Горячее
Лучшее
Свежее
Подписки
Сообщества
Блоги
Эксперты
Войти
Забыли пароль?
или продолжите с
Создать аккаунт
Регистрируясь, я даю согласие на обработку данных и условия почтовых рассылок.
или
Восстановление пароля
Восстановление пароля
Получить код в Telegram
Войти с Яндекс ID Войти через VK ID
ПромокодыРаботаКурсыРекламаИгрыПополнение Steam
Пикабу Игры +1000 бесплатных онлайн игр Битва героев: RPG - увлекательная игра в жанре РПГ, позволяющая окунуться в невероятный фэнтезийный мир, полный приключений и захватывающих сражений.

Битва Героев: RPG

Приключения, Фэнтези

Играть

Топ прошлой недели

  • solenakrivetka solenakrivetka 7 постов
  • Animalrescueed Animalrescueed 53 поста
  • ia.panorama ia.panorama 12 постов
Посмотреть весь топ

Лучшие посты недели

Рассылка Пикабу: отправляем самые рейтинговые материалы за 7 дней 🔥

Нажимая «Подписаться», я даю согласие на обработку данных и условия почтовых рассылок.

Спасибо, что подписались!
Пожалуйста, проверьте почту 😊

Помощь Кодекс Пикабу Команда Пикабу Моб. приложение
Правила соцсети О рекомендациях О компании
Промокоды Биг Гик Промокоды Lamoda Промокоды МВидео Промокоды Яндекс Маркет Промокоды Пятерочка Промокоды Aroma Butik Промокоды Яндекс Путешествия Промокоды Яндекс Еда Постила Футбол сегодня
0 просмотренных постов скрыто
328
Neo3939
Исследователи космоса

Вакуум⁠⁠1

10 месяцев назад
Перейти к видео
Владимир Сурдин Вакуум Астрономия Видео Вертикальное видео Короткие видео
33
1944
TriggerAuto
TriggerAuto
Видео: Как это сделано

Продолжение поста «Китайцы решили проблемы транспортировки»⁠⁠1

10 месяцев назад
Перейти к видео

Многих заинтересовало, как выглядит диван после распаковки. Пожалуйста, смотрите!
Tg - Видео: Как это сделано

Китай Диван Вакуум Вертикальное видео Короткие видео Видео Ответ на пост Telegram (ссылка)
336
813
TriggerAuto
TriggerAuto
Видео: Как это сделано

Китайцы решили проблемы транспортировки⁠⁠1

10 месяцев назад
Перейти к видео

Они производят диваны, которые упаковывают в вакуум и отправляют в Америку как сиденья без каркаса. Затраты на логистику значительно снижаются.

Tg - Видео: Как это сделано

Показать полностью
Китай Диван Вакуум Видео Вертикальное видео Короткие видео Telegram (ссылка) Повтор
165
12
A.Kristina
A.Kristina
Интересные покупки

Топ 15 самых продаваемых товаров в категории Бытовая техника⁠⁠

10 месяцев назад

1) Вакуумный упаковщик 91 017 продано

Вакуумный упаковщик TINTON LIFE 915B + 10 пакетов в подарок. Стоит 889 руб. Ссылка на набор. Также пакеты saengQ для вакуумной упаковки (65 530 заказов).


2) Робот для мойки окон

Робот-мойщик окон Limpiacristales. Стоит 4 822 руб. Ссылка на него


3) Кран с подогревом 33 921 продано

Водонагревательный кран с подогревом + душ. Стоит 1 366 руб. Ссылка на него


4) Отпариватель для одежды 28 661 продано

Ручной отпариватель для одежды SaengQ, 1500 Вт. Стоит 7 349 руб. Ссылка на него


5) Электрическая кофеварка. 20 005 продано

Портативная беспроводная электрическая кофеварка для эспрессо. Стоит 4 699 руб. Ссылка на неё


6) Пылесос. 19 974 продано

Беспроводной ручной -пылесос ili70/H80, 21 кПа. Стоит 9 534 руб. Ссылка на него


7) Сушилка для обуви. 19 735 продано

Сушилка для обуви электрическая. Стоит 719 руб. Ссылка на неё


8) Увлажнитель воздуха. 19 716 руб.

