Горячее
Лучшее
Свежее
Подписки
Сообщества
Блоги
Эксперты
Войти
Забыли пароль?
или продолжите с
Создать аккаунт
Регистрируясь, я даю согласие на обработку данных и условия почтовых рассылок.
или
Восстановление пароля
Восстановление пароля
Получить код в Telegram
Войти с Яндекс ID Войти через VK ID
ПромокодыРаботаКурсыРекламаИгрыПополнение Steam
Пикабу Игры +1000 бесплатных онлайн игр Рисковый и азартный три в ряд - играйте онлайн!

Камни в ряд онлайн!

Казуальные, Три в ряд, Мультиплеер

Играть

Топ прошлой недели

  • Oskanov Oskanov 9 постов
  • Animalrescueed Animalrescueed 44 поста
  • Antropogenez Antropogenez 18 постов
Посмотреть весь топ

Лучшие посты недели

Рассылка Пикабу: отправляем самые рейтинговые материалы за 7 дней 🔥

Нажимая «Подписаться», я даю согласие на обработку данных и условия почтовых рассылок.

Спасибо, что подписались!
Пожалуйста, проверьте почту 😊

Помощь Кодекс Пикабу Команда Пикабу Моб. приложение
Правила соцсети О рекомендациях О компании
Промокоды Биг Гик Промокоды Lamoda Промокоды МВидео Промокоды Яндекс Маркет Промокоды Пятерочка Промокоды Aroma Butik Промокоды Яндекс Путешествия Промокоды Яндекс Еда Постила Футбол сегодня
0 просмотренных постов скрыто
41
Qrim
Исследователи космоса

Гравитационная обсерватория LIGO открыла новый тип черных дыр⁠⁠

8 лет назад

МОСКВА, 1 июн – РИА Новости. Гравитационный детектор LIGO зафиксировал следы слияния необычной пары черных дыр. Это открытие указало на возможность объединения черных дыр в пары через долгое время после их формирования и подтвердило теорию относительности Эйнштейна. Выводы ученых были опубликованы в журнале Physical Review Letters.



"Всех интересовало то, какая теория гравитация верна – эйнштейновская теория или десятки других альтернативных теорий. Новые данные показывают, хотя и с достаточно невысокой точностью, что результаты наблюдений укладываются в прокрустово ложе формул общей теории относительности. Она работает, и пока не нужно искать ей замену", — рассказывает Сергей Вятчанин, физик из МГУ имени М.В. Ломоносова и участник коллаборации LIGO.


Гравитационная Вселенная


Детектор гравитационных волн LIGO был построен в 2002 году по проектам и планам, разработанным Кипом Торном, Райнером Вайссом и Рональдом Древером в конце 80-х годов прошлого века. На первой стадии работы, длившейся восемь лет, LIGO не удалось обнаружить "эйнштейновские" колебания пространства-времени, после чего детектор отключили и последующие четыре года ученые потратили на его обновление и повышение чувствительности.

Усилия оправдали себя – в сентябре 2015 года, фактически сразу после включения обновленного LIGO, ученые обнаружили всплеск гравитационных волн, порожденных сливающимися черными дырами общей массой в 53 Солнца. Впоследствии, LIGO зафиксировал еще два всплеска гравитационных волн, только один из которых был официально признан научным сообществом.



В начале января прошлого года LIGO был отключен, и последующие 11 месяцев ученые потратили на обновление инструментов детектора и починку сломавшихся или некорректно работавших систем. В декабре прошлого года LIGO официально вернули в строй, и оба детектора обсерватории, построенные в Ливингстоне и Хэнфорде, уже полгода наблюдают за космосом.

На этой неделе Дэвид Шумейкер (David Shoemaker), руководитель коллаборации LIGO, и его коллеги рассказали о первых итогах наблюдений в этом году. Детектору, как рассказали ученые, удалось зафиксировать третий всплеск гравитационных волн, порожденный сливающимися черными дырами, а также зафиксировать шесть других событий, претендующих на то, чтобы так называться.



