Любой удалённый источник гравитации может испускать гравитационные волны и отправлять сигнал, деформирующий ткань пространства-времени, проявляющий себя как гравитационное притяжение
Одно из тех свойств окружающего мира, с которыми мы просто примиряемся, заключается в ослаблении физических эффектов при отдалении от их источника. Источники света кажутся тусклее, гравитация ослабляется, магниты действую слабее, и т.п. И наиболее часто этот эффект подчиняется закону обратных квадратов – то есть, при удвоении расстояния до источника эффекта он становится в четыре раза слабее. Однако для гравитационных волн это не так, что и удивляет читателя, спрашивающего меня:
Вы утверждали, что:
1) Сила гравитации изменяется по квадратичной зависимости от расстояния.
2) Сила гравитационных волн, обнаруженных LIGO, изменяется прямо пропорционально расстоянию.
Как это сочетается друг с другом?
Это удивляет практически всех людей, впервые сталкивающихся с этим, даже некоторых профессиональных физиков. Но это так! И вот, почему.
Закон всемирной гравитации Ньютона (слева) и закон Кулона для электростатики (справо) почти идентичны. И оба следуют закону обратных квадратов.
Находясь рядом с любой массой Вселенной, мы обычно представляем себе, что она действует на нас гравитационной силой. Вы, конечно, тоже действуете на неё с такой же по величине и противоположной по направлению силой, однако нас больше интересует величина этой силы. По Ньютону, эта сила меняется, как 1/r^2 – ослабляясь с удалением от источника.
Увеличьте расстояние в два раза, и от силы останется только четверть; увеличьте расстояние в 10 раз, и от неё останется только 1%. Мы зовём это законом обратных квадратов – сила уменьшается, как квадрат расстояния. И на больших расстояниях, даже при переходе от Ньютоновского тяготения к Эйнштейновской общей теории относительности, это остаётся верным.
Искривление пространства-времени гравитационными массами в рамках мировоззрения общей теории относительности. На удалении от массы сила изменяется на величину 1/r^2.
Так работает большинство взаимодействий, распространяющихся на большие расстояния. Так работает гравитация. Так работает электрическая сила. И ещё одно явление, с которым вы можете быть знакомы: свет. Любой источник света по Вселенной имеет присущую ему светимость: внутреннюю яркость. Однако то, что мы видим в качестве яркости объекта – и называем видимой яркостью – зависит от расстояния до источника света.
Как зависит яркость от расстояния? Так, как вы могли подозревать: как 1/r^2. Источник испускает фиксированное количество фотонов, квантов света, и количество перехваченных вами фотонов определяет воспринимаемую вами яркость. И хотя наши органы чувств ощущают яркость логарифмически, а не по такому закону, физический показатель яркости ведёт себя именно так.
Взаимосвязь яркости с расстоянием и убывание светимости по закону обратных квадратов
Можно ожидать, что гравитационные волны будут вести себя точно так же. Когда две массы вращаются вокруг друг друга, сближаясь по спирали, сливаясь или как-то ещё двигаясь в изменяющемся гравитационном поле, рождается гравитационное излучение (или гравитационные волны). Эти волны, как и свет, распространяются наружу, покрывая всё пространство, как и следовало ожидать от любой формы излучения.
Гравитационные волны переносят определённое количество энергии, фиксированное при их перемещении. Если вы находитесь на определённом расстоянии, вы испытаете определённую величину воздействия гравитационной волны.
Когда две массы вращаются вокруг друг друга, сближаясь по спирали, сливаясь или как-то ещё двигаясь в изменяющемся гравитационном поле, рождаются гравитационные волны
Но вот, в чём загадка: зависимость этого сигнала от расстояния вовсе не будет равной 1/r^2. Он будет просто обратно пропорционален расстоянию: 1/r. Если вы отдалитесь от источника волн на удвоенное расстояние, сигнал будет слабее в два раза, а не в четыре. Если вы отодвинетесь на расстояние в 10 раз больше, сигнал составит 10% от начального, а не 1%.
Преимущества этого видны сразу: сигнал, подчиняющийся обратному закону, остаётся гораздо сильнее сигнала, подчиняющегося закону обратных квадратов. Это даёт нам надежду на обнаружение сверхдальних гравитационных волн, а если мы построим в 100 раз более чувствительный детектор, мы сможем заглянуть в 100 раз дальше, в отличие от случая со светом, когда в 100 раз более чувствительный детектор позволяет нам заглядывать всего в 10 раз дальше.