Мини-увлажнитель воздуха с большим объемом тумана и наличием USB. Стоит 377 руб. Ссылка на него.


9) Насос для бутылей. 18 016 продано

Насос для бутылки с водой HiPiCok, 19 литров, USB-зарядка. Стоит 1 014 руб. ссылка на него


10) Ионизатор воздуха. 17 980 продано

Ионизатор воздуха. Обеспечивает максимально эффективную концентрацию отрицательных аэроионов, создает в помещении атмосферу, имитирующую морской и горный воздух. Стоит 2 099 руб. Ссылка на него


11) Робот-пылесос. 16 184 продано

Беспроводной робот-пылесос LIECTROUX C30B для полов. Стоит 14 591 руб. ссылка на него


12) Кухонный комбайн. 13 581 продано

Кухонный комбайн (блендер) 3HP, 2200 Вт. Стоит 8 099 руб. ссылка на него


13) Электрический плед. 10 352 продано

Электрическое греющее одеяло 120x150см. Стоит 1 399 руб. Ссылка на неё


14) Машинка для удаления катышков . 9 233 продано

Машинка Xiaomi Mijia для удаления катышков и ворса. Стоит 1 480 руб. Ссылка на неё


15) Складной чайник. 9 003 продано

Портативный мини-складной электрический чайник 0,6 л, 600 Вт. Стоит 1 449 руб. Ссылка на него


16) Машина для уничтожения пылевых клещей. 8 344 продано

Циклонный пылесос Xiaomi Mijia для уничтожения клещей с UV-стерилизацией. Стоит 4 121 руб. Ссылка на него


17) Пини-пароварка. 8 031 продано

Многофункциональная электрическая мини-пароварка Balashov. Стоит 1 252 руб. Ссылка на неё


18) Соковыжималка. 7 651 продано

Медленная соковыжималка MIUI. Стоит 9 576 руб. Ссылка на неё


19) Измельчитель пищевых отходов. 7 525 продано

Электрический измельчитель пищевых отходов для кухонной мойки. Стоит 9 026 руб. Ссылка на него.


20) Вытяжной вентилятор

Перейти к видео

4-дюймовый вытяжной вентилятор 220 В. Стоит 2 098 руб. Ссылка на него.

Показать полностью 19 1
AliExpress Товары Китайские товары Электроника Бытовая техника Гаджеты Подборка Вакуум Робот-пылесос Кран Отпариватель Пылесос Увлажнитель воздуха Видео Без звука Короткие видео Длиннопост
1
ImWantToBeAFAT

Вы ведь знаете вакуум?⁠⁠

10 месяцев назад

Вакуум это такое упражнение для уменьшения живота а если его делать наоборот?

Живот Вакуум Текст
7
705
hegny
hegny

Как шуруповёртом ускоритель починить (Часть 2)⁠⁠

10 месяцев назад

В прошлой части мы остановились на том, что фотокатод после нескольких тестов уронили внутрь электронной пушки-резонатора. Ниже приведена схема, из которой должно стать понятно, что и куда упало: тот самый сменный наконечник и отвалился.

Вариантов не оказалось - нужно нагревать весь модуль, транспортировать его в чистую комнату, демонтировать пушку и думать, как жить дальше. В том смысле, что повредилась она или нет. Во вводной части я писал, что даже мельчайшие царапины на внутренней поверхности сверхпроводника могут привести к темновому току или напрямую к квенчу.

А тем временем мы извлекли катодную вставку (уже без катода) и внимательно на нее посмотрели. Причиной потери наконечника оказалась сломанная пружина, которая удерживала катод. На фото ниже стрелка указывает на отсутствующий лепесток пружины.

Наблюдательный читатель сразу же заметит следы разряда на торце держателя и цветное напыление на самом держателе. Это следствие плохого электрического контакта между катодом и держателем. Высокие электрическое поле в пушке приводит к образованию искры в зазоре, которая распыляет поверхность и покрывает всё вокруг тонким слоем металла. Это очень плохо, но в данном случае является вторичной проблемой, которую тоже пришлось решать параллельно (необходимая сила прижима катода к держателю - порядка трёх тонн).