Этот сигнал, получивший имя GW170104, был получен учеными фактически сразу после включения LIGO, 4 января примерно в час дня по московскому времени. Его обнаружили, как вспоминает Шумейкер, благодаря внимательности одного из аспирантов Германии.



Он заметил следы этого всплеска в данных, поступавших с одного из двух детекторов обсерватории, но почему-то второй детектор не "видел" сигнал, явно присутствовавший в получаемой им информации. Впоследствии выяснилось, что система автоматического обнаружения гравитационных волн была настроена неправильно, и всплеск могли не заметить, если бы его случайно не увидел молодой ученый.

Космическая "юла"



Событие GW170104, как рассказал журналистам Шумейкер, интересно по нескольким причинам. Во-первых, оно вызвано слиянием ранее неизвестного типа черных дыр большой массы, ось вращения одной из которых была или наклонена в сторону, или сама черная дыра вращалась в противоположном направлении по сравнению с своей соседкой.



Это важно по той причине, что пары черных дыр такого типа могут возникать только в том случае, если они рождаются не вместе, внутри двойной или тройной звездной системы, а по-отдельности, и образуют пару через достаточно большое время после их формирования. Раньше ученые сомневались в возможности появления подобных пар черных дыр, и открытие LIGO показывает, что это все же может происходить.

Во-вторых, эти черные дыры имеют относительно большую массу – первая из них тяжелее Солнца примерно в 31 раз, а вторая — в 20 раз. Это означает, что черные дыры в таком промежутке масс формируются достаточно часто.



Астрономы аналогичным образом не были уверены, что такие дыры-"тяжеловесы" могут возникать в современной Вселенной внутри плотных скоплений звезд, и открытие GW170104 показывает, что сверхтяжелые звезды, состоящие полностью из водорода и гелия, возникали и через несколько миллиардов лет после Большого взрыва.



Кроме того, ученым удалось показать, что гравитационные волны разных частот не рассеиваются при движении через пространство, что подтвердили выкладки общей теории относительности, и уточнить верхнюю границу массы гравитона – гипотетической частицы, отвечающей за перенос гравитационных взаимодействий.

С другой стороны, это открытие сделало некоторые другие вопросы, касающиеся гравитационных волн, еще более непонятными и загадочными. Самым главным из них является то, что LIGO пока так и не удалось обнаружить гравитационные сигналы, вырабатываемые парами нейтронных звезд, который Кип Торн и другие основатели обсерватории ожидали увидеть до того, как детектор "услышит" черные дыры.



"Пульсары мы опять не обнаружили. Почему – о возможных причинах этого можно говорить сколько угодно, поймем мы это только тогда, когда мы их найдем. Пока мы фиксируем слишком мало всплесков всех типов – получается, что у нас происходит по одному обнаружению в год, а хотелось бы иметь по одному событию в месяц", — продолжает Вятчанин.



Гравитационные горизонты



По мнению Шумейкера, обсерватория сможет обнаружить пульсары только в том случае, если чувствительность детекторов будет повышена в два раза по сравнению с тем, чего удалось добиться российским и западным физикам во время прошлогоднего "отпуска" LIGO.



"Мы работали над повышением чувствительности LIGO двумя путями – повышая мощность лазеров и закачивая "сжатый вакуум" в сигнальный порт. Нам удалось немного повысить мощность, хотя мы не достигли того усиления, которого планировали добиться, и в целом нам удалось повысить чувствительность детекторов и поле их зрения на несколько десятков процентов", — поясняет физик из МГУ.

Кроме того, по словам Вятчанина, для поиска пульсаров нужны и большие вычислительные ресурсы — порождаемый ими сигнал практически невозможно увидеть "невооруженным глазом", подобно тем всплескам гравитационных волн, которые вырабатывают черные дыры на последних витках перед их слиянием. Поэтому пульсары, как ожидают ученые, будут найдены LIGO в ходе последующих сессий работы детектора.



