Горячее
Лучшее
Свежее
Подписки
Сообщества
Блоги
Эксперты
#Круги добра
Войти
Забыли пароль?
или продолжите с
Создать аккаунт
Регистрируясь, я даю согласие на обработку данных и условия почтовых рассылок.
или
Восстановление пароля
Восстановление пароля
Получить код в Telegram
Войти с Яндекс ID Войти через VK ID
ПромокодыРаботаКурсыРекламаИгрыПополнение Steam
Пикабу Игры +1000 бесплатных онлайн игр Погрузись в Свидания с отличиями — романтическую игру «поиск отличий», где ты встречаешь девушек, наслаждаешься захватывающими историями и планируешь новые свидания. Множество уровней и очаровательные спутницы ждут тебя!

Свидания с отличиями

Казуальные, Головоломки, Новеллы

Играть

Топ прошлой недели

  • dec300z dec300z 11 постов
  • AlexKud AlexKud 43 поста
  • DashaVsegdaVasha DashaVsegdaVasha 7 постов
Посмотреть весь топ

Лучшие посты недели

Рассылка Пикабу: отправляем самые рейтинговые материалы за 7 дней 🔥

Нажимая «Подписаться», я даю согласие на обработку данных и условия почтовых рассылок.

Спасибо, что подписались!
Пожалуйста, проверьте почту 😊

Помощь Кодекс Пикабу Команда Пикабу Моб. приложение
Правила соцсети О рекомендациях О компании
Промокоды Биг Гик Промокоды Lamoda Промокоды МВидео Промокоды Яндекс Маркет Промокоды Отелло Промокоды Aroma Butik Промокоды Яндекс Путешествия Постила Футбол сегодня
0 просмотренных постов скрыто
72
p4hshok
p4hshok
5 лет назад
Лига Палеонтологии

У анкилозавров биссектипельт была холодная голова и острый нюх⁠⁠

Рис. 1. Реконструкция головы анкилозавра биссектипельты (Bissektipelta archibaldi), выполненная по аналогии с другими анкилозаврами. Эта группа динозавров была очень консервативной и не отличалась разнообразием форм на протяжении своей истории, которая началась в юрском периоде и длилась до конца мелового периода. В такой консервативности они похожи на черепах, чьим экологическим аналогом анкилозавры, вероятно, являлись. Рисунок Андрея Атучина

Тщательное исследование небольших фрагментов черепов трех особей панцирного динозавра биссектипельты позволило в буквальном смысле заглянуть в мозг этого представителя анкилозавров и увидеть его картину мира. Мозг биссектипельты одновременно изучали две группы палеонтологов: первая — по старинке, с помощью силиконовых слепков, вторая — новаторским методом компьютерного томографирования. Удалось выяснить, что биссектипельты хорошо слышали низкие частоты, обладали отличным обонянием и очень эффективной системой кровообращения в голове, которая помогала бороться с перегревом мозга.

В двадцатых годах XX века в Средней Азии геологи открыли несколько крупных захоронений с остатками динозавров. Все кости были разрозненными и разбитыми, словно скелеты пропустили через мясорубку и разбросали на огромной площади в сотни квадратных километров. Из-за выветривания и эрозии они часто попросту валялись на поверхности, покрываясь пустынным загаром.

Молодой палеонтолог, будущий профессор и писатель И. А. Ефремов писал, что лошадь может целыми днями идти в предгорьях Тянь-Шаня по костям динозавров, среди которых нет ни одной целой: только куски и осколки. Собирать и изучать их в те годы казалось бессмысленной тратой времени. Но постепенно появлялись новые палеонтологические методы и технологии, благодаря которым стало возможно извлекать ценную информацию даже из небольших обломков костей, совершенно затрапезных на вид.

Множество таких обломков собрали в пустыне Кызылкум в Узбекистане, в местонахождении Джаракудук. В восьмидесятых годах там много работал ленинградский палеонтолог Л. А. Несов. Затем началась большая многолетняя экспедиция, в которой участвовали ученые из России, США, Канады, Великобритании и Узбекистана. За десять лет (экспедиция работала с 1997 по 2006 год) в Джаракудуке были добыты десятки тысяч отдельных костей и зубов динозавров и сопутствующей фауны: акул, крокодилов, птиц, птерозавров, млекопитающих. В общей сложности были найдены остатки более ста видов древних позвоночных, которые населяли эти места в последней трети мелового периода, около 90 миллионов лет назад, когда в районе местонахождения проходила береговая линия древнего моря. Богатейшая коллекция напоминала салат: в ней было множество ингредиентов и все представлены крохотными обломками — такими же, по которым за век до этого бродила лошадь Ивана Ефремова.

Один из обломков принадлежал панцирному динозавру (анкилозавру), который после ряда уточнений обособили в новый род и вид, назвав его биссектипельта Арчибальда (Bissektipelta archibaldi) в честь колодца Биссекты и участвовавшего в экспедиции американского палеонтолога Дэвида Арчибальда (James David Archibald). Обломок представлял собой фрагмент черепа из области затылка, размером с большой смартфон. В нем полностью сохранилась мозговая полость (к счастью для ученых, мозг анкилозавров отличался крохотными размерами). Также были найдены еще несколько обломков черепов других особей биссектипельт.

Недавно изучением мозга этого животного занялись сразу две группы ученых. Московский палеонтолог В. Р. Алифанов и нейробиолог С. В. Савельев работали с силиконовым слепком полости одного из образцов и опубликовали свои выводы в 2019 году. Петербургские палеонтологи И. Т. Кузьмин, А. О. Аверьянов, П. П. Скучас, Е. А. Бойцова вместе с американским палеонтологом Х.-Д. Зуэсом (Hans-Dieter Sues) и петербургским школьником И. Петровым построили и изучили компьютерную томографию фрагментов двух черепов. Результаты их исследований увидели свет в июне 2020 года.

Рис. 2. Биссектипельта принадлежала к группе панцирных динозавров анкилозавров, расцвет которых пришелся на меловой период. Анкилозавры были весьма консервативной группой и внешне мало менялись в течение всей эволюционной истории группы. Их внешние покровы окостеневали, зачастую превращаясь в эффектные шипы и колючки. У некоторых анкилозавров хвост заканчивался своеобразной костяной булавой. Крупнейшие особи вырастали до восьми метров в длину, из которых половина приходилась на хвост. Биссектипельта была средних размеров, около трех метров (размер вычислен по аналогии с остатками других анкилозавров). На рисунке для сравнения рядом с биссектипельтой изображен палеонтолог И. А. Ефремов, который отличался почти двухметровым ростом. Рисунок Андрея Атучина

Для изготовления слепка московские исследователи залили полиуретановую резину в мозговые полости биссектипельты через обонятельные и так называемое окципитальное отверстия и сделали тринадцать фрагментарных слепков, которые соединили воедино. «Резиновый» мозг получился размером с указательный палец — 8,5 сантиметров в длину. То есть был крошечным даже по меркам динозавров. Впрочем, об этом было известно и ранее: анкилозавры по соотношению размеров головного мозга и тела занимают среди динозавров второе место с конца после длинношеих завропод — только у этих гигантов мозг в пропорции к телу был еще меньше. Если бы у человека было такое же соотношение размеров мозга и тела, то наш мозг объемом около 1300–1600 см3 располагался бы в теле размером с железнодорожный состав из четырех-пяти вагонов.

Главным органом чувств биссектипельты было обоняние. Доли мозга, отвечающие за обоняние, у нее самые крупные. Неплохо обстояло дело и с анализом вкуса. Вероятно, животное хорошо различало вкус, состав и твердость пищи. Размер полости от соответствующего нерва указывает, что язык был крупным и подвижным. А вот слух биссектипельты оказался, по мнению московских ученых, плохим, равно как и вестибулярный аппарат, что в целом подтвердило взгляд на анкилозавров как на животных с пассивным образом жизни.


