Горячее
Лучшее
Свежее
Подписки
Сообщества
Блоги
Эксперты
#Круги добра
Войти
Забыли пароль?
или продолжите с
Создать аккаунт
Я хочу получать рассылки с лучшими постами за неделю
или
Восстановление пароля
Восстановление пароля
Получить код в Telegram
Войти с Яндекс ID Войти через VK ID
Создавая аккаунт, я соглашаюсь с правилами Пикабу и даю согласие на обработку персональных данных.
ПромокодыРаботаКурсыРекламаИгрыПополнение Steam
Пикабу Игры +1000 бесплатных онлайн игр Рыбачь в мире после катастрофы. Лови мутантов, находи артефакты, участвуй в рейдах и соревнованиях. Создавай предметы, прокачивай навыки, помогай соратникам и раскрывай тайны этого мира.

Аномальная рыбалка

Симуляторы, Мидкорные, Ролевые

Играть

Топ прошлой недели

  • SpongeGod SpongeGod 1 пост
  • Uncleyogurt007 Uncleyogurt007 9 постов
  • ZaTaS ZaTaS 3 поста
Посмотреть весь топ

Лучшие посты недели

Рассылка Пикабу: отправляем самые рейтинговые материалы за 7 дней 🔥

Нажимая кнопку «Подписаться на рассылку», я соглашаюсь с Правилами Пикабу и даю согласие на обработку персональных данных.

Спасибо, что подписались!
Пожалуйста, проверьте почту 😊

Помощь Кодекс Пикабу Команда Пикабу Моб. приложение
Правила соцсети О рекомендациях О компании
Промокоды Биг Гик Промокоды Lamoda Промокоды МВидео Промокоды Яндекс Директ Промокоды Отелло Промокоды Aroma Butik Промокоды Яндекс Путешествия Постила Футбол сегодня
0 просмотренных постов скрыто
1
PNIPU
PNIPU
8 месяцев назад

Ученые Пермского Политеха разработали схему автоматизации экологичного производства сажи⁠⁠

Сажу (в науке – технический углерод) используют в изготовлении резины и шин, а также как цветовой пигмент в печатных красках и лакокрасочных изделиях. Ее мировое производство превышает 11 миллионов тонн в год. При этом в процессе ее получения выделяется большое количество вредных соединений окислов углерода и азота, которые образуют «парниковый эффект» и, как следствие, повышение температуры поверхности Земли. Важным вопросом производства сажи является не только ее экологичность, но и автоматизация: этому требованию в полной мере не соответствует ни одно из 10-ти российских химических предприятий, которые изготавливают технический углерод. Ученые Пермского Политеха разработали схему автоматизации эффективного и безопасного для природы производства сажи.

Ученые Пермского Политеха разработали схему автоматизации экологичного производства сажи ПНИПУ, Сажа, Углерод, Длиннопост

Фото: freepik

Статья опубликована в журнале «Инженерный вестник Дона», №7, 2024. Исследование выполнено в рамках программы стратегического академического лидерства «Приоритет 2030».

Технический углерод производится с помощью специальной установки – печного реактора. В нем исходное сырье (парафин) распадается на составляющие химические соединения под действием высоких температур (от 1400 до 1700 оС), источником которых служит природный газ с высоким содержанием метана.

Печной способ получения сажи теряет в своей эффективности, если технология недостаточно автоматизирована. В настоящее время процесс производства в камере перемешивания контролируется специальным температурным датчиком. Также в камеру горения реактора подается азот, который, смешиваясь с кислородом, образует вредные соединения окиси азота и углерода. Все эти вещества, попадая в атмосферу, снижают ее прозрачность, увеличивают «парниковый эффект» и разрушают озоновый слой Земли.

Ученые Пермского Политеха разработали схему автоматизации печного реактора. Помимо увеличения эффективности и скорости производства, она позволит сократить вероятность ошибок из-за человеческого фактора, которые снижают качество продукции и безопасность технологического процесса. Настройка оборудования по предложенной схеме автоматизирует основные этапы производства сажи – подачу топлива, воздуха для проведения реакции окисления и нейтрализацию вредных соединений.

