Сообщество - THE SPACEWAY

THE SPACEWAY

184 поста 101 подписчик

Популярные теги в сообществе:

35

Что такое гравитационные волны? Простейшее объяснение без формул

Чтобы ответить на этот вопрос, нам придется вернуться назад во времени, в 1916 год, когда Альберт Эйнштейн, один из величайших умов в истории, опубликовал свою общую теорию относительности.

Что такое гравитационные волны? Простейшее объяснение без формул Вселенная, Астрофизика, The Spaceway, Астрономия, Космос, Гравитация, Гравитационные волны, Длиннопост

© Dreamina/TheSpaceway

До 1916 года физики, пытаясь объяснить, что такое гравитация и почему она существует, выдвигали бесчисленное множество всевозможных гипотез. Ни одна из них не устраивала Эйнштейна, и он предложил свое объяснение: гравитация — это искривление пространства-времени.

Пространственно-временной батут

Математически Эйнштейн доказал, что за гравитационные эффекты отвечает искривление пространства-времени. Батут — отличный способ продемонстрировать это сложное явление на плоской поверхности.

Представьте, что вы кладете пушечное ядро в центр батута — его масса прогибает полотно, создавая впадину. Если мы поместим у внешнего края батута теннисный мяч, то он покатится не просто внутрь, но и вокруг ядра.

Что такое гравитационные волны? Простейшее объяснение без формул Вселенная, Астрофизика, The Spaceway, Астрономия, Космос, Гравитация, Гравитационные волны, Длиннопост

© theconversation.com

Гравитация — искажение ткани пространства-времени, влияющее на движение объектов.

Именно это объясняют знаменитые математические уравнения Эйнштейна — как пространство-время ведет себя при различных физических условиях.

Мы знаем, что во Вселенной все и всегда находится в постоянном движении. И когда объекты ускоряются в пространстве-времени, они могут создавать небольшую рябь, подобно камешку, брошенному в спокойную воду пруда.

Эта рябь — то, что мы называем гравитационными волнами.

Эйнштейн, предсказывая их существование, сомневался, что когда-нибудь в распоряжении человечества появится сверхчувствительный инструмент, который сможет зафиксировать эти ничтожно малые колебания, сотрясающие при этом всю Вселенную.

Хотелось бы узнать, как бы он отреагировал на тот факт, что мы не просто подтвердили существование гравитационных волн, но и зафиксировали около 300 событий, начиная с 2015 года. Это одно из крупнейших достижений в физике, и то, как ученым удалось осуществить это, просто взрывает мозг!

Сжатие и растяжение

Когда гравитационная волна проходит через Землю, она слегка сжимает или растягивает всю планету в направлении своего движения. Измерить такой эффект с помощью обычной линейки невозможно — ведь сама линейка тоже растянется или сожмется вместе с пространством, и показания останутся неизменными.

Что такое гравитационные волны? Простейшее объяснение без формул Вселенная, Астрофизика, The Spaceway, Астрономия, Космос, Гравитация, Гравитационные волны, Длиннопост

© Dreamina/TheSpaceway

Поэтому для этих целей физики решили использовать свет, который за определенное время может пройти определенное расстояние. Если пространство растянуто, то свету придется пройти большее расстояние, потратив на это больше времени. И наоборот, если пространство сжато.

Чтобы узнать, сжалось или растянулось пространство, нужно измерить его в двух направлениях и вычислить разницу. Звучит просто, но осуществить подобное на практике — сложнейшая задача. Все дело в том, что искомая разница в расстоянии в 1 000 раз меньше крошечной частицы, именуемой протоном. Для понимания масштаба: в наших телах содержится около 10 октиллионов протонов (единица с 28 нулями). А детекторы должны уловить изменения, которые в тысячу раз меньше одной такой частицы.

Как уловить невозможное?

Для решения этой задачи ученые создали невероятно сложные устройства — лазерные интерферометры. Принцип их работы основан на измерении расстояния между специальными тестовыми массами с помощью лазерных лучей.