Тем временем мы очень аккуратно демонтировали пушку. Необходимо было её не переворачивать и не трясти, чтобы катод, который лежит внутри полуячейки не елозил и не создавал никаких царапин. Мы надеялись, что серьезных повреждений резонатор не получил, и после извлечения катода пушка будет работать.

Чтобы посмотреть внутрь пушки в чистой комнате, пришлось мудрить установку с маленькой камерой. Обычный эндоскоп не подходит - он смотрит "прямо", а при повороте можно случайно что-нибудь поцарапать. Кроме того, имеющиеся у нас эндоскопы давали не очень хорошее изображение - царапины можно и не рассмотреть. Но за несколько лет до описываемых событий, когда мы строили Европейский лазер на свободных электронах EuXFEL (подземный рентгеновский лазер длиной в 3,5 километра), я уже имел опыт создания систем для внутренней оптической инспекции сверхпроводящих резонаторов, поэтому сразу же прикупил такую малышку (See3Cam - не реклама):

Собрали установку (камера должна быть жестко зафиксирована), всё промыли/продули и заглянули внутрь резонатора:

Катод лежит себе перевернутый как раз на сварном шве (горизонтальная полоса). Темная вертикальная полоса - это отражение катода. Поверхность ниобия, из которого сделан резонатор, электрополированная и "выглядит" как зеркало. А за счет вогнутой формы создает такие вот переотражения в виде полос. Как я писал в предыдущей части, катод имеет форму наперстка (ну или стакана, кому что ближе) и лежит "дном" вниз.

Дальше появился закономерный вопрос: а как этот катод из этой пушки достать? Да так, чтобы не елозить им и не наделать новых царапин. Рука внутрь не влазит. Зажимы, пинцеты тоже. Естественная мысль - применить такое высокотехнологичное устройство (картинка из интернета):

Мы, конечно, не NASA и не марсоход запускаем, но все операции предварительно отрабатываем на макетах. Несколько дней возни с этим инструментом привели нас к выводу о том, что захватить катод, при этом не сдвинув его в сторону, не получится. Придумали использовать затвердевающий силикон, применяемый для создания слепков зубов. Мы с ним ранее уже работали для создания слепков внутренней поверхности ниобиевых резонаторов и, соответственно, проводили много тестов на совместимость материалов и его влияние на параметры резонатора. В общем, у нас было два пакетика одна марка силикона, которую точно можно было не боятся использовать в резонаторе.

Аккуратно вставляем тонкую трубочку в "стакан" катода (весь процесс контролируется только с помощью видеокамеры) и закачиваем в нее немного двухкомпонентного силикона. Стараемся не перелить, чтобы не капнуть на резонатор. Вот так это выглядит:

Потом ждем минут 15, пока силикон застынет, и аккуратно тянем за трубку вверх. Ниже фото уже извлеченного катода.

Цифрами обозначены: 1 - сам катод, 4 - затвердевший силикон, 5 - напыление на катод, о котором я рассказывал в предыдущей части. Это рабочая сторона катода. 6 - ПВХ трубка. Осмотрели с хорошим разрешением место, где лежал катод, и решили, что всё хорошо. Можно промывать деионизованной водой и собирать. Помню, что обратил внимание на странные отсветы от задней стенки пушки, когда фонариком светил. Там было несколько ярких пятен, которые не смещались, если двигать источник света. Близко не посмотреть, но вроде как несколько очень глубоких царапин.

На рисунке ниже фрагмент фотографии задней стенки пушки с отверстием для катода. Слева - фото из чистой комнаты после разборки пушки. Справа - фотография, которая была сделана во время работы модуля камерой-телескопом. Эта камера используется для контроля положения катода при его установке и разрешение у неё не очень хорошее. На пятна на правой тогда фотографии никто внимания не обращал, мало ли всяких отсветов и пятен. Это уже потом мы нашли это старое фото, чтобы разобраться, появились эти следы во время извлечения катода или до.