Через полгода после публикации московских ученых в свет вышла статья с результатами трехлетней работы петербургских специалистов. Они изучили не только образец, с которым работали московские коллеги, но и еще один фрагмент черепа с мозговой полостью, а также третий обломок черепа, на котором сохранились отпечатки кровеносных сосудов. Исследователи создали виртуальные модели двух мозгов биссектипельты (одну модель сделал школьник Петров, ставший соавтором статьи).


Петербургские специалисты также сделали вывод, что у животного был отличный нюх. По их подсчетам, обонятельные луковицы занимали около 60% размера больших полушарий. А вот слух, по их данным, нельзя было назвать плохим. Короткая и толстая базилярная мембрана на обеих виртуальных моделях указывала, что для одной особи оптимальная частота слуха составляла 682–1002 Гц, для второй — 576 Гц. Верхняя граница слышимости достигала 2889 и 2105 герц соответственно. То есть обе биссектипельты хорошо слышали в нижнем диапазоне частот (100–3000 герц) — как и современные крокодилы.


Это известное правило: чем крупнее животное, тем более низкочастотные звуки оно издает и слышит. Возможно, самые ранние, базальные, анкилозавры слышали высокие звуки, но в ходе эволюции, становясь все крупнее и больше, им пришлось переориентировать слух на низкие частоты. Человеческую речь биссектипельта бы услышала, а писк комара или свист зарянки — нет.

Рис. 3. Трехмерная компьютерная реконструкция эндокаста мозговой полости и сосудов головы анкилозавра Bissektipelta archibaldi. Розовый цвет —внутреннее ухо, желтый — нервы, красный — крупные артерии, синий — вены и мелкие артерии, голубой — эндокаст мозговой полости. Анимация с сайта spbu.ru
Крайне любопытные подробности принесло изучение отпечатков и полостей вен и артерий, которые окружали мозг. Кровеносная сеть в голове биссектипельты оказалась крайне сложной и напоминала кровеносную систему ящериц, а не более близких к динозаврам крокодилов и птиц. Один из авторов исследования, аспирант СПбГУ Иван Кузьмин, сравнил систему этих отпечатков с запутанными железнодорожными путями. При жизни биссектипельты сосуды опутывали мозг сложной сетью, а кровь текла по ним в разных направлениях, эффективно охлаждая мозг. Кузьмин сравнил систему с панамкой. Возможно, более удачным было бы сравнение с постоянным прохладным душем, который охлаждал мозг животного. По словам палеонтолога Александра Аверьянова, охлаждение мозга здесь работало по такому же принципу, как и охлаждение атомного реактора проточной водой. С той разницей, что реактор нагревается изнутри, а температура мозга увеличивалась от внешнего нагрева — от солнечных лучей, которые падали на голову биссектипельты.

Для анкилозавров проблема перегревания мозгов стояла особенно остро, поскольку их череп и костяные выросты-остеодермы были очень толстой и теплоемкой конструкцией.

Подобные охладительные системы в лобно-теменной области ранее реконструировались и для других древних животных, в том числе пермских терапсид (M. F. Ivakhnenko, 2008. Cranial Morphology and Evolution of Permian Dinomorpha (Eotherapsida) of Eastern Europe), но у анкилозавров обнаружены впервые.

Сейчас петербургские специалисты продолжают начатую работу. Намечены еще два больших исследования. Во-первых, они собираются изучить мозговые полости других анкилозавров. Это поможет ответить на вопрос, была ли система охлаждения мозга и чрезвычайно острое обоняние признаком всей группы или отличительной чертой биссектипельты. Во-вторых, продолжается работа с «виртуальными» мозгами других динозавров из Джаракудука — утконосых гадрозавров.

По итогам обоих исследований можно нарисовать следующий портрет биссектипельты. Это был неповоротливый и малоактивный динозавр. Его картина мира состояла в первую очередь из запахов. С помощью тонкого обоняния биссектипельты искали пищу, отслеживали врагов, искали партнеров. Их слух, как и у других крупных животных, был заточен на низкий диапазон, но звуки, возможно, не играли большой роли в жизни животного. Совсем неразвитым оказалось зрение. Можно сказать, биссектипельты были полуслепыми. Специальные системы охлаждения мозга с большой вероятностью указывают на сухопутный образ жизни: для водных животных проблема перегрева не стоит сколько-нибудь остро. Ближайшим экологическим аналогом животного можно назвать крупную наземную черепаху, например, галапагосскую.

Источники:

1) В. Р. Алифанов, С. В. Савельев. Строение мозга и нейробиология панцирного динозавра Bissektipelta archibaldi (Ankylosauridae) из позднего мела Узбекистана // Палеонтологический журнал. 2019. № 3. С. 315–321.

2) I. Kuzmin, I. Petrov, A. Averianov, E. Boitsova, P. Skutschas, H.-D. Sues. The braincase of Bissektipelta archibaldi — new insights into endocranial osteology, vasculature, and paleoneurobiology of ankylosaurian dinosaurs // Biological Communications. 2020. DOI: 10.21638/spbu03.2020.201.

Антон Нелихов
https://elementy.ru/novosti_nauki/433667/U_ankilozavrov_biss...

Показать полностью 3
Палеонтология Наука Динозавры Копипаста Elementy ru Гифка Длиннопост
6
253
p4hshok
p4hshok
5 лет назад
Наука | Научпоп

Цианобактерии Chroococcidiopsis могут извлекать воду прямо из минералов⁠⁠

Считается, что жизнь невозможна без воды. Поэтому оценка потенциально обитаемых миров во Вселенной обычно начинается с поиска ответа на вопрос, возможно ли существование на других планетах воды в жидком виде. Но недавно выяснилось, что цианобактерии Chroococcidiopsis, живущие внутри гипсовой породы в пустыне Атакама, могут существовать и без жидкой воды. Американские ученые разобрались в том, как им это удается. Оказалось, что цианобактерии добывают воду прямо из кристаллов гипса, превращая его в ангидрид.

Рис. 1. Образец гипса из пустыни Атакама. Микроорганизмы (светло-зеленые пятна) живут под тонким слоем породы, который защищает их от солнечной радиации. Для своих нужд они используют воду, входящую в структуру минералов. Изображение из обсуждаемой статьи в PNAS

Биологи и раньше находили в пустынных безводных районах микроорганизмы — цианобактерии, актинобактерии, протеобактерии и нитчатые бактерии класса Chloroflexia, но считалось, что все эти экстремофилы просто могут очень долго обходиться без воды или используют для роста водный конденсат, образующийся по утрам на холодных камнях. Также было замечено, что фотосинтетические бактерии, которым нужен солнечный свет, обычно селятся внутри полупрозрачных пород, таких как гипс. Верхний слой пород защищает их от неблагоприятных условий внешней среды, пропуская при этом свет. Но оказалось, что бактерии выбирают гипсовую породу для жизни не только поэтому.

Американские ученые под руководством Дэвида Кисайлуса (David Kisailus), профессора материаловедения и инженерии Калифорнийского университета в Риверсайде опытным путем доказали, что цианобактерии Chroococcidiopsis, живущие в чилийской пустыне Атакама, способны извлекать из твердой гипсовой породы воду. Сам гипс CaSO4·2H2O при этом переходит в безводный аналог — ангидрит CaSO4.

Цианобактерии Chroococcidiopsis давно привлекали внимание ученых, поскольку долгое время было непонятно, за счет чего они выживают в пустыне. Дело в том, что в течение довольно длительного периода в году относительная влажность в Атакаме находится на уровне ниже 60%, а значение 58,5% считается нижней границей метаболической активности живых существ (A. Stevenson et al., 2016. Aspergillus penicillioides differentiation and cell division at 0.585 water activity).

Эти цианобактерии даже отправляли в космос. Вместе с другими наземными микроорганизмами-экстремофилами в рамках эксперимента EXPOSE-R2 их выставляли за пределы МКС в специальном модуле, в котором имитировались условия на поверхности Марса. Chroococcidiopsis прожили в космосе 533 дня в условиях вакуума, интенсивного ультрафиолетового излучения и экстремальных колебаний температуры (J.-P. de Vera et al., 2019. Limits of Life and the Habitability of Mars: The ESA Space Experiment BIOMEX on the ISS), что говорит о том, что они в принципе могли бы жить на Марсе, продуцируя кислород и создавая первичный почвенный слой. Открытым оставался только вопрос, откуда микроорганизмы будут брать воду.