Тестовые массы устанавливаются на огромном расстоянии друг от друга — это позволяет сделать даже мельчайшие изменения достаточно заметными для измерения. Эти массы тщательно изолируются от всех возможных помех, кроме одной — гравитации, от которой защититься невозможно.

Лазеры непрерывно измеряют точное расстояние между массами. Когда проходит гравитационная волна, пространство-время слегка растягивается или сжимается, и время, необходимое свету для преодоления расстояния между массами, изменяется. Эти крошечные изменения и улавливают детекторы.

Первый улов

14 сентября 2015 года произошло событие, навсегда изменившее науку. Детекторы LIGO в США впервые зарегистрировали гравитационные волны от слияния двух черных дыр, произошедшего на расстоянии около 1,3 миллиарда световых лет от нас.

Что такое гравитационные волны? Простейшее объяснение без формул Вселенная, Астрофизика, The Spaceway, Астрономия, Космос, Гравитация, Гравитационные волны, Длиннопост

LIGO состоит из двух обсерваторий: в Ливингстоне (штат Луизиана) и в Хэнфорде (штат Вашингтон), удаленных на 3 002 километра друг от друга. На фото — северный детектор интерферометра LIGO в Хэнфорде / © wikipedia.org

В 2017 году к охоте присоединился европейский детектор Virgo в Италии, а в 2020 году — японский детектор KAGRA. На начало 2030-х годов намечен запуск космического детектора гравитационных волн LISA в рамках программы Европейского космического агентства.

Что нам рассказывают волны?

Гравитационные волны подарили нам совершенно новый способ изучения Вселенной. Они помогают понять фундаментальные законы физики и рассказывают о самых грандиозных событиях космоса, которые невозможно наблюдать напрямую: формировании галактик, росте и слиянии сверхмассивных черных дыр, рождении и смерти звезд.

Ученые убеждены, что будущие детекторы позволят нам "заглянуть" в первые мгновения после Большого взрыва и приблизиться к пониманию того, как зарождалась наша Вселенная. Каждая новая зафиксированная гравитационная волна — это послание не только из глубин Вселенной, но и из невообразимо далекого прошлого.

Читайте также:

Показать полностью 4
13

Исследование: атмосфера Земли вернется к докислородному периоду

В настоящее время жизнь на нашей богатой кислородом планете процветает, но так будет не всегда. Ученые предсказывают, что Землю ждут кардинальные атмосферные изменения — те, что приведут к вымиранию большинства форм жизни, включая человечество.

Исследование: атмосфера Земли вернется к докислородному периоду The Spaceway, Наука, Климат, Природа, Кислород, Земля, Планета Земля, Длиннопост

© hemisgalerie.com

Великое кислородное событие

Несмотря на запредельную важность кислорода для нашего существования, его присутствие в земной атмосфере — относительно недавняя особенность в долгой и богатой событиями истории нашей планеты. До Великого кислородного события (ВКС), произошедшего около 2,4 миллиарда лет назад, на Земле было крайне мало кислорода. В то время в богатой метаном атмосфере планеты и насыщенных железом океанах процветали анаэробные формы жизни. Железа в наших океанах было настолько много, что они имели ярко-зеленый цвет вместо привычного нам сине-голубого. Появление цианобактерий, способных к фотосинтезу, привело к увеличению выработки кислорода в океанах, откуда он поступал в атмосферу. С наступлением ВКС жизнь на Земле кардинально изменилась.

Авторы исследования считают, что в конечном итоге атмосфера Земли вернется к этому древнему состоянию, снова став бедной кислородом и богатой метаном. Ученые также прогнозируют, что эта трансформация произойдет задолго до того, как вся поверхностная вода испарится из-за возросшего солнечного излучения. Так что наша планета может стать непригодной для жизни людей и большинства других сложных форм жизни намного быстрее, чем предполагалось ранее.

Трансформация атмосферы

Так почему же это должно произойти? Связано это с тем, что наше Солнце стареет, становясь ярче и горячее. Из-за этого постепенно будет усиливаться распад углекислого газа в нашей атмосфере, который критически необходим для фотосинтеза. Это в конечном итоге приведет к сокращению количества растений, производящих кислород, и, таким образом, положит конец жизни на Земле в ее привычном виде.