На фото слева самый яркий дефект обозначен цифрой 1. Менее яркий - цифрой 2. Его не очень хорошо видно на фотографии, но если двигать источник света, то заметно было сразу. Центральный белый круг - это сквозное отверстие, в которое вставляется катод. Синими стрелками обозначены две полоски, которые являются границами кристаллических зёрен - задняя стенка пушки сделана из монокристаллического ниобия. Цветные пятна по всему изображению - это отражения камеры, светодиода на камере и даже людей. Наблюдательный читатель заметит концентрические окружности - это след обработки на токарном станке. После точения поверхность химически полировалась, но небольшие волны остались и хорошо заметны на отражение.

На фото справа видно сам катод, установленный в пушку, и те же самые два ярких пятна-дефекта. Тут я выдохнул, так как это было доказательство того, что не я эти дефекты сделал, извлекая катод. Но получается, что дефекты были там изначально.

И тут мы хором сказали: "Ага!", так как стало ясно, откуда у нас в пушке темновой ток, который мы намеряли во время теста:

На графике зелеными кругами показаны значения без катода, а синими квадратами - с катодом. По горизонтали - напряженность электрического поля в мегавольтах на метр. На верхнем графике показан ток в наноамперах - ток без катода почти 100 наноампер, что ОЧЕНЬ много. Внизу - радиационная доза. Без катода 10 миллизиверт в час - это тоже очень плохо.

Мы-то думали, что просто плохо отмыли резонатор и при сборке внутрь попали пылинки/частички, поэтому всё так "светит". Ну и надеялись при переборке просто получше отмыть и поаккуратней собрать. Оказалось, что у нас там два "жестких" дефекта, которые уж точно не отмыть. Ну и ладно, у нас на подходе вторая пушка, которую уже протестировали (она выдавала рекордные характеристики) и отправили обратно производителю для приварки гелиевого бака.

Вот только, когда мы уже занимались извлечением катода, производитель сообщил, что повредил уже почти готовую пушку. При промывке сверхчистой водой под высоким давлением насадил пушку на сопло. Ниже показана схема и фото такой установки (взято из интернета):

Картинка с сайта Raja Ramanna Centre for Advanced Technology. Как обычно, у меня полно фото с работы, но не специалистам на них ничего не разобрать, приходится в интернете искать.

Картинка с сайта Raja Ramanna Centre for Advanced Technology. Как обычно, у меня полно фото с работы, но не специалистам на них ничего не разобрать, приходится в интернете искать.

Слева показана схема установки HPR (High Pressure Rinsing): деионизованна вода (18 МОм см) подается насосом (100 бар) через фильтр в сопло, которое создает несколько струй, направленных в разные стороны. Резонатор медленно движется вверх-вниз и вращается (или сопло вращается, по-разному делают). Таким образом струи медленно сканируют всю внутреннюю поверхность, очищая ее от любых пылинок. Процесс занимает 6-12 часов, зависит от размера резонатора. Поскольку в нашей пушке есть внутри стенка, то ее нельзя насадить "навылет" на штангу с соплом, а нужно остановиться в нескольких миллиметрах от стенки. Производитель делал отмывку пушки много раз в процессе производства (оно два года длится), но в этот день кто-то установил концевой выключатель на несколько сантиметров дальше, и бездушный робот со всей своей силы насадил пушку на сопло. При этом у него сработало аварийное выключение по замыканию контрольной цепи штанга-резонатор, и он не стал её усиленно гнуть, но от этого не сильно легче. В общем, вот фотография задней стенки:

Черный круг в середине - это катодное отверстие. Дуга над ним - это след контакта с соплом. Расплывчатый черный квадрат - это отражение камеры. По размеру дефекта очевидно, что пушка не пригодна к работе. Итого у нас "страйк" - две пушки из двух имеют дефекты в самый ответственных местах и непригодны к использованию. Весь тридцатимиллионный (это в евро) проект можно закрывать.