Изучая образцы гипсовой породы из пустыни Атакама, ученые заметили, что количество ангидрита (обезвоженной формы гипса) в ней коррелирует с концентрацией цианобактерий. Тогда у них и родилась гипотеза о том, что микроорганизмы могут извлекать кристаллическую воду из гипса, вызывая фазовое превращение сульфата кальция.

Вода составляет до 20,8% массы гипса. Молекулы H2О в его кристаллической структуре располагаются между двойными слоями анионов [SO4]2− и катионов Ca2+, легко высвобождаясь при нагревании. Поэтому логично было предположить, что Chroococcidiopsis каким-то образом могут ее использовать. К тому же ранее уже был зафиксирован факт использования кристаллической воды пустынным растением Helianthemum squamatum, произрастающим на гипсовой породе на северо-востоке Испании (A. Escudero et al., 2014. Plant life on gypsum: a review of its multiple facets).

На первом этапе исследования авторы с помощью метода микрокомпьютерной томографии получили подтверждение того, что колонии цианобактерий локализуются в порах приповерхностной зоны гипсовой породы (рис. 1). Более детальные наблюдения на сканирующем электронном микроскопе позволили выявить детали распределения микроорганизмов. Оказалось, что бактерии внутри гипсовой породы распространяются вдоль определенных плоскостей кристаллической решетки (рис. 2).

Рис. 2. Бактерии (зеленые) проникают в гипсовую породу (фиолетовая) вдоль плоскостей кристаллической решетки. Фото сделано с помощью сканирующего электронного микроскопа. Размер по длинной стороне — около 30 мкм. Изображение из обсуждаемой статьи в PNAS
Результаты рентгеноструктурного анализа и инфракрасной спектроскопии показали, что области, колонизированные цианобактериями, сложены ангидритом, а вся остальная порода — гипсом. Чтобы убедиться, что Chroococcidiopsis могут извлекать кристаллическую воду из гипса, переводя его в безводный ангидрит, авторы провели лабораторный эксперимент.

Вырезанные из гипсовой породы образцы размером 0,5×0,8×0,5 мм (купоны) с посевом бактериальной культуры были помещены в условия с разной влажностью. В качестве контрольных образцов выступали купоны гипсовой породы без микроорганизмов. Через 30 дней места развития цианобактерий проявились в виде зеленого фотосинтетического пигмента (рис. 3, слева) и были подтверждены по одновременному присутствию азота и углерода, выявленному по результатам рентгеноспектрального микрокартирования и наблюдениям на сканирующем электронном микроскопе.

Рис. 3. Слева: общий вид колоний цианобактерий, выращенных в гипсовой породе в ходе эксперимента. Справа: колонии цианобактерий (голубые) и биопленки (зеленые) в пористой гипсовой породе (серая). Изображения из обсуждаемой статьи в PNAS
Несмотря на то, что микроорганизмы развились и в сухих и во влажных условиях, ангидрит был зафиксирован только вокруг колоний цианобактерий в «сухих» купонах. «Влажные» купоны и образцы без микроорганизмов были целиком сложены гипсом.

Отсюда ученые сделали вывод о том, что во влажных условиях микроорганизмы используют жидкую воду из своего окружения, а оказываясь в стрессовых условиях, переключаются на другой режим и начинают извлекать кристаллическую воду из твердой породы.

Используя модифицированный электронный микроскоп, оборудованный спектрометром комбинационного рассеяния, авторы изучили взаимодействия между организмами и твердой породой и обнаружили, что для проникновения вглубь минералов цианобактерии выделяют вокруг себя биопленку, содержащую органические кислоты, которые разъедают породу (рис. 3, справа), а распространяются микроорганизмы вдоль плоскостей кристаллической структуры, чтобы легче получить доступ к воде, находящейся между слоями ионов кальция и анионов сульфата.

Ученые наблюдали, как по мере разрастания колонии Chroococcidiopsis выделяют вокруг себя все больше кислотных биопленок, разъедающих породу, что позволяет микроорганизмам проникать дальше между слоями гипса и получать больше воды. Это заставило их предположить, что процесс перехода гипса в ангидрит происходит в два этапа. На первом этапе гипс растворяется органическими кислотами, выделяемыми цианобактериями, распадаясь на кальций, сульфат-ион и воду, а на втором этапе, уже потеряв воду, отлагается в виде ангидрита (рис. 4).

Рис. 4. Стадии преобразования гипса в ангидрит с участием цианобактерий: а — микроорганизмы образуют биопленки на поверхностях кристаллов гипса; b — растворение гипса и высвобождение кристаллической воды; с — на поверхностях кристаллов гипса появляются центры кристаллизации ангидрита; d — разрастающиеся пластинчатые кристаллы ангидрита полностью замещают гипс. Символами (011) и (010) обозначены разные грани кристаллической решетки гипса, между которыми располагается вода. Изображение из обсуждаемой статьи в PNAS
Проверка при помощи сканирующей и просвечивающей электронной микроскопии показала, что так и есть.

В химическом выражении реакция растворения гипса выглядит следующим образом:

Ученые считают, что результаты их исследования не только позволяют снять существенное ограничение в виде наличия жидкой воды для поиска внеземной жизни, но и могут быть использованы для создания новых способов сохранения воды в экстремальных условиях, например, при колонизации человеком других планет.

Источник: Wei Huang, Emine Ertekin, Taifeng Wang, Luz Cruz, Micah Dailey, Jocelyne Di Ruggiero, David Kisailus. Mechanism of water extraction from gypsum rock by desert colonizing microorganisms // PNAS. 2020. DOI: 10.1073/pnas.2001613117.

Владислав Стрекопытов

https://elementy.ru/novosti_nauki/433659/Tsianobakterii_Chro...
Показать полностью 5
Наука Цианобактерии Микробы Копипаста Elementy ru Минералы Длиннопост
41
24
PapaSilver
PapaSilver
5 лет назад

Лось в океане⁠⁠

На фото, сделанном в начале мая, лось принимает соленые ванны в Тихом океане у побережья Камчатки. За купанием его застали инспекторы Кроноцкого заповедника (см. видео). Лось стоял в холодной воде почти час, а после неспешно обсыхал на берегу под лучами солнца еще 20 минут. Его спокойствие было нарушено появлением бурого медведя. Лось побежал вдоль побережья, медведь погнался за ним, и оба они скрылись из вида . Через час медведя снова увидели на прежнем месте. Видимо, охота не удалась, и лосю удалось скрыться.

Лось в океане

Анна Евсеева

https://elementy.ru/kartinka_dnya/1157/Los_v_okeane

Природа Лось Зоология Elementy ru
6
82
p4hshok
p4hshok
5 лет назад
Наука | Научпоп

Агрессивный сосед⁠⁠

На фото сокол сапсан атакует американского бурого пеликана, имевшего неосторожность пролетать над его гнездом. В заповеднике Торри Пайнс (Torrey Pines State Natural Reserve) в Калифорнии сапсаны ежегодно гнездятся на скалах у побережья Тихого океана. И активно защищают свою территорию от гораздо более крупных птиц — пеликанов и скоп.

Cапсан атакует американского бурого пеликана. Тот настолько не ожидал нападения, что перевернулся в воздухе, и тут же был схвачен за ногу. Фото © Judy Champ с сайта birdwatchingdaily.com, заповедник Торри Пайнс, Калифорния, 28 апреля 2019 года
Пеликаны и скопы преимущественно рыбоядны и не замечены за разорением гнезд сапсанов. Однако известны случаи, когда бурые пеликаны поедали яйца и птенцов тонкоклювой кайры, египетской и большой белой цапли, а розовые пеликаны — птенцов капской олуши (см. видео). Так что недовольство сапсанов присутствием пеликанов неподалеку от гнезда вполне оправданно.