Дальность возможностей Advanced LIGO и его способности обнаруживать слияние чёрных дыр. Слияние нейтронных звёзд можно обнаружить на расстоянии в десять раз меньше, и его объём составляет всего 0,1%, однако это событие должно случаться чаще слияния чёрных дыр. Увеличение чувствительности детектора в 10 раз увеличивает расстояние, на которое мы можем заглянуть, в 10 раз, что даёт нам увеличение объёма в 103 – 1000 раз.
Вот, что происходит. Но описание явления не объясняет, почему оно происходит именно так. Конечно, здорово иметь возможность заглядывать так далеко, и что эффект убывает гораздо меньше с расстоянием, чем можно было ожидать. Это увеличивает ваши возможности по дальности, что жизненно важно, если учесть, что гравитационные волны изначально очень слабы.
Но если представить себе свет – электромагнитное излучение – как набор частиц, разброс которых растёт при удалении от их источника, можно представить себе, что его яркость связана с количеством частиц, попадающих в телескоп.
Почему же нельзя представить себе гравитационное излучение в виде набора частиц (к примеру, гравитонов), которые излучаются и таким же образом отдаляются друг от друга? Почему они не будут масштабироваться, как свет?
Иллюстрация слияния двух нейтронных звёзд. Справа показана материя звёзд, слева – искажение пространства-времени вблизи точки столкновения. В случае чёрных дыр сигналов, связанных с материей, не ожидается, однако благодаря LIGO и Virgo, мы можем обнаруживать гравитационные волны.
Во-первых, свет и гравитационные волны фундаментально похожи по следующим причинам. Они:
- переносят энергию,
- распространяются на неограниченные расстояния,
- расходятся наружу в пространство, сохраняя по мере удаления от источника примерно сферическую форму,
- поддаются обнаружению на определённом расстоянии пропорционально величине сигнала.
Геометрия пространства для света и гравитации одинакова, поэтому разница в их поведении должна заключаться в природе сигнала.
Чтобы разобраться в этом, нам нужно понять, в чём гравитация фундаментально отличается от электромагнетизма. Это позволит нам лучше понять, почему гравитационное излучение (наши гравитационные волны) ведёт себя не так, как электромагнитное излучение (свет), при распространении по бескрайним просторам межгалактического пространства.
Анимация, показывающая, как пространство-время реагирует на движение сквозь него массы, демонстрирует, что искривляется не просто какая-то ткань пространства, а всё трехмерное пространство.
Как мы можем создать электромагнитное или гравитационное излучение? Самый простой способ из тех, что можно придумать – спонтанно создать или уничтожить заряд в каком-то участке пространства (спойлер: это не сработает). Внезапное появление или исчезновение заряда создаст излучение весьма определённого типа: монопольное. Монопольное излучение появляется при изменении количества заряда.
Однако сделать этого ни для электромагнетизма, ни для гравитации не получится. В электромагнетизме сохраняется заряд; в гравитации сохраняется масса/энергия. Отсутствие монопольного излучения важно для стабильности Вселенной. Если бы заряд или масса спонтанно появлялись бы или исчезали, то наш мир был бы совершенно другим!
В электромагнетизме при наличии двух типов зарядов движение одного из них или разделение зарядов нейтральной системы порождает дипольное излучение. Гравитация работает по-другому.
Если заряд и масса/энергия сохраняются, тогда следующим шагом будет либо быстро двигать заряды (или массы) туда и сюда, или взять заряды разного знака и изменить расстояние между ними. Это породит то, что мы называем дипольным излучением, изменяющим распределение заряда без изменения его общего количества.
В электромагнетизме это порождает излучение, поскольку движение электрического заряда туда и сюда меняет сразу и электрическое, и магнитное поля. А это важно, поскольку электромагнитная волна – это на самом деле и есть изменение синфазных электрического и магнитного полей, перпендикулярных друг другу. Это простейший способ получить свет, и излучается он привычным вам способом. Свет переносит энергию, и её мы и обнаруживаем – и поэтому объекты кажутся в r^2 раз тусклее, чем есть на самом деле.