Исследователи прогнозируют падение уровня кислорода в миллион раз ниже сегодняшнего. Изменения будут происходить настолько стремительно по геологическим меркам, что у кислородозависимых организмов и целых экосистем, зависящих от аэробной жизни, не будет времени на адаптацию.

Исследование: атмосфера Земли вернется к докислородному периоду The Spaceway, Наука, Климат, Природа, Кислород, Земля, Планета Земля, Длиннопост

© pinterest.com

Несмотря на это, микробная жизнь, как ожидается, выживет. Земля будущего окажется под властью анаэробных организмов — бактерий и архей, которые чувствуют себя замечательно в бескислородной среде и в условиях экстремальных температур. Эти простейшие существовали задолго до ВКС, существуют сегодня и, вероятно, продолжат процветать после исчезновения кислорода.

Согласно прогнозу ученых, у нас в запасе примерно один миллиард лет — достаточно времени, чтобы найти новый дом для нашего вида (если человечество все еще будет существовать, конечно). Колонизация других планет, создание искусственных биосфер или даже поиск способов продлить пригодность Земли для жизни — все это вызовы, с которыми столкнется научное сообщество будущего.

Да, конец кислородной эпохи означает гибель для большинства форм жизни на Земле в том виде, в каком мы ее знаем. Однако это лишь продолжение истории постоянно меняющейся планеты, на которой уже неоднократно происходили массовые вымирания. Земля, непременно, выстоит, но продолжит свое существование во мраке Вселенной без нас.

Читайте также:

Показать полностью 2
15

История о том, как Артур Кларк "открыл жизнь" на Марсе

В 2001 году писатель, футуролог и популяризатор науки Артур Кларк совершил "открытие", которое, как он думал, способно стать поворотным в истории человечества.

История о том, как Артур Кларк "открыл жизнь" на Марсе The Spaceway, Вселенная, Астрономия, Космос, Марс, Артур Кларк, Наука, Внеземная жизнь, Длиннопост

Сэр Артур Чарльз Кларк (16 декабря 1917 года — 19 марта 2008 года) / © wikimedia.org

Скачав из интернета свежие снимки Марса, переданные орбитальным аппаратом NASA Mars Global Surveyor (MGS), 84-летний автор "Космической одиссеи" внимательно изучил их и пришел к неожиданному умозаключению: "На Марсе однозначно есть жизнь!"

Кларк был настолько взволнован, что поспешил организовать прием для друзей и журналистов. С горящими глазами он демонстрировал гостям черно-белые снимки марсианской поверхности, указывая на загадочные древовидные структуры, которые, по его словам, двигались и постоянно менялись в зависимости от сезона.

История о том, как Артур Кларк "открыл жизнь" на Марсе The Spaceway, Вселенная, Астрономия, Космос, Марс, Артур Кларк, Наука, Внеземная жизнь, Длиннопост

Изображение, полученное орбитальным аппаратом MGS / © NASA

"Это растительность!" — уверял писатель, показывая фотографии за разные периоды.

А ведь темные ветвящиеся узоры действительно периодически меняли свой размер, словно марсианский лес, который засыпал зимой и распускался в весенне-летний период.

Обычно научно сообщество игнорирует подобные "открытия", но из-за глубокого уважения к Кларку комментарий все же был дан.

Итак, на самом деле великий фантаст наблюдал совершенно обычное для Красной планеты явление — сползание песчаных дюн. Темные "ветви" оказались следами, которые оставляли скатывающиеся по склонам небольшие валуны и песок, приводимые в движение в процессе сублимации* замороженного углекислого газа (сухого льда).

*Сублимация — переход вещества из твердого состояния сразу в газообразное.

История о том, как Артур Кларк "открыл жизнь" на Марсе The Spaceway, Вселенная, Астрономия, Космос, Марс, Артур Кларк, Наука, Внеземная жизнь, Длиннопост

Изображение, полученное орбитальным аппаратом MRO / © NASA

С приходом марсианской весны поверхность прогревается, сухой лед испаряется и частицы грунта начинают движение. Массовое осыпание формирует характерные древовидные узоры — результат банальной эрозии, а не жизнедеятельности инопланетной флоры.