Сапсан атакует бурого пеликана. Фото © DeeDee Gollwitzer с сайта flickr.com, Калифорния, 4 мая 2017 года
Агрессивным территориальным поведением сапсанов в период размножения пользуются другие, более беззащитные, птицы. Особенно это характерно для тундры, где гнезда птиц располагаются открыто и доступны разорителям — песцам, чайкам и поморникам. Гнезда на территории сапсана устраивают гуси, утки, кулики. Сапсан — орнитофаг, то есть питается пернатыми, но хищные птицы, как правило, не охотятся около собственного гнезда, поэтому подобное соседство очень выгодно.

Сапсан атакует скопу. Фото © Insu Nuzzi с сайта flickr.com, заповедник Торри Пайнс, Калифорния, 6 июня 2015 года
Например, краснозобые казарки почти всегда гнездятся по соседству с сапсаном. Его покровительство обеспечивает им защиту от песцов, которые в годы низкой численности леммингов (своей основной добычи) особо активно разоряют гнезда птиц (и охотятся на наседок). По соседству с гнездом сапсана могут располагаться как одиночные пары, так и небольшие колонии до нескольких десятков пар казарок. Иногда в качестве покровителя казарка выбирает мохноногого канюка (зимняка) или белую сову, гнездится в колониях чаек или небольшими моновидовыми колониями, куда реже устраивает свои гнезда отдельно в тундре, без всякой защиты.

Краснозобая казарка среди более крупных белолобых гусей. Фото © John Tymon с сайта flickr.com
Рядом с белой совой гнездятся и другие виды гусеобразных. В период размножения пара сов отгоняет песцов со своей территории, делая безопасным несколько десятков метров вокруг своего гнезда. На гнездящихся неподалеку птиц и их птенцов совы обычно не охотятся, предпочитая грызунов. Нередко вокруг совы образуется целая колония из казарок, гусей и гаг.

Белые и белолобые гуси (см. картинку дня Чета белолобых гусей) способны дать отпор разорителям и самостоятельно, особенно если гнездятся крупными колониями. Однако и их гнезда часто разоряют.

Белые гуси защищают свое гнездо от песца. Фото © Сергей Горшков с сайта gorshkov-sergey.livejournal.com, остров Врангеля, 2015 год
Однако не только безобидные птицы ищут соседства с агрессивным видом. В Арктике наблюдается агрегация гнезд хищных птиц. Мохноногий канюк часто выбирает территорию недалеко от гнезд сапсана или кречета. Не пуская песцов и других хищников на свою территорию, сокола создают благоприятные условия для грызунов, которыми питается мохноногий канюк. Их численность становится выше, и канюк может охотиться прямо на своей гнездовой территории. Конечно, сапсан может напасть на его птенцов, но обилие корма заставляет зимняка идти на риск.

Фото © Alex Phan с личной страницы фотографа в Фейсбуке, Калифорния, 2019 год. Посмотрите также интересные фото сапсанов, атакующих пеликанов, здесь.


Анна Евсеева

https://elementy.ru/kartinka_dnya/1153/Agressivnyy_sosed
Показать полностью 6 1
Наука Орнитология Птицы Копипаста Elementy ru Видео Длиннопост
9
146
p4hshok
p4hshok
5 лет назад
Наука | Научпоп

Панцирь диатомей⁠⁠

На этой микрофотографии — диатомовая водоросль Lyrella hennedyi. Видим мы только ее панцирь, пронизанный большим количеством пор для связи с внешней средой. Посередине проходит шов (центральная щель), в центре — утолщение панциря (центральный узелок).

Диатомовые водоросли, или диатомеи (класс Diatomophyceae), — это одноклеточные одиночные или колониальные микроскопические организмы. Их размер обычно варьирует от 2 до 200 мкм (иногда более). Обитают они преимущественно в водной среде — в океанах, морях и реках, где представляют планктон и бентос. Кроме того, они могут жить в верхних слоях почвы, на снегу и во льдах, в горячих источниках, а также на других животных, от ракообразных до китов (то есть быть эпизоонтами), или внутри других организмов (быть эндобионтами) — например, как фотосимбионты фораминифер.

Главная особенность диатомей — наличие панциря поверх плазматической мембраны клетки. Панцирь состоит преимущественно из аморфного кремнезема, сходного по составу с опалом, а также включает примесь органических веществ и некоторых металлов (железа, алюминия, магния). У панциря две половинки, которые надеваются одна на другую. Большая (верхняя) половинка — это эпитека, меньшая — гипотека. Каждая половинка состоит из створки и пояскового ободка. В месте, где ободки накладываются друг на друга, образуется поясок. В зависимости от ракурса расположения клетки под микроскопом и на микрофотографии выделяют вид со створки и вид с пояска. На главном фото представлен вид со створки.

Объемная схема строения панциря диатомовой водоросли. Cn — центральный узелок (утолщение панциря), Ec — поясковый ободок эпитеки, Hc — поясковый ободок гипотеки, Ev — эпивальва (поверхность сворки эпитеки), Hv — гиповальва (поверхность створки гипотеки), Ra — центральный шов, Pn — терминальный узелок. Рисунок из статьи G. Kratošová et al., 2014. Synthesis of metallic nanoparticles by silica based algae — outline, prospect and applications из книги Green biosynthesis of nanoparticles: mechanisms and applications
У некоторых диатомей неполные перегородки панциря могут разделять клетку на несколько сообщающихся камер. Панцири бывают разной формы, с разным количеством пор (поры могут занимать до 75% площади панциря), с выростами или без.

Разнообразие форм и структур панцирей морских диатомей (a-d, f–i) в сканирующем электронном микроскопе. e — диатомит из Австралии. Длина масштабного отрезка — 10 мкм. Фото из статьи D. Losic et. al., 2009. Diatomaceous Lessons in Nanotechnology and Advanced Materials
У пеннатных диатомей (к ним относится и Lyrella hennedyi с главного фото) панцири обладают билатеральной симметрией, у центрических — радиальной.

Центрическая диатомовая водоросль Coscinodiscus wailesii. Вид со створки (круглые клетки) и с пояска. Средний диаметр клеток — 230 мкм. Темнопольная микроскопия. Фото с сайта diatomloir.eu
Кремнезем для строительства панциря диатомовые водоросли получают из внешней среды, где он представлен в виде метакремниевой или ортокремниевой кислот (см. Кремниевые кислоты). Как эти кислоты транспортируются в клетку, неизвестно; возможно, посредниками служат специальные транспортные белки (см. статью Белки-транспортеры кремния: долгий путь к открытию).

Морская планктонная колониальная диатомея Chaetoceros debilis. Для клеток типичны длинные полые прямые или изогнутые шипы, которыми они соединяются в колонии, при этом шипы могут перекрещиваться или срастаться в основании. Фазово-контрастная микроскопия, увеличение 250×. Фото © Dr. Wim van Egmond с сайта nikonsmallworld.com
Большинство диатомовых водорослей довольно медлительны, но некоторые донные и почвенные диатомеи способны передвигаться достаточно быстро (со скоростью 0,2–25 мкм/с), сообщаясь с окружающей средой швом, который проходит по самой створке или по особым выростам панциря — килям. Шов может быть щелевидным (в виде узкой длинной щели на створке) или каналовидным (в киле). Движение этих водорослей — процесс сложный и не до конца изученный, но принцип понятен: водоросли выделяют слизь и скользят по ней. Если поместить диатомовую водоросль на предметное стекло под микроскоп, можно наблюдать следы слизи, которые она оставляет.

Размножаются диатомовые водоросли в благоприятных условиях (весной и в начале лета) в основном вегетативно: клетка делится пополам с расхождением половинок панциря. Полученная от материнской клетки половинка станет эпитекой, а гипотека достроится, поэтому клетка, получившая эпитеку, будет иметь размер материнской, а получившая гипотеку будет меньше. Таким образом, со временем в популяции, размножающейся вегетативно, размеры клеток будут уменьшаться. Этот процесс тормозится разными путями у разных видов. Например, у видов рода Melosira меньшие клетки со временем просто перестают делиться, а рост популяции обеспечивают только более крупные потомки. А некоторые диатомеи имеют более эластичные пояски клеток, что позволяет им немного растягиваться.