– В условиях реального производства невозможно заранее точно определить значения всех переменных, задействованных в предстоящих химических реакциях: температуру, скорость перемещения и концентрацию сырья, конкретное содержание метана в природном газе, влаги в воздухе, примесей в сырье и т.д., хотя это позволило бы лучше регулировать и контролировать получение сажи. Наша схема учитывает эти условия неопределенности. Управление подачей топлива, окислителя и других веществ будут выполнять специальные датчики – ПИ-регуляторы нечеткой логики. Они способны работать с переменными коэффициентами, которые не заданы заранее, и принимают значения на основе входных данных, которые получают здесь и сейчас, – рассказывает Юрий Хижняков, профессор кафедры автоматики и телемеханики ПНИПУ, доктор технических наук.

У нечетких ПИ-регуляторов есть несколько задач. Во-первых, они управляют расходом топлива на основе измерений содержания метана природного газа. Во-вторых, контролируют подачу воздуха. Для этого регулятор сравнивает заданную температуру с той, что в камере горения, чтобы определить, насколько хорошо перемешивается природный газ с кислородом. Если процесс нарушен, то регулятор добавляет воздух. Еще одна функция – автоматическая подача, например, аммиака, который нейтрализует вредные соединения (окислы азота), образующиеся в процессе производства.

– На финальных этапах нужно остановить химическую реакцию восстановления. Она происходит при высокой температуре. Для ее снижения впрыскивают воду в камеру закалки печного реактора. Наша схема предполагает, что в этой зоне можно, как вариант, расположить лазерный измеритель мелких частиц аэрозоли углерода. Когда луч проходит через него, мелкие компоненты рассеивают свет, измеритель фиксирует это и определяет концентрацию частиц. Информация подается на устройство, которое впрыскивает воду под давлением 2 МПа. Температура в камере закалки снижается и активность химической реакции восстановления прекращается. В итоге в процессе гранулирования получается твердый углерод с требуемыми физико-химическими свойствами, – дополняет Павел Ефимов, ассистент кафедры автоматики и телемеханики ПНИПУ.

Ученые Пермского Политеха разработали схему автоматизации экологически чистого производства сажи с применением ПИ-регуляторов нечеткой логики. Она универсальна и не зависит от структуры реактора. Разработка поддерживает экологичность производства и эффективную охрану окружающей среды, что крайне важно для предотвращения глобального потепления.

Показать полностью 1
ПНИПУ Сажа Углерод Длиннопост
0
2
PNIPU
PNIPU
8 месяцев назад

Синтез 3D-печати и традиций: технология ученых Пермского Политеха ускорит сроки строительства монолитных зданий⁠⁠

Синтез 3D-печати и традиций: технология ученых Пермского Политеха ускорит сроки строительства монолитных зданий ПНИПУ, Строительство, Опалубка, Каркасный дом, Аддитивные технологии, 3D печать

Согласно статистике портала «ЕРЗ.РФ», в 2023 году только 62% жилой недвижимости введено в эксплуатацию своевременно или досрочно. Застройщики в среднем отстают от графика сдачи жилья на 5,2 месяца. Применение аддитивных технологий может решить эту проблему и оптимизировать методику возведения конструкций в монолитном строительстве. Сейчас каркас таких объектов формируют с помощью специальных сооружений – опалубок – это временные конструкции, в которые заливают раствор свежего бетона, чтобы он застыл в нужной форме. Ученые Пермского Политеха разработали новую технологию построения каркаса здания, которая представляет собой синтез традиционного подхода и инновационной 3D-печати. Это позволит на 10% ускорить сроки строительства и уменьшить энергозатраты.

Статья с результатами опубликована в журнале «Современные технологии в строительстве. Теория и практика», 2024 год. Исследование выполнено в рамках программы стратегического академического лидерства «Приоритет 2030».

