярных ALU для простых операций. Используются пулы более эффективно благодаря новому блоку Ultra-Threading Dispatch Processor, который распределяет работу между ними.

Технологии: Эволюция графики "AMD/ATI" путь развития Часть Первая Компьютерное железо, Компьютер, Технологии, Инженер, IT, Игровой ПК, Видеокарта, Производство, Изобретения, Компьютерная графика, Компьютерные игры, История развития, Электроника, Процессор, AMD, Nvidia, Микроконтроллеры, Длиннопост

Число вершинных шейдеров в чипе возросло до восьми, хотя блоков ROP 16. Контроллер памяти получил внутреннюю двунаправленную кольцевую 512-битную шину, позволившую передавать данные с меньшими задержками, но внешняя шина памяти осталась 256-битной. Применение более быстрых чипов GDDR3 увеличило полосу пропускания до 48 ГБ/c. Чипы производились по 90 нм техпроцессу, что позволило достичь 625 МГц ядру топовой модели.

R520 лег в основу топовой линейки Radeon X1800. Карты на его основе оснащались 256 или 512 МБ памяти и полным чипом, за исключением вышедшей позднее X1800 GTO с одним отключенным пулом квадов. В отличие от прошлой линейки, в этот раз топовые модели обоих производителей получились примерно равными по силам: 7800GTX и X1800 XT опережали друг друга с переменным успехом.

Средний чип RV530 получил 12 пиксельных и 5 вершинных шейдеров, 4 ROP и 4 TMU. Шина памяти у него 128-битная, возможно использование как GDDR3, так и DDR2. ГП стал основой пары моделей серии Radeon X1600. Младший RV515 имел аналогичную шину памяти и столько же блоков ROP и TMU, но намного меньше шейдеров: 4 пиксельных и 2 вершинных. Чип применялся в линейке карт Radeon X1300, младшая из которых получила урезанную до 64 бит шину. Карты линейки использовали память DDR или DDR2.

В январе 2006 года компания решает усилить свои позиции запуском карт новой серии Radeon X1900. Они базируются на новом чипе R580, основное отличие которого от R520 — увеличение количества пиксельных шейдеров с 16 до 48. Это обеспечило рост производительности в новых играх со сложной графикой. Спустя два месяца последовал ответ от NVIDIA в лице 7900 GTX, который вновь уравнял обоих конкурентов.

Технологии: Эволюция графики "AMD/ATI" путь развития Часть Первая Компьютерное железо, Компьютер, Технологии, Инженер, IT, Игровой ПК, Видеокарта, Производство, Изобретения, Компьютерная графика, Компьютерные игры, История развития, Электроника, Процессор, AMD, Nvidia, Микроконтроллеры, Длиннопост

В конце августа ATI выпускает первую модель серии Radeon X1950 на чипе R580+. Главное отличие от обычного R580 — новая память GDDR4, которая позволила увеличить полосу пропускания до 64 ГБ/c. В октябре выходят еще две карты серии на этом чипе, а также модели на новых 80 нм чипах.

RV570 и RV560 представляют собой упрощенный R580 на новом техпроцессе 80 нм с меньшим количеством активных блоков — 36 пиксельных шейдеров и 12 ROP/TMU у старшей модели и 24 пиксельных шейдера вкупе с 8 ROP/TMU у младшей. Новые чипы получили отдельный интерфейс для CrossFire, благодаря которому отпала необходимость в главной карте и стало возможным объединить любые модели с поддержкой технологии и одинаковым ГП специальными мостиками.

Технологии: Эволюция графики "AMD/ATI" путь развития Часть Первая Компьютерное железо, Компьютер, Технологии, Инженер, IT, Игровой ПК, Видеокарта, Производство, Изобретения, Компьютерная графика, Компьютерные игры, История развития, Электроника, Процессор, AMD, Nvidia, Микроконтроллеры, Длиннопост

RV570 стал основой карт X1950 с приставками PRO и GT, RV560 — моделей X1650 с суффиксами GT и XT, а также X1700 SE.

Бюджетные чипы также получили обновления по 80 нм технологии. RV530 превратился в RV535, а RV515 — в RV516. На базе первого была выпущена X1650 PRO, второй нашел применение в X1550 и X1650SE.