Строение панциря диатомовой водоросли пиннулярии (Pinnularia). А — вид со стороны пояска; Б — вид со стороны створки; В — продольный разрез; Г — поперечный разрез; Д — вегетативное размножение. 1 — эпитека, 2 — гипотека, 3 — шов, 4 — узелок, 5 — хроматофор, 6 — пиреноиды, 7 — цитоплазма, 8 — ядро, 9 — вакуоль, 10 — створка, 11 — поясок. Рисунок с сайта studopedia.org
Измельчание клеток компенсируется во время полового размножения, однако нет доказательств прямой связи начала полового процесса со стабилизацией размеров клеток в популяции, так как более крупные клетки тоже размножаются этим путем. Половой процесс различается у пеннатных и центрических диатомей: у первых он преимущественно происходит с безжгутиковыми гаметами, а у вторых — со жгутиковыми сперматозоидами. У пеннатных диатомей в результате мейоза формируется 1–2 гаметы в клетке, створки раздвигаются, и гамета может выйти, чтобы перейти в другую клетку для слияния. В случае, если гамет образовалось две, выходит только одна, а вторая остается в клетке и ждет подвижную гамету для слияния. Передвигаются гаметы амебообразно, с помощью псевдоподий; некоторые диатомеи образуют специальный слизистый канал для перехода гамет. У центрических диатомей в результате мейоза и следующих за ним митозов (иногда многочисленных) образуется от 4 до 128 сперматозоидов, а также одна или две яйцеклетки.

Схемы жизненных циклов у пеннатных (слева) и центрических (справа) диатомовых водорослей. 2n и n — это диплоидная и гаплоидная стадии соответственно. Рисунок с сайта ru.wikipedia.org
После полового процесса, который занимает всего несколько минут как у пеннатных, так и у центрических диатомей, образуется зигота (внутри клетки, несущей неподвижную гамету или яйцеклетку), которую называют ауксоспора. Она покрывается более плотной оболочкой и со временем превращается в обычную вегетативную клетку.

Центрическая диатомовая водоросль Melosira sp., образующая нитчатые колонии. Фокус на клетке, ставшей ауксоспорой. Вид с пояска. Фото через световой микроскоп с сайта forum.mikroscopia.com
Разнообразие диатомовых водорослей колоссально: по оценкам ученых, количество видов составляет около 10–12 тысяч, но некоторые считают, что их на порядок больше. Они относятся к отделу охрофитовые водоросли и способны к фотосинтезу. Их панцирь прозрачный и совершенно не мешает свету проникать в клетку. Водоросли в виде фитопланктона выделяют более 60% кислорода, производимого на планете в результате фотосинтеза, и диатомеи продуцируют до 20% от этого количества благодаря высоким темпам размножения. При этом водоросли тратят на собственное дыхание намного меньше кислорода, чем растения.

Колониальная диатомея Licmophora phlabellata. У колониальных диатомовых водорослей дочерние клетки после вегетативного деления не расходятся, а остаются соединенными. Здесь отдельная клетка — это участок «веера», у этой водоросли также присутствуют слизистые ножки, которыми она крепится к субстрату. Темнопольная микроскопия, увеличение 10×. Фото © Dr. Wim van Egmond с сайта nikonsmallworld.com
Панцирь диатомей не разлагается, что позволяет очень детально изучать палеонтологию этих водорослей. Самые древние найденные ископаемые относятся к меловому периоду, так что возраст класса составляет не менее 150 млн лет. Диатомовые водоросли формируют мощные отложения, получившие название диатомит.

Ископаемая центрическая диатомовая водоросль Triceratium morlandii из диатомита Новой Зеландии, возраст 32–40 млн лет. Фазово-контрастная микроскопия. Фото с сайта commons.wikimedia.org
Диатомит используют как сырье для производства жидкого стекла, теплоизоляционного кирпича, инсектицидов и удобрений, как полировальный материал (в том числе его можно найти в составе зубных паст). Он также входит в состав некоторых типов цемента, используется в производстве бетона, фильтрации воды и т.д. Но особенно перспективным направлением исследования диатомовых водорослей стали нанотехнологии: ученые надеются научиться влиять на механизмы образования микроструктуры створок этих водорослей, например для использования их в медицине (см. статью Кремниевые нанотехнологии в пробирке).

Разнообразие диатомовых водорослей в виде калейдоскопа. Темнопольная микроскопия. Фото с сайта thisiscolossal.com (обязательно сходите по ссылке, там много красивых фото)
Известный специалист по диатомовым водорослям Клаус Кемп (Klaus Kemp) даже создал настоящие произведения искусства, раскладывая различных диатомей на покровных стеклах как в калейдоскопе.

Видео о создании калейдоскопа из разных видов диатомей

Фото © Massimo Brizzi с сайта nikonsmallworld.com, увеличение 1600×.

Вероника Хитяева

https://elementy.ru/kartinka_dnya/1142/Pantsir_diatomey

Показать полностью 10 1
Наука Одноклеточные Диатомовые водоросли Копипаста Elementy ru Биология Видео Длиннопост
8
303
p4hshok
p4hshok
5 лет назад
Наука | Научпоп

В Германии найдена охотничья метательная палка возрастом 300 000 лет⁠⁠

Рис. 1. Метательная охотничья палка из Шёнингена. Длина орудия 64,5 см. Отдельно показаны отметины от ударов (i, ii), следы удаления сучка и заглаживания поверхности (iii), превосходная сохранность клеточной структуры древесины (iv). Изображение из обсуждаемой статьи в Nature Ecology & Evolution и дополнительных материалов к ней
В знаменитом нижнепалеолитическом местонахождении в Шёнингене (Германия), где ранее были найдены деревянные копья возрастом 300 000 лет, обнаружен еще один тип охотничьего оружия того же возраста: заостренная с двух концов, отшлифованная, слегка изогнутая метательная палка длиной около 65 см. Похожими орудиями пользовались аборигены Австралии и Тасмании для охоты на птиц и мелких млекопитающих. Открытие показало, что уже в конце раннего палеолита, то есть еще до появления среднепалеолитической мустьерской культуры неандертальцев, обитатели северной Европы были искусными охотниками с богатым арсеналом охотничьего оружия.

Нижнепалеолитическое местонахождение в Шёнингене известно в первую очередь найденными здесь метательными копьями из стволов молодых елей (см.: Schöningen spears). Уникальная сохранность деревянных изделий в Шёнингене объясняется условиями захоронения. 300 000 лет назад, во времена очередного (пред-предпоследнего) межледниковья, здесь было озеро, образовавшееся в процессе отступания ледника. На его берегах жили люди. Их кости не найдены, но логично предположить, что это были «гейдельбергские люди» в широком смысле, предшественники (а возможно и прямые предки) неандертальцев. Жили они активной раннепалеолитической жизнью: изготавливали каменные орудия (некоторые из которых предположительно крепились к деревянным или костяным рукояткам), разделывали ими добычу (в частности, найдены кости десятков лошадей с отметинами от орудий), скоблили шкуры и обрабатывали деревянные изделия (V. Rots et al., 2015. Residue and microwear analyses of the stone artifacts from Schöningen).

Однажды участок прибрежной низменности подвергся внезапному затоплению. Многочисленные артефакты оказались захороненными под слоем ила. С тех пор они оставались в бескислородных условиях в толще пропитанного водой осадка, что обеспечило уникальную сохранность деревянных изделий (J. Serangeli et al., 2015. Overview and new results from large-scale excavations in Schöningen).

Каменные и деревянные орудия и кости крупных животных с царапинами от каменных ножей сохранились между слоем прибрежного грунта, богатого растительными остатками и похожего на торф, и вышележащим слоем ила, образовавшегося уже в водной среде после затопления. Изначально возраст находок оценивался в 400 000 лет, но затем датировки были уточнены, и сегодня принята оценка 300 000 лет. По возрасту и уровню развития материальной культуры шёнингенский комплекс соответствует позднему этапу раннего палеолита, который предшествовал формированию среднепалеолитической мустьерской культуры европейских неандертальцев.