Очередной "отпуск" обсерватории начнется совсем скоро, в августе этого года. За это время, как ожидают физики, чувствительность LIGO заметно вырастет за счет повышения мощности лазеров каждого из детекторов и понижения уровня шума в них. Кроме того, летом начнет свою работу VIRGO, европейский "кузен" LIGO, что также повысит вероятность открытия пульсаров в следующей сессии работы обсерватории, которая начнется в конце 2018 года.

Как пояснил Шумейкер РИА "Новости", он надеется, что обновление LIGO поможет ему видеть не только пульсары, но и более экзотические объекты.


"Мы давно рассматриваем возможность того, что мы сможем видеть и вспышки сверхновых. У нас есть небольшая команда, которая следит за их возможными сигналами в данных LIGO и просчитывает модели того, как они могут излучать гравитационные волны. В принципе, мы открыты для изучения любых сигналов, которые могут получить наши три детектора, к примеру, пульсаров, имеющих неидеально сферическую форму", — пояснил ученый.


По его словам, поиск подобных сигналов затруднен не только тем, что они достаточно слабы, но и тем, что вращение Земли по орбите "растягивает" и "сжимает" сигнал, поступающий от подобных нейтронных звезд.

Коррекция этих искажений требует огромных вычислительных мощностей, что мешает масштабным поискам "эйнштейновских" колебаний, порождаемых асимметричными пульсарами. Сейчас ученые используют для подобных вычислений компьютеры добровольцев в рамках сети Einstein @ Home. Как мечтает Шумейкер, в конечном итоге все эти усилия приведут к открытию новых источников волн и объектов.

Показать полностью
Космос Черная дыра Гравитационные волны Гравитация Длиннопост Текст
3
333
nplus1
nplus1
Наука | Научпоп

LIGO поймал гравитационные волны от столкновения необычных черных дыр⁠⁠

8 лет назад

Два детектора обсерватории LIGO в третий раз за всю история наблюдений надежно зафиксировали гравитационные волны от столкновения черных дыр. Новый источник располагался в два раза дальше, чем предыдущие столкновения — волны от него шли к Земле около трех миллиардов лет. По словам физиков, масса слившихся черных дыр составила 49 масс Солнца, а энергия, выделившаяся в результате столкновения «превышает световую энергию, излучаемую за это же время всеми звездами и галактиками во Вселенной». Астрономы называют эту пару черных дыр необычной из-за различий в характере их вращения


http://short.nplus1.ru/uWSgNChUEDM

LIGO поймал гравитационные волны от столкновения необычных черных дыр
Показать полностью 1 1
Наука Новости Ligo Гравитационные волны Черная дыра Видео
107
106
chrusler
chrusler
Исследователи космоса

Гравитационные волны: ключ к открытию новых измерений?⁠⁠

8 лет назад
Гравитационные волны: ключ к открытию новых измерений?

Если мы хотим найти дополнительные измерения в нашей Вселенной, то есть то, о существовании чего нам пытается объяснить так называемая Теория струн, то нам следует обратить наше внимание на гравитационные волны. Потому что именно они могут являться ключом к их открытию, говорят физики.


Именно так можно кратко описать идею новой гипотезы, которая пытается найти ответ на нерешенную загадку физики: почему гравитация по факту оказывается слабее, чем другие фундаментальные силы нашей Вселенной? Согласно новой гипотезе, «утечка» гравитации ведет как раз в иные измерения, которые нам еще только предстоит обнаружить.


«Вероятность существования других измерений обсуждается уже довольно давно и с совершенно разных точек зрения», — говорит Эмильян Дудас из Политехнической школы в Париже.
«Гравитационные волны, в свою очередь, могут стать ключом к открытию этих дополнительных измерений».