Вернемся к первой пушке. Теоретически, можно сделать химическое травление, чтобы полностью убрать или сгладить дефекты. Но оно снимет слой со всей внутренней поверхности резонатора и уменьшит его резонансную частоту. А резонатор уже вварен в титановый бак для жидкого гелия (есть фото в первой части), и значительно перенастроить его на нужную частоту не получится. Запас диапазона работы устройства подстройки частоты у нас был порядка 100-200 килогерц. Это позволяло стравить слой в 10-20 микрометров, но хватит ли этого, чтобы убрать или хотя бы сгладить дефекты?

К тому же, что это за дефекты: царапины/ямки, или выступающие заусенцы/выступы (такое тоже бывает)? Очевидно, нужно их как-то измерить. Как я писал выше, у меня уже была разработанная и проверенная технология получения слепков поверхности резонаторов с помощью зубоврачебного силикона (можно прямо на Пикабу посмотреть). Её мы и решили применить. Осталось только придумать, как налить силикон локально на край катодного отверстия и не заляпать всё вокруг. А там более, не пролить его через катодное отверстие в ячейку заградительного фильтра, откуда вымыть силикон будет очень сложно.

Отрываем Solid Edge и придумываем такую штуку для изготовления слепка поверхности:

Пластиковые детали корпуса (обозначены розовым и зелёным цветом) напечатаны на 3D принтере (куда же без него). На схеме указаны уплотнительные элементы, сделанные из того же затвердевающего силикона. Тут вся хитрость именно в этих уплотнениях. После печати корпуса детали я помещаю её в специальную форму (тоже напечатанную на 3D принтере) и наливаю туда силикон. Он прямо на вставке формирует двойные уплотнительные элементы. На рисунке справа показано, как эта вставка устанавливается на заднюю стенку резонатора (он стоит вертикально). При этом уплотнительные кольца плотно затыкают катодное отверстие пушки (на рисунке в нем головка болта находится) и на плоской стенке тоже ограничивают зону, на которую разольётся силикон. После этого прямо в эту розовую вставку я налил силикон (на правом рисунке он уже налит).

В процессе это выглядит примерно так. Заготовка с уплотнительными элементами:

Это тестовая деталь для отработки на макете, поэтому у нее повреждено уплотнение. Справа виден конец ПВХ трубки, по которой подается жидкий силикон.

Установленная вертикально пушка со вставленной внутрь системой для изготовления слепка. Вверх торчат обмотанный белым скотчем пруток и заполненная голубым силиконом трубка. Шприц с силиконом лежит рядом на столе.

Если заглянуть внутрь, то увидим такое:

После застывания силикона я всё это вытаскиваю за пруток. На следующем фото - готовый силиконовый слепок поверхности.

Теперь вырезаем из слепка нужный нам участок с дефектом и смотрим на него в микроскоп. Да не в простой, а в лазерный конфокальный. Ниже я упрощённо набросал принцип его работы:

Образец освещается лазером через полупрозрачное зеркало. В нашем случае лазер фиолетовый (405 нм), но это не принципиально. От длины волны лазера зависит предельное разрешение, но в данном случае оно нас не интересует. Отраженный от образца свет (зеленые линии) еще раз отражается от зеркала и попадает в камеру. Но перед этим проходит через маленькое отверстие - пинхол. Оно установлено в таком месте, что через него может пройти только свет от тех частей образца, которые лежат в фокальной плоскости объектива. На рисунке такие лучи обозначены зеленым цветом. Лучи, отраженные от частей образца вне фокальной плоскости (например, обозначенные красным), не могут пройти через пинхол. Таким образом, камера будет видеть только ту часть поверхности, которая лежит в фокальной плоскости. Если образец двигать вертикально, то для каждого положения образца можно получить свой "срез" (это не срез в полном смысле. Внутренности образца мы не видим). Т.е. можно сразу же построить карту высот - 3D изображение поверхности. В современных микроскопах образец не двигается, а двигается пинхол. При этом с очень высокой точностью - в десятки нанометров. В итоге можно получить оптическое изображение с нанометровым разрешением по высоте (но только по высоте, горизонтальное разрешение всё равно определяется длиной волны используемого света).