В статье, опубликованной 20 апреля в журнале Nature Ecology & Evolution, палеоантропологи из Тюбингенского университета, проводящие раскопки в Шёнингене, сообщили о новой важной находке. В ходе работ на новом участке неподалеку от места обнаружения знаменитых копий ученые нашли еловую метательную палку (рис. 1). Изделие длиной 64,5 см и максимальным диаметром 2,9 см слегка изогнуто, заужено с обоих концов (причем сами кончики аккуратно обрублены), его поверхность несет следы выравнивания и заглаживания неровностей (рис. 1, iii). Прекрасная сохранность артефакта позволяет утверждать, что он не использовался ни для рытья (как палка-копалка), ни для обдирания коры с древесных стволов, ни как копье или дротик. По мнению авторов, это бесспорная охотничья метательная палка, подобная тем, которыми еще недавно пользовались австралийские и тасманийские аборигены для охоты на птиц и мелких млекопитающих (рис. 2). Шёнингенская находка действительно очень похожа на метательные палки коренных тасманийцев, хранящиеся в музее Хобарта.

На шёнингенской палке есть следы сильных ударов о твердые предметы (рис. 1, i, ii), что, наряду с другими мелкими деталями поверхности, хорошо согласуется с такой интерпретацией находки. Ранее в Шёнингене была найдена другая обоюдоострая палка, похожая на новую находку, но хуже сохранившаяся, что не позволило ученым исключить альтернативные интерпретации (палка-копалка, обдиралка коры, детское копье). Новая находка свидетельствует в пользу того, что и первая палка, скорее всего, представляет собой метательное охотничье оружие.

Рис. 2. Старые изображения коренных тасманийцев с деревянными копьями и метательными охотничьими палками. Рисунки датированы 1835 годом, то есть сделаны уже после массового истребления аборигенов колонистами (см.: Black War). По-видимому, изображены представители небольшой группы уцелевших аборигенов (их окончательное вымирание произошло немного позже). На рисунках есть странности: например, на верхнем рисунке показана похожая на колли охотничья собака, поймавшая кенгуру, хотя точно известно, что у коренных тасманийцев не было собак. Возможно, собака досталась охотнику от европейцев. Подпись к рисунку гласит, что охотник собирается убить кенгуру своей «waddy», то есть метательной палкой. Тасманиец действительно держит в руке типичную охотничью метательную палку (ранние европейские поселенцы называли эти орудия waddies или lughrana, видимо, копируя слова местных жителей). Значит ли это, что охотничьи палки действительно использовались не только для метания, но и как оружие для ближнего боя? Или это фантазия художника? Изображение из статьи F. Noetling, 1911. Notes on the hunting sticks (lughrana), spears (perenna), and baskets (tughbrana) of the Tasmanian aborigines

Метательные охотничьи палки в древности были довольно широко распространены. Ими пользовались не только австралийцы, но и многие другие народы от коренных американцев до древних кельтов (см.: L. Bordes et al., 2015. Study and throwing experimentations around a Gaulish throwing stick discovery in Normandy). Специализированной разновидностью таких палок являются бумеранги, способные лететь по дуге и возвращаться к охотнику. Однако большинство моделей (включая и шёнингенскую) летает по прямой, быстро вращаясь. Умелый охотник может с расстояния в несколько десятков метров убить или сильно поранить таким оружием дичь размером с утку или кролика (а если повезет, то и небольшую антилопу или олененка). Крупного зверя метательными палками, конечно, не убьешь, но их можно использовать в загонной охоте, чтобы гнать добычу на поджидающих в засаде охотников с копьями.

Находка показала, что репертуар охотничьих приемов, которыми владели европейцы 300 000 лет назад, был шире, чем считалось до сих пор. Помимо легких метательных копий из стволов молодых елей и более массивных копий для ближнего боя обитатели шёнингенской стоянки владели еще и метательными палками. Не исключено и наличие у них составных орудий с каменными наконечниками. Получается, что в конце раннего палеолита предшественники неандертальцев уже обладали довольно сложным поведением и развитой культурой. Аналогичная картина для этой эпохи вырисовывается и в Африке, где жили предшественники сапиенсов (см.: 300 000 лет назад люди уже пользовались красками и переносили предметы на большие расстояния, «Элементы», 09.04.2018).


Источник: Nicholas J. Conard, Jordi Serangeli, Gerlinde Bigga and Veerle Rots. A 300,000-year-old throwing stick from Schöningen, northern Germany, documents the evolution of human hunting // Nature Ecology & Evolution. 2020. DOI: 10.1038/s41559-020-1139-0.


См. также:

Южная Африка, что ты делаешь?.. Наконечники копий 500 тысяч лет назад, «Антропогенез.ру», 17.11.2012.


Александр Марков

Показать полностью 2
Наука Археология Палеолит Антропология Копипаста Elementy ru Длиннопост
71
19
PapaSilver
PapaSilver
5 лет назад

Политика зарядки⁠⁠

Почему сложно найти замену литию в электрохимии и как это все-таки можно сделать


Если не литий, то...


Литий-ионные аккумуляторы появились в начале 1990-х годов и очень быстро совершенствовались: росла популярность портативной электроники, сначала ноутбуков, затем смартфонов, планшетов и других гаджетов, питавшихся их энергией. Новый импульс развитию аккумуляторов дали электромобили, роботы, системы хранения и распределения электроэнергии. Но по мере развития выявились и недостатки литий-ионных батарей: пожароопасность, быстрое старение и чувствительность к температуре. Кроме того, технологии, использующие литий, упираются в серьезное ограничение: лития в природе не так много, добывать его дорого, сырье, карбонат лития, стоит свыше $20 тыс. за тонну.


Но заменить литий сложно. К примеру, удельная емкость, то есть соотношение заряда и массы иона, у него максимальная, более легкого иона металла не существует. Сообщения о перспективных материалах, способных составить конкуренцию литию, появляются регулярно, но их разработчики не скрывают проблем и ограничений, которые могут быть в принципе неразрешимы.


К примеру, команда из Стэнфорда объявила, что изобрела алюминий-ионный аккумулятор, выдерживающий 7 тыс. циклов зарядки, которая еще и происходит всего за секунды. Вообще-то алюминий-ионные аккумуляторы появились более 30 лет назад, они небезопасны, недружественны к окружающей среде и быстро теряют способность перезаряжаться.


Есть надежды на проточные ванадиевые окислительно-восстановительные аккумуляторы — гигантские баки с жидким электролитом (сернокислый раствор солей ванадия), способные хранить избыточную возобновляемую энергию. Когда солнечные панели или ветрогенераторы вырабатывают электричество, насосы прокачивают электролит через электроды системы, он заряжается и возвращается обратно в емкость. В Китае собирались построить крупнейшую в мире ванадиевую проточную батарею емкостью 800 МВт · ч.


Поклонники жидких батарей упирают на их надежность: тысячи циклов зарядки, а это три-четыре года службы, без признаков деградации! Но КПД проточных аккумуляторов значительно ниже, чем металл-ионных — не более 70%. Да и система из баков с серной кислотой может быть только статичной — об электробусах и электрокарах точно можно забыть. Наконец, ванадий недешев — $50 за килограмм пятивалентного оксида.


Так что, пишут британские ученые в обзоре аккумуляторных технологий, литий-ионные аккумуляторы будут доминировать на рынке по крайней мере до середины XXI века. Ключевое достоинство лития неоспоримо — этот металл очень легкий и «быстрый», и миниатюрные батареи для смартфонов, ноутбуков и других гаджетов уже прочно закреплены за ним. Но уже для электромобиля (десятки киловатт-часов энергии) и тем более для электростанции (мега- и гигаватт-часы) удельная и объемная энергоемкость (энергия на единицу массы и объема) становятся не так важны, и прорыв могут обеспечить натрий-ионные аккумуляторы, заменив сразу и дорогие литий-ионные, и морально устаревшие свинцово-кислотные.


...натрий!


Свинцово-кислотные аккумуляторы изобретены 150 лет назад и знакомы любому, кто хотя бы раз открыл капот машины, — но продажи их по-прежнему опережают продажи литий-ионных батарей: $40 млрд против $30 млрд в 2019 году.