Сейчас широко принимаемой является идея о четырех измерениях — трех пространственных (длина, ширина, высота) и одного временного (времени). Однако наши знания о том, как ведет себя материя на самых малых масштабах, содержат множество пробелов, заполнить которые могли бы дополнительные шесть измерений. Так считает Теория струн, согласно которой все во Вселенной можно было бы гораздо проще понять и объяснить, если бы мы согласились с идеей о существовании 10 измерений. Кроме того, Теория струн рассматривается в качестве наиболее вероятного способа наконец заполнить пробелы между классической и квантовой физиками, став основой для будущей теории квантовой гравитации.


Согласно данной теории, мельчайшие частицы материи, которые мы способны засечь, кварки, на самом деле могут состоять из еще более мелких частиц – одномерных волокон энергии, своим поведением напоминающих вибрирующие струны. Эти «струны» очень интересуют ученых по одной простой причине. Есть мнение, что они смогут сделать то, что не в состоянии сделать наша современная физика, а именно: точно описать все известные нам наиболее фундаментальные силы, включая гравитацию, электромагнетизм и ядерные силы. Они также способны помочь нам понять, почему Вселенная по-прежнему расширяется. Однако основная (и, пожалуй, единственная существенная) проблема заключается в том, что для своего математического обоснования они (струны) требуют наличия как минимум 10 измерений. И беда в том, что мы пока не приблизились даже к тому, чтобы открыть одно-единственное дополнительное.


Тем не менее физики Густаво Лусена-Гомез и Дэвид Андриот из Института физики Макса Планка в Германии убеждены, что надежда на открытие этих дополнительных измерений у нас есть. И этой надеждой являются гравитационные волны, давным-давно предсказанные великим Эйнштейном и только совсем недавно подтвержденные современными учеными.


Гравитационные волны стали одной из самых горячо обсуждаемых тем прошлого года, когда физики из LIGO – двух гигантских обсерваторий, расположенных в американских штатах Луизиана и Калифорния, – объявили о том, что впервые обнаружили прямые доказательства существования так называемой ряби пространства-времени, которую около 100 лет назад предсказал Эйнштейн. Эти волны путешествуют через пространство-время со скоростью света и появляются в результате одних из самых катастрофических событий во Вселенной, таких как слияние черных дыр или взрывы звезд. Они способны проходить и тем самым влиять на все известные нам измерения во Вселенной и, скорее всего, даже на те, которые мы пока не способны обнаружить.


«Если во Вселенной имеются дополнительные измерения, то логично было бы предположить, что гравитационные волны будут существовать во всех этих измерениях», — комментирует Гомез.

Гомез и Андриот вывели математическую модель, описывающую предполагаемые эффекты воздействия гравитационных волн на измерения, и определили два ключевых фактора. Во-первых, по мнению исследователей, дополнительные измерения могут проявить себя благодаря высокочастотным гравитационным волнам. Во-вторых, в разных измерениях гравитационные волны должны по-разному влиять на растяжение «ткани» Вселенной.


По мнению исследователей, в первом случае для обнаружения потребовалось бы наличие оборудования, в тысячи раз более чувствительного, чем у той же LIGO.


«Нам еще не встречались астрофизические процессы, создающие гравитационные волны с частотой гораздо выше 1000 Гц, поэтому, при наличии соответствующего сверхмощного и чувствительного детектора, мы бы сразу поняли, свидетелем чего мы являемся. Определение частот такого уровня могло бы намекать на открытие новой физики».

А второй случай потребует от физиков изучения аномальных изменений во влиянии на пространство-время «обычных гравитационных волн» (то есть тех, которые мы можем определить уже сейчас) и тех, которые имелись бы у гравитационных волн из других измерений.


«Деформация пространства-времени была бы представлена в определенном, отличительном от всего остального виде», — сообщают ученые.