Линейка Radeon X1000 стала последней с раздельными пиксельными и вершинными шейдерами. Следующая линейка карт получила суффикс HD, и обзавелась универсальной шейдерной архитектурой.

ПРОДОЛЖЕНИЕ СЛЕДУЕТ...

Показать полностью 20
Компьютерное железо Компьютер Технологии Инженер IT Игровой ПК Видеокарта Производство Изобретения Компьютерная графика Компьютерные игры История развития Электроника Процессор AMD Nvidia Микроконтроллеры Длиннопост
12
10
TechSavvyZone
TechSavvyZone
5 месяцев назад

NVIDIA: "RTX Neural Rendering" Предназначение⁠⁠

NVIDIA: "RTX Neural Rendering" Предназначение Технологии, IT, Компьютерное железо, Компьютер, Nvidia, Компьютерная графика, Видеокарта, Игровой ПК, Электроника, Компьютерные игры, Длиннопост

В последние годы наблюдается бум развития нейросетей. Не прошел он и мимо 3D-графики реального времени. Еще в 2018 году NVIDIA впервые применила нейросеть для работы масштабирования DLSS. А недавно компания представила целый комплекс новых графических технологий, основанных на нейросетевой обработке — Neural Rendering. Что это такое, зачем нужно и как работает?

Новый уровень графики

В начале века 3D-графика в играх развивалась стремительными темпами. Наиболее заметный скачок был совершен с появлением программируемых шейдеров. Благодаря им можно было реализовать сложные графические эффекты, которые ощутимо преображали картинку из набора плоских текстур.

Шейдеры совершенствовались из года в год, принося с собой возможность создавать новые и все более сложные эффекты. Но вычислительной мощности видеокарт не хватало, чтобы использовать все их возможности «по полной» в момент появления. К концу 2000-х развитие шейдеров замедлилось, а видеокарты стали наращивать «мускулы». Благодаря этому еще десяток лет графика развивалась — уже медленнее, но все так же планомерно.

NVIDIA: "RTX Neural Rendering" Предназначение Технологии, IT, Компьютерное железо, Компьютер, Nvidia, Компьютерная графика, Видеокарта, Игровой ПК, Электроника, Компьютерные игры, Длиннопост

С каждым новым поколением ГП разработчикам игр в реальном времени становились доступны эффекты, которые за несколько лет до этого можно было реализовать лишь со скоростью пары кадров в секунду. Поэтому, несмотря на отсутствие «прорывных» технологий, качество графики в играх понемногу росло. Но в 2018 году компания NVIDIA решила, что этот процесс слишком замедлился и настала пора революционных изменений. Тогда она представила технологию трассировки лучей в реальном времени и дебютную серию видеокарт RTX 2000, необходимую для ее работы. В последние шесть лет все усилия разработчиков игр направлены именно на трассировку. Но NVIDIA, кажется, нашла способ сделать графику в играх еще реалистичнее. В январе 2025 года вместе с видеокартами серии RTX 5000 она представила нейронные шейдеры, которые должны стать очередным «столпом» для развития графических технологий в ближайшее время.

NVIDIA: "RTX Neural Rendering" Предназначение Технологии, IT, Компьютерное железо, Компьютер, Nvidia, Компьютерная графика, Видеокарта, Игровой ПК, Электроника, Компьютерные игры, Длиннопост

Что такое Neural Rendering

Ключом к работе технологии масштабирования DLSS стали тензорные ядра, появившиеся в видеокартах серии RTX 2000. С течением времени она дорабатывалась, обеспечивая все более высокое качество. А когда появились линейка RTX 4000, тензорные ядра стали использоваться и для генерации кадров в DLSS 3.

В отличие от этих технологий, концепция Neural Rendering предлагает задействовать тензорные ядра не для всяческих улучшений уже отрендеренных кадров, а для использования подобных расчетов внутри самого конвейера рендеринга. Для этого NVIDIA предлагает следующие «трюки»:

RTX Neural Texture Compression

Сжатие текстур с помощью нейросети. Текстуры анализируются на предмет схожих или повторяющихся фрагментов, чтобы создать их представление в нейронном виде — своеобразный архив из кода. При том же качестве, что у традиционно сжатых, нейронные текстуры занимают до семи раз меньше памяти. Благодаря этому можно «поймать двух зайцев» одновременно: и качество самих текстур увеличить, и в небольшие объемы видеопамяти вписаться.