Электромагнитная волна и есть изменение синфазных электрического и магнитного полей, перпендикулярных друг другу. Мельчайшая единица (квант) электромагнитного излучения – это фотон. Это разновидность дипольного излучения, возможного в электромагнетизме, но запрещённого в гравитации.
Но в случае гравитации свободно движущаяся масса не порождает гравитационного излучения, поскольку существует правило сохранения для движущихся масс: сохранение импульса. Разделение масс тоже не порождает гравитационного излучения, поскольку центр масс остаётся постоянным. Также существует правило сохранения для масс, движущихся на определённом расстоянии от центра масс: сохранение углового импульса.
Поскольку энергия, импульс и угловой импульс сохраняются, нужно выйти за рамки монопольного и дипольного импульсов; необходимо определённое изменение распределения масс вокруг общего центра масс. Проще всего представить это – взять две массы и закрутить их вокруг общего центра масс, что даст нам то, что мы называем квадрупольное излучение.
Гравитационные волны распространяются в одном направлении, сжимая и расширяя пространство в перпендикулярных направлениях, определяемых поляризацией гравитационной волны.
Амплитуда гравитационного квадрупольного излучения падает как 1/r, что означает, что общая энергия падает, как 1/r^2, как и в случае электромагнитного. Однако тут срабатывает фундаментальное отличие гравитации и электромагнетизма. Есть большая разница между тем, что можно физически обнаружить при квадрупольном или дипольном излучении.
При электромагнитном (дипольном) излучении, когда фотоны сталкиваются с детекторами, они поглощаются, вызывая изменение уровня энергии, и это изменение – которое падает, как 1/r^2 – и есть наблюдаемый сигнал. Поэтому объекты выглядят тусклее по закону обратного квадрата.
Гравитационное (квадрупольное) излучение не поглощается детектором напрямую. Оно заставляет объекты сдвигаться или расходиться пропорционально амплитуде волны. И хотя энергия падает, как обратный квадрат, амплитуда падает, как 1/r. Поэтому гравитационные волны ослабляются по закону, отличному от электромагнитных.
Детектор гравитационных волн Virgo. Это гигантский лазерный интерферометр Майкельсона с плечами в 3 км длиной и двумя четырёхкилометровыми детекторами LIGO.
Поэтому нам требуется такая невообразимая чувствительность, когда мы пытаемся измерять гравитационную волну. Хотя она переносит огромное количество энергии, её амплитуда чрезвычайно мала. Первая обнаруженная нами гравитационная волна была испущена в результате слияния двух чёрных дыр, произошедшего за 0,2 сек и кратковременно испустившего больше энергии, чем все звёзды в обозримой части Вселенной, вместе взятые.
Но полученная нами амплитуда сжала и расширила всю Землю на величину порядка трёх диаметров протонов. Энергия была огромной и падала, как 1/r^2, но мы не можем обнаружить энергию гравитационных волн. Мы можем обнаружить только их амплитуду, которая к счастью падает только как 1/r, что очень хорошо.
Когда два плеча сохраняют абсолютно одинаковую длину и через них не проходят гравитационные волны, сигнал равен нулю, а картина интерференции не меняется. С изменением длин плеч сигнал колеблется, а интерференция предсказуемым образом меняется со временем.
Будущее гравитационно-волновой астрономии стало ярким с тех пор, как мы смогли улавливать эти крохотные амплитуды. Уже сейчас LIGO и Virgo готовятся к третьему эксперименту с гораздо более чувствительными параметрами. Мы ожидаем, что они будут выдавать не менее одной новой гравитационной волны в неделю, и возможно, по одному новому источнику в день.
Но если бы мы как-то смогли обнаруживать не амплитуду, а энергию, это произвело бы революцию. Даже самый слабый источник гравитационных волн из всех, что мы видели, слияние нейтронных звёзд в 2017 году, передало к нам больше энергии, чем передаёт электромагнитного излучения самая яркая звезда в нашем небе, Сириус.
Гравитационные волны – совершенно новый тип астрономии, и наибольшее значение для нас имеет их амплитуда. Излучение может фундаментально отличаться по своей природе от привычного нам света, но как только мы выяснили, как его обнаруживать, назад поворачивать уже не стоит. Теперь мы можем исследовать всю Вселенную через совершенно новую форму энергии.
Источник / Мои переводы