Научный обозреватель Newsweek Ханна Осборн более оптимистично смотрит на возможность обнаружения дополнительных измерений за счет их влияния на гравитационные волны. По ее мнению, потребуется детектор с уровнем чувствительности сразу трех лабораторий LIGO, работающих как единое целое. Осборн считает, что «такие технологии станут доступны уже в ближайшем будущем».


Существование других измерений может быть тем самым ответом современной физики, который так давно и настойчиво ищут ученые. Другие измерения могли бы привести к созданию единой теории о Вселенной, которая примиряла бы теорию квантового поля с общими принципами относительности.


Мнение о вероятности существования дополнительных измерений разделяют множество ученых. Например, физик-теоретик Бобби Ачария из Королевского колледжа Лондона считает, что Вселенная гораздо сложнее, чем кажется на первый взгляд, и скрываться в ней может все что угодно. Он верит в дополнительные измерения, но прекрасно понимает, что нынешний уровень технологий не позволяет их обнаружить.



«Для создания и перераспределения гравитационных волн в другие измерения вам потребуется наличие колоссального объема энергии. Даже если вам удастся создать волны, которые просочатся в другие измерения, масштаб будет настолько мал, что частота гравитационных волн в этом случае будет очень высокой, гораздо выше нынешних возможностей обнаружения детектора гравитационных волн LIGO».

источник

Показать полностью
Космос Вселенная Гравитационные волны Чудеса природы Теория Длиннопост
11
153
EVILSPACE
EVILSPACE

Гравитационные волны выбросили гигантскую черную дыру из центра галактики⁠⁠

8 лет назад

Астрономы открыли сверхмассивную черную дыру, которая была вытолкнута из центра далекой галактики под действием мощных гравитационных волн.


Хотя на сегодняшний день ученым известно еще несколько сверхмассивных черных дыр, предположительно, выброшенных из родительских галактик в соответствии с аналогичным механизмом, однако ни один из этих объектов до настоящего времени не подтвержден. Астрономы считают, что этот, новый объект, обнаруженный при помощи космического телескопа «Хаббл», является убедительным подтверждением механизма выталкивания черной дыры из галактики под действием гравитационных волн. Эта черная дыра, масса которой составляет около одного миллиарда масс Солнца, является самой массивной известной ученым черной дырой, выброшенной из родительской галактики.

В этом новом исследовании группа астрономов, возглавляемая Марко Чиаберге (Marco Chiaberge) из Института исследований космоса с помощью космического телескопа, США, наблюдала при помощи космических обсерваторий НАСА «Чандра» и «Хаббл», а также Слоуновского цифрового обзора неба, квазар под названием 3C 186 и его родительскую галактику, находящиеся на расстоянии примерно 8 миллиардов световых лет от нас в составе скопления галактик.
Проведенные учеными наблюдения показали, что квазар - представляющий собой активную центральную черную дыру, окруженную ярко светящимся диском из падающей на нее материи – оказался значительно смещен в сторону от центра галактики и, двигаясь, со скоростью 7,5 миллиона километров в час, готовится покинуть её пределы, что должно произойти, согласно оценкам команды, примерно через 20 миллионов лет.
Для объяснения этих результатов команда Чиаберге предложила сценарий, согласно которому родительская галактика квазара 3C 186 была сформирована в результате объединения двух галактик с двумя разными по размерам и массе центральными сверхмассивными черными дырами. На последней стадии объединения двух различных по размерам черных дыр возможен эффект появления мощной асимметричной гравитационной волны, в результате которого центральную черную дыру, которая представляет собой к этому моменту результат слияния двух черных дыр исходных галактик, может вытолкнуть из родительской галактики с большой скоростью, что и произошло в рассматриваемом случае, считают Чиаберге и его коллеги.
Показать полностью 3
3c 186 Космос Вселенная Черная дыра Исследования Астрономия Гравитационные волны Галактика Длиннопост Сверхмассивная черная дыра
25
12
BlackWold
BlackWold