NVIDIA: "RTX Neural Rendering" Предназначение Технологии, IT, Компьютерное железо, Компьютер, Nvidia, Компьютерная графика, Видеокарта, Игровой ПК, Электроника, Компьютерные игры, Длиннопост

RTX Neural Materials

Использование нейросети для воспроизведения сложных поверхностей. Например, шелка, меха или фарфора. При их традиционной обработке с помощью универсальных шейдеров приходилось идти на компромиссы и упрощения, иначе производительность просаживалась довольно сильно. Тензорные ядра позволяют в несколько раз ускорить эти расчеты, благодаря чему подобные материалы можно сделать реалистичнее без пагубного влияния на FPS.

NVIDIA: "RTX Neural Rendering" Предназначение Технологии, IT, Компьютерное железо, Компьютер, Nvidia, Компьютерная графика, Видеокарта, Игровой ПК, Электроника, Компьютерные игры, Длиннопост

RTX Neural Radiance Cache

Трассировка пути — метод, позволяющий получить более реалистичное освещение, чем обычная трассировка лучей. Но он гораздо сильнее влияет на производительность, потому что видеокарте приходится просчитывать заметно большее количество переотражений лучей от разных поверхностей. Neural Radiance Cache — технология, призванная упростить трассировку пути для оборудования. При ее использовании только лишь пара отскоков лучей от поверхностей просчитывается RT-блоками. Дальнейший процесс возлагается на плечи нейросети. Она динамически обучается после первых «увиденных» отражений, чтобы просчитывать дальнейшие отскоки лучей самостоятельно.

NVIDIA: "RTX Neural Rendering" Предназначение Технологии, IT, Компьютерное железо, Компьютер, Nvidia, Компьютерная графика, Видеокарта, Игровой ПК, Электроника, Компьютерные игры, Длиннопост

Поддержка оборудованием

Главный плюс Neural Rendering в том, что это не проприетарная технология NVIDIA. Его компоненты станут доступны в ближайшем обновлении графического API DirectX в виде функции «Кооперативные векторы» (Cooperative Vectors). При разработке стандарта Microsoft проводила консультации не только с NVIDIA, но и с другими разработчиками графических процессоров для Windows — AMD, Intel и даже Qualcomm. Ожидается, что графика каждого из них будет совместима с Neural Rendering. Но пока нет точной информации, какие это будут поколения видеокарт — нынешние или будущие.

NVIDIA: "RTX Neural Rendering" Предназначение Технологии, IT, Компьютерное железо, Компьютер, Nvidia, Компьютерная графика, Видеокарта, Игровой ПК, Электроника, Компьютерные игры, Длиннопост

Что до NVIDIA, то функции Neural Rendering будут доступны для всех видеокарт семейства RTX — от 2000 до 5000 серии. Но нужно учитывать, что наиболее оптимизированной для нее будет только последняя линейка RTX 5000.

NVIDIA: "RTX Neural Rendering" Предназначение Технологии, IT, Компьютерное железо, Компьютер, Nvidia, Компьютерная графика, Видеокарта, Игровой ПК, Электроника, Компьютерные игры, Длиннопост

Только ее графические чипы имеют аппаратный планировщик AI Management Processor, который эффективно распределяет вычисления между универсальными шейдерными процессорами и тензорными ядрами.

NVIDIA: "RTX Neural Rendering" Предназначение Технологии, IT, Компьютерное железо, Компьютер, Nvidia, Компьютерная графика, Видеокарта, Игровой ПК, Электроника, Компьютерные игры, Длиннопост

У прошлых поколений графики NVIDIA такого планировщика нет, поэтому его функционал будет реализован программно. Вдобавок к этому, их возможности работы с нейронными шейдерами ограничены заметно меньшим темпом тензорных вычислений. У RTX 5000 за счет поддержки низкой точности FP4 он в два с лишним раза выше, чем у RTX 4000 и RTX 3000. А явный аутсайдер в этом плане — дебютная линейка RTX 2000, которая поддерживает лишь FP16.