К концу жизни Кларк признал свою ошибку, но его "марсианские деревья" стали ярким примером того, что даже гениальный ум не застрахован от причуды мозга выдавать желаемое за действительное.

Мораль сей истории такова: зачастую самые захватывающие объяснения оказываются неверными.

Читайте также:

Показать полностью 3
12

"Джеймс Уэбб" обнаружил "кирпичики жизни" в Малом Магеллановом Облаке

Одной из наиболее сильных сторон космического телескопа NASA "Джеймс Уэбб" является его способность "заглядывать" внутрь областей звездообразования, которые окутаны чрезвычайно плотными газовыми облаками, делающими их недоступными для наблюдений в обычные оптические телескопы.

"Джеймс Уэбб" обнаружил "кирпичики жизни" в Малом Магеллановом Облаке Астрофизика, The Spaceway, Астрономия, Вселенная, Космос, NASA, Телескоп Джеймс Уэбб, Галактика, Звезды, Телескоп, Длиннопост

© NASA, ESA, CSA, N. Habel (JPL), P. Kavanagh (Maynooth University)

Ярким примером исследования колыбели звезд является изображение области NGC 346, представляющей собой очень яркий и крупный регион активного звездообразования в Малом Магеллановом Облаке (ММО).

Галактика-соседка с сюрпризами

ММО — карликовая галактика-спутник Млечного Пути, находящаяся на расстоянии около 210 000 световых лет от нас. Эту галактику, расположенную в направлении созвездия Тукана, можно лицезреть невооруженным глазом из Южного полушария Земли и вблизи экватора, но с территории России ее, к сожалению, увидеть не получится.

Ключевая особенность этой галактики — низкое содержание тяжелых элементов по сравнению с Млечным Путем. Дело в том, что все элементы тяжелее водорода и гелия "выпекаются" в ядрах массивных звезд. Когда такие звезды завершают свой жизненный цикл и вспыхивают как сверхновые, они обогащают окружающее пространство новыми химическими элементами.

Космическая пыль состоит преимущественно из тяжелых элементов — кремния, кислорода и других, — поэтому ученые ожидали, что в ММО ее должен быть дефицит. Однако наблюдения "Джеймса Уэбб" показали иную картину.

В регионе NGC 346 сосредоточено огромное количество космической пыли, а значит в прошлом там происходили многочисленные вспышки сверхновых, которые не только локально насытили карликовую галактику тяжелыми элементами, но и дали толчок следующей волне звездообразования.

Кирпичики жизни в космосе

Еще более интригующей находкой стало обнаружение большого количества полициклических ароматических углеводородов (ПАУ) — сложных органических молекул, которые ученые часто называют "кирпичиками жизни". ПАУ играют важную роль в формировании более сложных органических структур и могут служить основой для зарождения жизни.

"Джеймс Уэбб" обнаружил "кирпичики жизни" в Малом Магеллановом Облаке Астрофизика, The Spaceway, Астрономия, Вселенная, Космос, NASA, Телескоп Джеймс Уэбб, Галактика, Звезды, Телескоп, Длиннопост

© NASA, ESA, CSA, N. Habel (JPL), P. Kavanagh (Maynooth University)

Яркие шестиконечные точки на изображении представляют собой протозвезды — светила на ранней стадии эволюции, все еще окутанные плотными газопылевыми оболочками. Согласно оценке астрономов, всего в этом регионе скрываются более 1 000 звездных объектов, большинство из которых протозвезды, продолжающие активно формироваться.

Открытие показывает, что карликовые галактики представляют собой динамично развивающиеся системы. По мере накопления тяжелых элементов и формирования новых поколений звезд они эволюционируют, постепенно становясь все более сложными структурами.

Возможно, именно из подобных карликовых галактик в далеком будущем могут "вырасти" массивные звездные системы, подобные нашему Млечному Пути. Правда, это может произойти только в том случае, если карликовая галактика будет изолирована, а не поглощена более крупной галактикой-соседкой.