Ниже на картинке изображение дефекта под номером 1:

А вот его трёхмерное изображение:

Сразу же появились кое-какие ассоциации:

Недалеко находился второй дефект. И он был очень похож на первый. Вот оба дефекта в сравнении (все надписи я перевел на русский):

Очевидно, что оба дефекта были сделаны одним "инструментом", который ударился о внутреннюю поверхность. Острые края дефектов указывают на то, что они появились после химической полировки. Ниже для сравнения приведено изображение области вокруг второго дефекта:

Вы можете заметить, что дефекты 4, 5 и 6 "размазаны", т.е. появились до химического травления и большой проблемы не представляют.

Мы долго переписывались с американским производителем первой пушки, но они так и не смогли установить, каким инструментом или частью установки дефекты 1 и 2 могли быть созданы.

Острые края хорошо объясняли высокий темновой ток, который мы получили во время тестирования. Поскольку у нас появилась 3D модель дефектов, мы немедленно провели симуляцию темнового тока. Ниже показана схема расположения дефектов относительно катодного отверстия и сравнение результатов моделирования с изображением "креста", полученным на сцинцилляционном экране во время тестирования:

С дефектами мы разобрались, симуляцией всё подтвердили. Осталось придумать, как всё починить.

Из трехмерного изображения дефекта мы узнали, что его глубина составляет примерно 80 микрометров. Как я ранее уже указал, мы могли себе позволить сделать только 20 микрометров химического травления, чтобы частота резонатора оставалась в допуске. Единственным вариантом было удаление дефекта механической полировкой.

К этому времени я уже сделал слепок дефекта от встречи с соплом во второй пушке:

Глубина дефекта составляет порядка 30 мкм:

Значит и вторую пушку нельзя отремонтировать без механической полировки. В посте уже максимально допустимое количество картинок, поэтому про хитрости полировки (а их там очень много) и тот самый шуруповёрт я расскажу в следующей части.

Сегодня вы узнали, как можно заглядывать в труднодоступные места и аккуратно доставать оттуда различные предметы, как еще можно использовать "зубопротезный" силикон, и разобрались с последним (ну почти) словом техники в световой микроскопии. На все ваши вопросы я с удовольствием отвечу в комментариях.

Показать полностью 24
[моё] Физика Наука Ускоритель Электроны Сверхпроводники Вакуум Научпоп Высокое напряжение Микроскоп Силикон Чужой Пятничный тег моё Длиннопост
101
396
hegny
hegny

Как шуруповёртом ускоритель починить (Часть 1)⁠⁠

11 месяцев назад

Строили мы как-то сверхпроводящий ускоритель-рекуператор. Чтобы понять то, о чем я буду дальше писать, я немного объясню общие принципы работы и устройство такого ускорителя. Вот его схема:

На рисунке видно три ускоряющих модуля (синие), кольцо (которое не кольцо совсем) и поглотитель пучка (справа внизу).

Свой недолгий путь электроны начинают в инжекторе (слева внизу), еще сильнее ускоряются в бустере (второй модуль слева) и инжектируются в основной линак (синий модуль в центре). Линак их всех ускоряет еще сильнее - до 50 МэВ. Эти быстрые электроны не успевают повернуть в поглотитель и улетают по кругу, возвращаясь на вход основного линака. Только прилетают они к нему в противофазе (мы специально так длину кольца подобрали) и поэтому вместо ускорения тормозятся. На схеме с синусоидой показано, как сгустки электронов на вершине синусоиды ускоряются, а в минимумах - замедляются. При замедлении они отдают свою энергию обратно в резонаторы ускорительного модуля и вылетают справа уже замедленные до 6,3 МэВ. Теперь электроны "медленные" (так-то всё равно у них почти скорость света, просто энергия ниже) и не успевают проскочить поворот в поглотитель, где и тормозятся о медный блок. Тут вся идея в том, что энергия, которую отдали "быстрые" электроны при торможении, сразу же используется для ускорения "медленных", которые прилетели из инжектора. Т.е. происходит та самая рекуперация энергии. Сгустки из инжектора идут один за другим с частотой 1,3 ГГц, т.е. каждые 0,77 наносекунды. Конкретно в этом ускорителе нет никакого практического смысла - он просто ускоряет электроны и затем тормозит их же. Его задача - создание и экспериментальная отработка большого числа технологий, необходимых в таких системах.