Астрономы нашли черную дыру, "Убегающую" Из галактического центра.⁠⁠

8 лет назад

С помощью космического телескопа «Хаббл» астрономы провели наблюдение за сверхмассивной черной дырой с массой в один миллион раз больше массы нашего Солнца и «убегающей» из своей родной галактики. Это первый среди подтвердившихся случаев так называемых «убегающих черных дыр», (отношение к этой категории объектов астрономы подозревают еще у нескольких черных дыр). Смещение черных дыр из своих галактических центров должно требовать колоссального объема энергии. Но какого именно?


«Мы подсчитали, что объем этой энергии будет эквивалентен энергии 100 миллионов сверхновых, взорвавшихся одновременно. Только в этом случае черную дыру удастся сдвинуть внешним воздействием со своего места», — комментирует Стефано Бианчи из 3-го университета Рима и соавтор исследования обсуждаемого феномена.


Согласно теоретической модели ученых, источником такой колоссальной энергии в обсуждаемом сегодня случае являются гравитационные волны, созданные двумя другими черными дырами, столкнувшимися друг с другом около 1-2 миллионов лет назад.

Иллюстрация выше показывает, как две сверхмассивные черные дыры сливаются в одну, которая впоследствии выталкивается из своей родной галактики. Изображение 1: показан процесс слияния двух галактик. Сверхмассивные черные дыры, находящиеся в их центрах, начинают притягиваться друг к другу. Изображение 2: как только сверхмассивные черные дыры сближаются на достаточное расстояние, они начинают оборачиваться вокруг друг друга. В результате этого создаются мощные гравитационные волны. Изображение 3: продолжая воздействовать друг на друга своей гравитацией, черные дыры продолжают сближаться, пока в конце концов не сливаются в одну сверхмассивную черную дыру. Изображение 4: если обе черные дыры обладают разными массами и собственной скоростью вращения, то в этом случае начинают создаваться более сильные гравитационные волны, направленные в одну сторону.


Когда обе дыры в конечном итоге сталкиваются, они перестают генерировать гравитационные волны, а новообразованная черная дыра начинает вращаться в противоположную сторону уже созданных гравитационных волн, что в результате и выталкивает ее за пределы галактического центра.


Ученые отмечают, что энергетическая сигнатура исследуемой черной дыры на момент наблюдения располагалась гораздо дальше от предполагаемого места в центре ее родной галактики 3C186. По подсчетам исследователей, она уже отдалилась от центра примерно на 35 000 световых лет, что больше расстояния от Солнца до центра нашего Млечного Пути. При это скорость отдаления черной дыры составляет около 7,5 миллиона километров в час. При такой скорости с Земли до Луны мы смогли бы долететь менее чем за 3 минуты.


Астрономы отмечают, что в конце концов черная дыра вообще покинет галактику 3C186.


Исьточник

Показать полностью 1
Астрономия Гравитационные волны Черная дыра
7
7
EVILSPACE
EVILSPACE

Обнаружение гравитационных волн при помощи атомных часов⁠⁠

8 лет назад
Недавнее обнаружение гравитационных волн, испускаемых при столкновении двух черных дыр массами порядка тридцати солнечных масс, при помощи наземной обсерватории LIGO возродило интерес к разработке ещё более чувствительных методов измерения. Наземные инструменты для обнаружения гравитационных волн, как правило, имеют широко разнесенные между собой в пространстве датчики, способные регистрировать мельчайшие изменения расстояния между датчиками – меньше, чем одна часть на миллиард триллионов.


Однако такие системы имеют один серьезный недостаток – они срабатывают на шум, производимый легкими вибрациями земли, возникающими в результате природных явлений или деятельности человека. Особенно трудно скомпенсировать те из этих вибраций, которые происходят довольно медленно, то есть характеризуются частотой порядка одного или менее колебания в секунду. Однако астрономам известно, что именно эти медленные изменения могут представлять большой научный интерес, указывая на компактные двойные звездные системы или гравитационные события в ранней Вселенной.