Читайте также:

Показать полностью 2
14

Цветное изображение Венеры от NASA MESSENGER

Цветное изображение Венеры, полученное 5 июля 2007 года космическим аппаратом NASA MESSENGER, который был запущен 3 августа 2004 года для изучения Меркурия.

Цветное изображение Венеры от NASA MESSENGER Астрономия, The Spaceway, Астрофизика, Вселенная, Космос, Венера, Планета, Messenger, NASA, Солнечная система

© NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington

Поскольку Венера находится между орбитами Земли и Солнца, мы всегда видим ее на небе на относительно небольшом расстоянии от светила. Когда Венера находится по одну сторону от Солнца, то планета как бы следует за ним и становится более заметной во время заката на Земле. Однако каждые 584 дня Венера появляется по другую сторону от Солнца, и когда это происходит, то планета восходит утром до рассвета.

Древние греки и египтяне не знали этих астрономических деталей, поэтому они рассматривали Венеру как два разных небесных тела — утреннее и вечернее. Венеру, появляющуюся до восхода Солнца, греки называли Фосфором (др.-греч. Φωσφόρος — "несущий свет"), а Венеру, красующуюся на небосводе после захода Солнца, они называли Геспером (др.-греч. Ἕσπερος — "вечерний, западный").

Примечательно, что древние римляне знали, что перед ними один объект, но, переняв многое из греческой культуры, они не упустили возможность позаимствовать и отдельные определения для утренней и вечерней Венеры: Люцифер (лат. Lucifer — "светоносный") и Веспер (лат. Vesper — "вечерний") соответственно.

Читайте также:

Показать полностью 1
14

"Комета затмения", наблюдаемая в мае 1882 года

17 мая 1882 года астрономы стали свидетелями невероятного космического совпадения — во время полного солнечного затмения рядом с нашим светилом пролетала яркая комета семейства Крейца.

"Комета затмения", наблюдаемая в мае 1882 года The Spaceway, Астрономия, Астрофизика, Вселенная, Космос, Наука, Комета, Солнце, Солнечная система, Длиннопост

Первая в истории фотография кометы во время солнечного затмения / © catalogue.nla.gov.au

Комета X/1882 K1, позже получившая неофициальное название "Комета затмения", подошла к Солнцу на рекордно близкое расстояние — всего 450 000 километров от поверхности. Для сравнения: среднее расстояние от Земли до Луны составляет 384 400 километров. В ходе такого маневра ядро X/1882 K1 раскалилось до нескольких тысяч градусов.

Хвост "Кометы затмения" растянулся более чем на 100 миллионов километров — это две трети расстояния от Земли до Солнца! Комета стала настолько яркой, что ее можно было наблюдать невооруженным глазом даже днем.

Гигантские хвосты комет формируются под действием солнечного ветра и излучения. Когда комета приближается к Солнцу, ее ядро — смесь льда, пыли и камней (поэтому кометы нередко называют "грязными снежками") — начинает нагреваться. Лед сублимирует — сразу превращается в газ, минуя жидкую фазу. Солнечный ветер и световое давление уносят частицы газа и пыли прочь от Солнца, формируя характерный хвост, который всегда направлен в противоположную от звезды сторону.

"Комета затмения", наблюдаемая в мае 1882 года The Spaceway, Астрономия, Астрофизика, Вселенная, Космос, Наука, Комета, Солнце, Солнечная система, Длиннопост

Зарисовка события, сделанная астрономом Джорджем Фредериком Чемберсом, который в момент затмения находился в Египте / © wikisource.org

Кометы семейства Крейца — особая группа комет, образовавшихся в результате разрушения гигантской кометы около тысячи лет назад. Названы в честь немецкого астронома Генриха Крейца, который установил связь между этими небесными телами, выдвинув теорию их общего происхождения. Все кометы семейства Крейца имеют схожие орбиты с периодом от 500 до 900 лет и регулярно "ныряют" к Солнцу на экстремально близкие расстояния.

На сегодняшний день известно более 2 000 комет семейства Крейца, большинство из которых было обнаружено космическим аппаратом NASA/ESA SOHO. Примечательно, что многие из этих комет настолько малы, что полностью испаряются при приближении к Солнцу.