Мы же с вами в этой статье сосредоточимся на инжекторе. Вот его схема (вид сверху):

В модуле инжектора находится его ключевой компонент - фотоэмиссионная сверхпроводящая пушка. Ну, еще сверхпроводящий соленоид и поглотитель высших мод (ПВМ). К пушке пристыкованы два каплера - антенны ввода мощности по 120 кВт и система крепления катодной вставки (левее пушки).

Вот схема пушки с обвязкой.

А вот так она выглядит без тюнера и каплеров:

Пушка представляет собой простой (ну, не совсем простой) электромагнитный резонатор. Вот он "голый" (это официальный термин, между прочим, - naked cavity), т.е. без гелиевого бака:

Немного познакомимся с устройством. На картинке цифрами обозначены: 1 – катодная труба (это "зад" пушки. В катодную трубу вставляется катодная вставка с самим фотокатодом), 2 – ячейка заградительного фильтра (это полость резонатора, настроенная так, чтобы электромагнитное поле из основного резонатора не уходило в катодную трубу), 3 – полу ячейка, 4 – главная ячейка резонатора, 5 –два порта каплеров (к ним пристыковываются антенны ввода мощности), 6 – пучковая труба, 7 – задняя стенка, 8 – отверстие для фотокатода (в него почти вровень с задней стенкой устанавливается фотокатод).

А вот сама катодная вставка, которая сзади вставляется в пушку:

Эта штука целиком вставляется в катодную трубу резонатора. Тут цифрами обозначены: 1 – транспортировочный стержень (с его помощью катодную вставку устанавливают в пушку. После этого стержень убирается), 2 – керамический тепло- и электроизолятор, 3 – фильтр Петрова (хитро посчитанная форма металлического корпуса для создания резонаторных полостей, служащих индукционными и емкостными элементами фильтра), 4 – байонетная пружина, 5 – держатель катода, 6 – фотокатод.

На самом деле держатель катода (5) внутри полый и имеет еще несколько коаксиальных тяг и пружин. Их задача сильно прижимать катод к держателю для его охлаждения и обеспечения электрического контакта:

Вот тот красный цилиндр справа и есть фотокатод. Это молибденовый цилиндр, на торец которого напылен слой материалов с высоким квантовым выходом. Ниже фото торца катода после напыления материалов:

В нашем случае напылено покрытие из цезия-калия-сурьмы (K2CsSb). Но бывают и другие (см. график ниже).

Тут видно, что даже для лучших материалов квантовый выход не превышает 20%. И даже это даётся очень дорого - напыление в сверхвысоком вакууме, хитрый график нагрева и отжига для формирования правильного химического соединения. Транспортировка из синтезирующей лаборатории в ускоритель в специальном вакуумном "чемодане". И при всём при этом готовое напыление "живёт" всего неделю при нашем сверхвысоком вакууме (который очень даже ничего себе).

Итак, фотокатод устанавливается в резонатор-пушку. В резонатор через антенны-каплеры подается СВЧ мощность. Через пучковую трубу на катод светит ультрафиолетовый лазер. Лазер выбивает электроны из фотокатода. Электроны сразу же подхватываются электромагнитным полем, ускоряются в полу ячейке, потом влетают в основную ячейку, где ускоряются уже почти до скорости света, и вылетают из резонатора. Примерная схема того, как это работает:

На картинке катод установлен в резонатор. Правее резонатора красным показан сверхпроводящий соленоид (магнитная катушка). Он выполняет роль магнитной линзы - фокусирует электронный пучок. Красными и желтыми линиями показаны границы электронного пучка для разных режимов.

Работает вся эта красота на частоте 1,3 ГГц при температуре 1,8 К (Кельвинов. Это -271,35 градусов Цельсия) и вакууме порядка 5e-11 мбар. При этом катодная вставка целиком достается и устанавливается без необходимости нагревать модуль или прерывать вакуумную откачку - очень замороченное устройство. Резонатор сверхпроводящий - сделан из чистейшего ниобия. Собственная добротность у него при рабочей температуре порядка 1e10. Т.е. собственные потери составляют одну десятимиллиардную.