Для решения этой проблемы астрономы из Гарвард-Смитсоновского астрофизического центра, США, разработали и предложили новый метод. Метод основан на использовании атомных часов на водородных мазерах для точного измерения и предполагает обнаружение в основном гравитационных волн низкой частоты. В отличие от предлагаемых ранее методов, суть которых сводилась к точному изменению расстояния между датчиками, в этом новом методе предполагается измерение допплеровского эффекта, вызываемого крохотным смещением одного датчика относительно другого.


Предложенная измерительная система включает лазер с высокотехнологичной системой управления и прецизионные атомные часы, установленные на борту двух спутников. В отличие от других предлагаемых систем для регистрации гравитационных волн эта система требует не три, а всего лишь два различных спутника для функционирования.

Показать полностью 1
Гравитационные волны Атомные часы Космос Исследования Вселенная
0
116
ScienceFirstHand
ScienceFirstHand
Наука | Научпоп

Профессор Александр Долгов – о черных дырах и белых пятнах во Вселенной⁠⁠

8 лет назад
Профессор Александр Долгов – о черных дырах и белых пятнах во Вселенной
Image Credit: T. Pyle/Caltech/MIT/LIGO Lab
Невозможно объять необъятное, а Вселенную – тем более. Но если для Вас главный герой фильма «Интерстеллар» – не Мэтью МакКонахи, а американский физик и астроном Кип Торн, выступивший в роли научного консультанта во время съемок фильма, и Вас волнуют сообщения о новых открытиях астрономов и астрофизиков, то вряд ли Вы пропустили новость о том, что в феврале 2016 г. ученые «поймали» гравитационные волны и тем самым открыли новую эру в науке, изучающей Вселенную
Интервью с профессором, доктором физико-математических наук Александром Долговым, которое вышло в новом номере журнала «НАУКА из первых рук» можно назвать кратким курсом астрофизики для любознательных. Профессор Долгов рассказал об открытии гравитационных волн, возникших после слияния черных дыр, благодаря которым теперь ученые могут буквально «слушать» Вселенную; о поисках до сих пор неуловимых частиц темной материи, детекторы которых сегодня создаются во всем мире, в том числе в Новосибирске; о таинственных магнитных монополях – потенциальных источниках неистощимой энергии, а также возможных «земных» приложениях многих других «небесных» открытий. О самых «горячих» точках современной космологии простым языком читайте в материале «… При большой температуре для Вселенной сшита шуба по ее кривой фигуре».
Показать полностью
Гравитационные волны Черная дыра Эксперимент ligo Темная материя Суперсимметрия Вселенная
4
395
introinspector
Наука | Научпоп
Серия Veritasum в моей озвучке

Veritasium: Абсурдность обнаружения гравитационных волн⁠⁠

8 лет назад

Лазер, способный испарить голову, с идеальной длиной волны регистрирует субпротонные пространственно-временные колебания.

[моё] Veritasium Озвучка Наука Гравитационные волны Познавательно Интересное Видео YouTube
110
Посты не найдены
О нас
О Пикабу Контакты Реклама Сообщить об ошибке Сообщить о нарушении законодательства Отзывы и предложения Новости Пикабу Мобильное приложение RSS
Информация
Помощь Кодекс Пикабу Команда Пикабу Конфиденциальность Правила соцсети О рекомендациях О компании
Наши проекты
Блоги Работа Промокоды Игры Курсы
Партнёры
Промокоды Биг Гик Промокоды Lamoda Промокоды Мвидео Промокоды Яндекс Маркет Промокоды Пятерочка Промокоды Aroma Butik Промокоды Яндекс Путешествия Промокоды Яндекс Еда Постила Футбол сегодня
На информационном ресурсе Pikabu.ru применяются рекомендательные технологии