Прародительница всех комет Крейца, вероятно, была одной из крупнейших комет Солнечной системы — ее ядро достигало десятков километров в диаметре. При распаде она породила целую "династию" комет, которые до сих пор напоминают нам об этом древнем космическом катаклизме.

Читайте также:

Показать полностью 2
21

Полюбуйтесь туманностью Призрак — небесным фениксом в созвездии Цефея

В созвездии Цефея, на расстоянии около 550 световых лет от Земли, находится один из самых завораживающих объектов Млечного Пути — туманность Призрак (IC 63). Этот космический гигант медленно "тает" под воздействием мощного излучения близлежащей звезды, словно утренний туман, встречающий лучи восходящего Солнца.

Полюбуйтесь туманностью Призрак — небесным фениксом в созвездии Цефея Астрофизика, The Spaceway, Астрономия, Вселенная, Туманность, Наука, Космос, Звезды, Длиннопост

© NASA/ESA

Первое, что поражает в туманности Призрак — это ее удивительное сходство с мифическим фениксом. Золотисто-синие газовые облака образуют силуэт гигантской птицы с широко расправленными крыльями, застывшей в безмолвном полете через тьму Вселенной. Не менее впечатляющей особенностью этого космического создания является его колоссальный размер — около семи световых лет в поперечнике, что почти в 443 000 раз превышает расстояние от Земли до Солнца.

Призрачное свечение туманности обеспечивает звезда Гамма Кассиопеи, которая представляет собой чрезвычайно яркий бело-голубой гигант, удаленный примерно на три световых года от IC 63. Это светило в 19 раз массивнее и в 65 000 раз ярче Солнца!

Мощное ультрафиолетовое излучение звезды ионизирует атомы водорода в туманности, вынуждая их светиться красноватым цветом, в то время как частицы космической пыли рассеивают голубой свет. Вкупе это создает неповторимую цветовую палитру, наблюдаемую на изображении, которое было получено с помощью космического телескопа NASA/ESA "Хаббл".

Полюбуйтесь туманностью Призрак — небесным фениксом в созвездии Цефея Астрофизика, The Spaceway, Астрономия, Вселенная, Туманность, Наука, Космос, Звезды, Длиннопост

Гамма Кассиопеи — очень яркая звезда, отвечающая за прелесть и уничтожение туманности Призрак / © Neil Michael Wyatt

Однако интенсивное излучение со стороны Гаммы Кассиопеи не только освещает газово-пылевое облако, но и буквально испаряет его, унося частицы материи в межзвездное пространство. Астрономы подсчитали, что если темп выдувания сохранится, что через несколько десятков тысяч лет — мгновение по космическим меркам — от туманности Призрак ничего не останется.

Туманность IC 63 — напоминание о мимолетности даже самых грандиозных космических явлений. Этот небесный призрак существует лишь благодаря хрупкому балансу между гравитацией, удерживающей газ и пыль вместе, и звездным ветром, стремящимся их рассеять. Каждый фотон, покидающий Гамму Кассиопеи и врезающийся в туманность Призрак, приближает момент, когда последние частицы IC 63 разлетятся по холодной пустоте межзвездного пространства.

Читайте также:

Показать полностью 2
23

Лунный кратер Аристарх "глазами" зонда NASA LRO

Завораживающая фотография лунного кратера Аристарх, расположенного в северо-западной части видимой стороны спутника. Средний диаметр данного ударного образования составляет 40 километров, а наибольшая глубина — 3,15 километра. Центральный пик кратера возвышается на 300 метров.

Лунный кратер Аристарх "глазами" зонда NASA LRO Астрономия, The Spaceway, Астрофизика, Космос, Вселенная, Луна, NASA, Кратер, Наука

© NASA

Кратер был назван в честь Аристарха Самосского (~310 год до н. э. — ~230 год до н. э.), древнегреческого астронома, математика, философа и создателя гелиоцентрической системы мира.

Изображение, прикрепленное к посту, было получено 4 августа 2018 года действующим орбитальным аппаратом NASA Lunar Reconnaissance Orbiter (LRO).

Показать полностью
Отличная работа, все прочитано!