Напряженность электрического поля на внутренней поверхности резонатора порядка 40-50 МВ/м (мегавольт на метр). При такой напряженности поля электроны вылетают из любой шероховатости или пылинки. И уж тем более из любой царапины. Эффект называется автоэлектронной (полевой )эмиссией (да-да, "любимые" всеми студентами Фаулер с Нордгеймом и Шоттки с его эффектом). Для правильной работы ускорителя электроны должны вылетать только с фотокатода и только в строго определенное время (именно тогда, когда его облучают импульсом лазера), чтобы попасть в нужную фазу во всех остальных элементах ускорителя. Любые посторонние электроны создают так называемый темновой ток (не тот, который в фотодиодах).

Такие электроны могут не просто лететь в ненужной фазе, но и лететь "вбок" или вообще в противоположную сторону. При ударе о любую поверхность (в самом резонаторе или в трубе в любой другой части ускорителя) разогнанные электроны во-первых, приведут к выделению тепла и тормозного излучения в рентгеновском или гамма-диапазоне, а во-вторых, выбъют из материала еще больше электронов (называемых вторичными электронами), которые в свою очередь продолжат этот праздник.

Если же в стенку они ударятся внутри сверхпроводящего резонатора, то выделение тепла может привести к потере сверхпроводимости - квенчу. В случае отсутствия быстродействующих схем защиты, которые мгновенно (за сотню микросекунд) выведут всю мощность из резонатора, жидкий гелий, охлаждающий резонатор снаружи, вскипит, т.е. превратиться в газ. А газообразные гелий занимает в 900 раз бОльший объем, чем жидкий. В общем, он просто разорвет и резонатор и модуль и трубопроводы. Вот пример разрушений вокруг от квенча сверхпроводника (в данном случае это был магнит) в жидком гелии:

Короче, темновой ток нам совсем не нужен. Когда его чуть-чуть, еще жить можно. Но желательно, чтобы совсем не было.

С основами разобрались, теперь можно к главной истории переходить.В общем, через пару недель тестов полностью собранного модуля катод уронили в пушку. (здесь были мои слова в адрес нескольких выдающихся уже бывших коллег).

Просто разобрать и собрать снова (если ничего не поцарапалось) - около года работы группы инженеров в чистой комнате. А если поцарапалось - нужно ставить вторую пушку, которая как раз находилась в производстве.

Что мы обнаружили при разборке модуля и как потом всё это дело чинили - во второй части. Там будет много картинок, как вы любите. Сюда уже просто не влезет после такого длинного введения. Зато вы теперь неплохо разбираетесь в устройстве ускорителей-рекуператоров и сверхпроводящих инжекторов.

Показать полностью 12
[моё] Физика Наука Ускоритель Электроны Сверхпроводники Гелий Вакуум Лазер Научпоп Высокое напряжение Взрыв Длиннопост
91
13
A.Kristina
A.Kristina
Интересные покупки

На что способен вакуум с AliExpress⁠⁠

1 год назад
Перейти к видео

Интересное устройство для вакуумирования пищевых продуктов, упаковки, хранения, продажи и защиты различный вещей. Стоит около 1 900 руб. Ссылка на аппарат. Также продаются пакетики для него длиной 5 метров, а шириной 20 см и 28 см.

AliExpress Товары Китайские товары Вакуум Вакуумная упаковка Упаковка Хранение Видео
3
Посты не найдены
О нас
О Пикабу Контакты Реклама Сообщить об ошибке Сообщить о нарушении законодательства Отзывы и предложения Новости Пикабу Мобильное приложение RSS
Информация
Помощь Кодекс Пикабу Команда Пикабу Конфиденциальность Правила соцсети О рекомендациях О компании
Наши проекты
Блоги Работа Промокоды Игры Курсы
Партнёры
Промокоды Биг Гик Промокоды Lamoda Промокоды Мвидео Промокоды Яндекс Маркет Промокоды Пятерочка Промокоды Aroma Butik Промокоды Яндекс Путешествия Промокоды Яндекс Еда Постила Футбол сегодня
На информационном ресурсе Pikabu.ru применяются рекомендательные технологии