Натриевый аккумулятор имеет близкие к литиевому энергетические характеристики, но натрий примерно в сто раз дешевле лития, а химические свойства натрия позволяют использовать легкий и дешевый алюминий вместо тяжелой и дорогой меди на анодном токосъемнике. Есть и минусы: радиус иона натрия больше, чем иона лития, и значит, плотность энергии на натриевом электроде ниже, и для энергоемкости, сравнимой с литий-ионной батареей, натрий-ионная должна быть размером на 30–50% больше. Но там, где размер не так важен, натрий-ионные батареи будут теснить свинцово-кислотные и захватывать новые ниши, предсказывают специалисты, — например, электротранспорт, для которого важней скорость зарядки, чем миниатюрность и емкость.


Стоит отметить, что цена не всегда является единственным приоритетом для выбора натрий- или калий-ионной системы вместо литий-ионной. Недавно мы проводили исследование структуры, в которую в качестве катодного материала обратимо внедрялся щелочной металл — натрий, литий или калий. И оказалось, что калий и натрий обладают существенно большими коэффициентами диффузии, чем литий. Эти ионы более подвижны, перемещаются с большей скоростью, что должно обеспечивать и большую мощность. Иными словами, аккумуляторы, имеющие в своем катоде натрий и калий, могут стать мощнее, чем литий-ионные.


Первые натрий-ионные аккумуляторы возникли приблизительно тогда же, когда и литий-ионные. Но литий-ионные аккумуляторы имеют более высокие удельные характеристики, чем натрий-ионные, поэтому ученые и производители сосредоточились на них. Но лет 10–15 назад ученые, вооруженные знаниями о литий-ионной системе и современными технологиями изготовления компонентов батареи, стали возвращаться к первоначальной идее — использовать ион натрия.


Конечно, у натрий-ионных аккумуляторов есть и недостатки. Натрий тяжелее лития, значит, и удельная емкость содержащих натрий материалов ниже. Катион натрия крупнее, и обратимое извлечение и внедрение того же количества катионов, что и в случае лития, вызывают большие изменения структуры материалов, что приводит к деградации аккумулятора. Эту проблему ученые пытаются решать, но окончательно пока не победили. Недавние прототипы натрий-ионных аккумуляторов демонстрируют плотность энергии 120–160 Вт · ч/кг, а литий-ионные — 250–280 Вт · ч/кг.


Но если в отношении катодных материалов есть консенсус, то какой материал использовать на аноде, по-прежнему неясно, а это вопрос довольно важный. К слову, литий-ионные аккумуляторы поставлены на конвейерное производство отчасти потому, что для них есть очень хороший, надежный анодный материал (графит). В отличие от лития, натрий в графит не внедряется, и для натрий-ионных аккумуляторов аналогичного материала пока нет. Ученые делают ставку на «твердый» углерод. Так называют неграфитизируемую форму углерода, материал перспективный, но предстоит выяснить, насколько он надежен и безопасен. Необходимо исключить сценарии, при которых натрий будет не внедряться в структуру твердого углерода, а высаживаться на его поверхности, постепенно образуя дендриты — формирования, которые могут со временем прорасти через сепаратор к катоду и вызвать внутреннее замыкание, что чревато взрывом аккумулятора.


Здесь стоит отметить, что в погоне за все более высокими удельными характеристиками (способность аккумуляторов запасать как можно больше энергии на единицу массы и объема) нельзя забывать о вопросах безопасности. Со временем при росте количества крупногабаритных источников энергии этот аспект станет ключевым. Одно дело, когда загорается батарея в смартфоне, и совсем другое, когда взлетает на воздух крупный стационарный накопитель — устройство, которое имеет значительный запас энергии и внутри состоит сплошь из горючих материалов: органического электролита, органических полимерных связующих, сильных окислителей и проч. Например, при инициации какой-нибудь реакции (скажем, при повышении температуры из-за внутреннего или внешнего короткого замыкания) катодный материал в заряженном состоянии может выделять кислород и начать активно взаимодействовать с органическими компонентами аккумулятора, что может привести к быстрому возгоранию.


Во избежание подобных инцидентов крупные производители начали интенсивно проводить исследования для замены жидкого электролита, состоящего из органических легковоспламеняющихся компонентов, и переходить на полимерный, значительно менее горючий, либо на керамический. Чтобы избежать возгорания внутри аккумуляторов, производители также вносят различные специальные добавки — например, пламегасители — и используют в катодном материале вещества, которые не выделяют кислород при повышении температуры, то есть не становятся источником окислителя, который будет бурно реагировать с органическими компонентами. Все эти задачи последовательно решаются, и по мере того, как аккумуляторы становятся все более безопасными, расширяются области их использования.


Сегодня все крупные производители представляют линейки электромобилей, а некоторые — например, Volvo — уже называют год, когда полностью откажутся от производства автомобилей с двигателем внутреннего сгорания. Россия же как в научном, так и производственном отношении сильно отстает: количество статей на тему литий-ионных аккумуляторов сопоставимо со странами вроде Турции или Мексики — намного меньше, чем во Франции, Японии, Южной Корее, Китае или США. Что касается производства, то Россия уступает лидерам рынка просто катастрофически.

Что это значит? Во-первых, производства полного цикла в России в принципе быть не может, так как не производятся ключевые компоненты нужного качества — катод, анод, электролит, сепаратор и т. д. Все это в основном поставляется из-за рубежа, что позволяет некоторым компаниям выпускать небольшое количество литий-ионных аккумуляторов для узких нишевых применений.


Во-вторых, нет никакой государственной программы поддержки производства и потребления в области источников тока и устройств на их основе — например, электромобилей. В некоторых городах — например, в Москве и Новосибирске — есть «локальные» инициативы местных властей, стимулирующих муниципальные автопарки к развитию общественного электротранспорта, но «поднять» целую индустрию эти меры не смогут. Действительно, электробусы катаются по Москве, их становится все больше, но все они работают на аккумуляторах, произведенных не в России — все на импортных материалах. Это довольно печально, потому что Россия экспортирует много сырья — например, никель, кобальт и другие металлы, — сырье продается, иностранные предприятия делают из этого сырья материалы и аккумуляторы, а затем продают их для наших электробусов — естественно, с существенно большей добавочной стоимостью. Нет сомнений в том, что российские производители могут наладить производство полного цикла, так как все для этого в стране есть, но для инициирования процесса нужна серьезная государственная поддержка, в том числе, возможно, на законодательном уровне.


Авторы Николай Козин,Евгений Антипов

https://elementy.ru/nauchno-populyarnaya_biblioteka/435216/P...

сайт elementy.ru

Показать полностью
Химия Физика Аккумулятор Elementy ru Длиннопост Текст
1
47
PapaSilver
PapaSilver
5 лет назад

Царь-птица⁠⁠

Если когда-нибудь археологи далекого будущего станут исследовать руины нашей цивилизации, они могут назвать ее не «атомной», не «космической» или «информационной», а... «куриной». К началу XXI века эти птицы сделались самыми многочисленными сухопутными позвоночными: сегодня их глобальная популяция составляет около 22 млрд. Совокупная масса бройлеров превышает массу всех прочих птиц на планете, вместе взятых. Они являются главным источником животных белков в рационе человечества. 60 млрд кур каждый год отправляются под нож, а их кости во множестве выбрасываются. По ним археологи далекого будущего смогут опознать останки нашей цивилизации так же надежно, как по радиоактивным изотопам или пластиковому мусору.


Родом из джунглей


История и генеалогия домашних кур не менее запутанны, чем у какого-нибудь древнего княжеского рода. Зато прародители этого бесчисленного племени хорошо известны и дожили до наших дней — это дикие банкивские куры, распространенные во влажных лесах Юго-Восточной Азии от Индии до Филиппин. Они весьма похожи внешне на одомашненных кур и могут свободно скрещиваться с ними. Они точно так же пасутся на земле, собирая зерна и насекомых, и не слишком уверенно летают, занимая для ночевки «насесты» в кронах деревьев. Их петухи демонстрируют такой же алый гребень, так же кукарекают, обозначая свою территорию, и сражаются друг с другом с той же безумной храбростью. Однако отличить их останки от ранних одомашненных форм довольно сложно, и точное место и время доместикации кур остается неизвестным.