NVIDIA: "RTX Neural Rendering" Предназначение Технологии, IT, Компьютерное железо, Компьютер, Nvidia, Компьютерная графика, Видеокарта, Игровой ПК, Электроника, Компьютерные игры, Длиннопост

Для эффективной работы нейронных шейдеров линейка RTX 5000 также обзавелась планировщиком переупорядочивания выполнения шейдеров второго поколения (Shader Execution Reordering, SER). Он перегруппировывает различные операции по типам, чтобы они выполнялись на шейдерных процессорах и тензорных ядрах более эффективно.

NVIDIA: "RTX Neural Rendering" Предназначение Технологии, IT, Компьютерное железо, Компьютер, Nvidia, Компьютерная графика, Видеокарта, Игровой ПК, Электроника, Компьютерные игры, Длиннопост

В линейке RTX 4000 этот планировщик тоже присутствует, но работает только с операциями для универсальных шейдерных процессоров. А вот в RTX 3000 и RTX 2000 похожего блока нет вовсе.

Если объединить совокупность всех ограничивающих факторов, то можно сказать следующее: чем новее поколение графического процессора RTX, тем быстрее оно будет работать с функциями Neural Rendering. Скорее всего, в случае со старыми видеокартами эта технология не раскроет всех своих преимуществ из-за слишком медленного темпа вычислений и программной реализации некоторых этапов.

Заключение

Neural Rendering — новая глава в развитии 3D-рендеринга реального времени. Его гибридный подход сочетает объединение традиционных шейдерных вычислений высокой точности (FP32) с работой локальных нейросетей, для которых подходят и вычисления низкой точности (FP4/FP8/FP16). За счет их помощи можно сократить потребление видеопамяти, улучшить качество текстур и сделать технологии трассировки менее затратными для оборудования.

Важно то, что благодаря функции Cooperative Vectors нейронный рендеринг станет стандартной возможностью API DirectX. Поэтому в будущем он будет работать не только на ГП NVIDIA с тензорными ядрами, но и на решениях от AMD, Intel и Qualcomm. Вполне возможно, что многие его функции будут работать и на уже существующем оборудовании. Например, в современных ГП Qualcomm Adreno для этой цели могут использоваться блоки FP16, которых вдвое больше, чем обычных FP32. А в линейке видеокарт AMD RX 7000 вычислительные блоки могут переключаться в режим матричного ускорения, которое как раз подходит для работы с нейронным рендерингом.

NVIDIA: "RTX Neural Rendering" Предназначение Технологии, IT, Компьютерное железо, Компьютер, Nvidia, Компьютерная графика, Видеокарта, Игровой ПК, Электроника, Компьютерные игры, Длиннопост

Однако стоит учитывать, что реализация нейронных шейдеров на графических процессорах, появившихся до концепции нейронного рендеринга, никогда не будет такой же быстрой, как на специально заточенных под это графических архитектурах — таких, как NVIDIA Blackwell в видеокартах RTX 5000. Поэтому рассчитывать на «магическое» повышение качества текстур и повсеместное внедрение трассировки пути в играх ближайшего будущего все-таки не стоит.

Как и в случае с трассировкой лучей в свое время, фишки нейронного рендеринга будут в первую очередь появляться в наиболее технологичных ААА-проектах. А вот станут ли они стандартными в течение нескольких лет учитывая то, что графические процессоры консолей текущего поколения для них не приспособлены — вопрос пока открытый.

Показать полностью 11
Технологии IT Компьютерное железо Компьютер Nvidia Компьютерная графика Видеокарта Игровой ПК Электроника Компьютерные игры Длиннопост
1
Посты не найдены
О нас
О Пикабу Контакты Реклама Сообщить об ошибке Сообщить о нарушении законодательства Отзывы и предложения Новости Пикабу Мобильное приложение RSS
Информация
Помощь Кодекс Пикабу Команда Пикабу Конфиденциальность Правила соцсети О рекомендациях О компании
Наши проекты
Блоги Работа Промокоды Игры Курсы
Партнёры
Промокоды Биг Гик Промокоды Lamoda Промокоды Мвидео Промокоды Яндекс Директ Промокоды Отелло Промокоды Aroma Butik Промокоды Яндекс Путешествия Постила Футбол сегодня
На информационном ресурсе Pikabu.ru применяются рекомендательные технологии