За видимой случайностью любимых многими «Чикен Макнаггетс» скрывается точный расчет. В McDonald’s изготавливаются панированные кусочки фарша всего четырех определенных форм: «Нога», «Косточка», «Колокольчик» и «Шарик»


Древнейшие кости найдены на территории нынешней провинции Хэбэй на северо-востоке Китая и датированы примерно 5300–5400 годами до н. э., когда здесь процветала неолитическая культура Цышань. Однако более внимательное исследование этих костей показало, что большинство из них не куриные. К тому же палеоклиматологи выяснили, что в те времена эта местность была слишком холодной и сухой для того, чтобы подходящие для одомашнивания джунглевые куры могли свободно жить в дикой природе. Скорее всего, сюда попадали лишь отдельные птицы, которых привозили откуда-то с юго-запада, где и произошла их доместикация.


Предполагается, что все началось на территории современного Таиланда: митохондриальная ДНК одомашненных кур близка к мтДНК обитающих здесь диких популяций. Их слабые способности к полету сильно облегчили задачу первым «одомашнивателям». Однако банкивские Gallus gallus не единственные прародители современных кур, которые считаются их подвидом (G. gallus domesticus). Генетический анализ показывает, что они скрещивались еще с тремя родственными видами джунглевых кур: например, желтая кожа досталась домашним курам от Gallus sonneratii. По некоторым данным, в их ДНК сохранились следы даже от ныне вымерших гигантских Gallus giganteus, которые обитали в том же регионе и достигали почти метровой высоты.


Бойцы и яйца


На первых порах куры не имели большого экономического и кулинарного значения: принято считать, что основной их функцией была ритуальная, и разводили их «ради драки». Ярко окрашенные птицы, приветствующие восход и закат солнца громогласным кукареканьем, легко могли стать частью солярных мифов и соответствующего церемониала, включавшего петушиные бои. Петухи демонстрируют агрессивный нрав и сегодня: не далее как в январе 2020 года во время подпольных боев в индийском штате Андхра-Прадеш петух напал на одного из зрителей, рассек ему артерию, что привело к гибели от кровопотери.


На первоначальное «боевое» использование кур указывают самые древние надежные следы одомашнивания G. gallus — в Китае и в Мохенджо-Даро, городском центре загадочной цивилизации долины Инда. Некоторые данные свидетельствуют, что именно эта цивилизация начала массовое разведение и селекцию кур и именно отсюда птицы начали распространение в Иран и далее на запад — на Ближний Восток, в Европу и Африку. В Турции и Сирии куры появляются между 2400 и 2000 годами до н. э., в Египте — во времена Нового царства, около 1500 года до н. э. Считается, что именно здесь их судьба еще раз круто изменилась. Поначалу куры оставались экзотическими бойцовыми птицами, и лишь около 1000 года до н. э. стали распространяться широко. К этому времени египтяне освоили хлопотную науку искусственной инкубации яиц. Этот процесс совсем не так прост, как может показаться. Он занимает около трех недель, причем все это время температуру требуется сохранять в пределах от 37 до 40°C, а влажность удерживать около 55%, понемногу увеличивая; кроме того, яйца необходимо переворачивать 3–5 раз в день. Для этого в Древнем Египте возводились целые «фабрики» с обогревающими печами и сложно устроенной вентиляцией, а сама технология долгое время хранилась в секрете.

Бамбуковое пиршество


Как только куры оказались избавлены от необходимости три недели самостоятельно высиживать потомство, они смогли в полной мере раскрыть уникальные яйценосные способности, унаследованные от диких предков. Дело в том, что бамбуковые леса цветут и плодоносят лишь раз в несколько десятков лет, повинуясь общему сигналу, — множество растений на огромной территории одновременно. В такие периоды джунглевые куры могут буквально обжираться и оставлять намного более многочисленное потомство: их репродуктивный цикл легко адаптируется под новую обстановку. Поэтому и домашних кур оказалось достаточно кормить «от пуза», чтобы они приносили яйца хоть каждый день. Так птица сделалась весьма полезной, и финикийские торговцы развезли ее по всему Средиземноморью. В Древнем Риме куры стали известны уже очень широко, даже начали появляться мясные породы. Считается, что именно римляне придумали готовить омлет, а блюда из фаршированной курятины сделались настолько популярными, что в 161 году до н. э. сенат даже ограничил их потребление, дабы поддержать строгость старинного «республиканского духа», чуждого такому роскошеству. Впрочем, вскоре Рим пал, а с ним во многом забылась и курятина. Ее массовое возвращение на столы европейцев заняло много веков.


Вопрос о том, что в это время происходило в Америках, остается дискуссионным. По наиболее распространенной версии, до появления колонизаторов из Старого Света кур здесь не знали, обходясь местными утками и индейками. С другой стороны, существует гипотеза о том, что первые куры могли попасть в Южную Америку еще до того — со стороны Тихого океана. Некоторые генетические особенности местных кур роднят их с птицами, которых разводят жители Полинезийских островов. Неприхотливая, не занимающая много места курица служила отличным источником свежего белка, в том числе и в морских плаваниях, что облегчило распространение птиц повсеместно, где только поселились люди.


Затворник и Шестипалый


Вплоть до XX века кур разводили прежде всего ради яиц. Как и многие другие животные, они нуждаются в солнечном свете для выработки витамина D, а значит, их требовалось постоянно выпускать для «выпаса» на открытом воздухе. Резко изменило ситуацию появление пищевых добавок и антибиотиков. Это позволило содержать кур в закрытых помещениях и дало старт современным птицефабрикам, похожим на огромные промышленные предприятия. Такая бездушная машина описана в известной повести Виктора Пелевина: не зная ни хищников, ни голода, изолированные от естественного суточного цикла, растущие здесь куры окончательно превратились в живые механизмы по производству белка для ненасытного человечества.


Современные породы набирают массу в разы быстрее, и едва вылупившийся птенец превращается в полновесного бройлера всего за несколько недель. Предоставленные самим себе, жирные птицы почти неспособны перемещаться и предпочитают не отходить от механической кормушки, даже оказавшись на воле. Глядя на этих несчастных существ, трудно избавиться от представления о «тупых курицах», хотя большим умом не будет отличаться никто из выросших в подобных ограниченных и жестоких условиях. Между тем внимательные лабораторные эксперименты раз за разом демонстрируют, что эти птицы отличаются немалой сообразительностью.


Достаточно сказать, что петухи способны подставлять конкурентов, привлекая к ним внимание хищников громким криком, пока сами прячутся в безопасности. В их группах действует сложная иерархия: по некоторым данным, куры даже испытывают эмпатию друг к другу. Возможно, приходит время и нам относиться к ним с большей человечностью и хотя бы иногда вспоминать о том, что все ругательные оттенки слова «курица» не более чем несправедливые наветы на птицу, которая сыграла такую огромную роль в нашей истории.


Роман Фишман

«Популярная механика» №3, 2020

https://elementy.ru/nauchno-populyarnaya_biblioteka/435229/T...
Показать полностью 2
Курица Продукты Популярная механика Elementy ru Длиннопост
0
Посты не найдены
О нас
О Пикабу Контакты Реклама Сообщить об ошибке Сообщить о нарушении законодательства Отзывы и предложения Новости Пикабу Мобильное приложение RSS
Информация
Помощь Кодекс Пикабу Команда Пикабу Конфиденциальность Правила соцсети О рекомендациях О компании
Наши проекты
Блоги Работа Промокоды Игры Курсы
Партнёры
Промокоды Биг Гик Промокоды Lamoda Промокоды Мвидео Промокоды Яндекс Маркет Промокоды Отелло Промокоды Aroma Butik Промокоды Яндекс Путешествия Постила Футбол сегодня
На информационном ресурсе Pikabu.ru применяются рекомендательные технологии