Монолитное строительство получило большую популярность благодаря своим преимуществам. Технология позволяет возводить высотные здания в среднем за один год, что значительно быстрее по сравнению с кирпичными домами. Прочный монолитный каркас обеспечивает высокую надежность и долговечность зданиям.

На сегодняшний день аддитивные технологии пока не получили широкого распространения в строительстве, так как не решены некоторые проблемы в области материаловедения (подбор составов бетонных смесей для печати), автоматизации и строительной робототехники. Но техническая реализация 3D-печати возможна при возведении несъемной опалубки вертикальных монолитных конструкций.

Опалубка – это вспомогательная конструкция из дерева, металла или других материалов, которая нужна для придания монолитным конструкциям из бетона определенных параметров — формы, геометрических размеров, положения в пространстве. С ее помощью, например, создают стены, перекрытия и плиты. Опалубочные работы проводят на каждом этапе возведения здания, начиная от фундамента и заканчивая кровлей. Традиционная технология предполагает использование съемной многоразовой опалубки, которая в дальнейшем, после достаточного набора прочности бетона железобетонной конструкции, разбирается.

Ученые Пермского Политеха предлагают использовать новую технологию строительства в несъемной опалубке, изготовленной с помощью аддитивных технологий. Подход представлен на примере 25-этажного жилого дома. Политехники подобрали материалы и оборудование для 3D-печати, сконструировали вертикальные несущие конструкции и разработали схему производства работ. Результаты использования новой технологии сравнили с традиционной по продолжительности и стоимости работ.

Основа печати – это тяжелый мелкозернистый бетон на цементной основе, в состав которого входит мелкий заполнитель, минеральные добавки, микрофибра из стали, противоусадочные химические добавки и регуляторы сроков схватывания.

Важно правильно подобрать оборудование для 3D-печати, ведь именно от него зависит схема выполнения работ, их стоимость, сроки и качество. Ученые Пермского Политеха выбрали легкий мобильный строительный 3D-принтер, который устанавливается на подвижную платформу с дистанционным управлением и передвигается на собственном гусеничном ходу. Начиная с конкретной точки, производится послойная печать нескольких элементов опалубки, которые после затвердевания заполняются бетонной смесью с помощью башенного крана.

– Мы сравнили продолжительность и стоимость возведения каркаса здания по традиционной и предлагаемой технологиям. Для расчета составили графики производства работ и учли рыночную стоимость аренды и покупки комплекта опалубки и принтера, оплату труда работникам, общие расходы на материалы. Стоимость строительства с применением 3D-принтера практически не отличается от традиционной технологии даже с учетом его покупки. Однако его использование позволяет на 10% ускорить сроки выполнения работ, – рассказывает Степан Леонтьев, доцент кафедры «Строительный инжиниринг и материаловедение» ПНИПУ, кандидат технических наук.

Представленная учеными ПНИПУ технология возведения монолитного каркаса здания и спроектированные схемы работ с 3D-принтером имеет значительный потенциал для практического применения в строительной отрасли.

Показать полностью
ПНИПУ Строительство Опалубка Каркасный дом Аддитивные технологии 3D печать
5
0
PNIPU
PNIPU
8 месяцев назад

Метод ученых Пермского Политеха повысит точность и качество работы акустических сенсорных устройств⁠⁠

Метод ученых Пермского Политеха повысит точность и качество работы акустических сенсорных устройств ПНИПУ, Сенсорный экран, Сенсор, Звуковые волны, Акустика, Агрессивная среда, Промышленность, Длиннопост

Сейчас сенсорные устройства активно применяют в промышленности, медицине, оборонной отрасли и бытовой электронике. Это функциональный и удобный способ ввода информации. Однако при эксплуатации сенсорных экранов в агрессивных условиях, например, на машиностроительном производстве, в сельскохозяйственной или железнодорожной технике, на них воздействуют высокие температуры, влажность, пыль и механические нагрузки, из-за чего они работают некорректно. Поэтому в современных реалиях, помимо новых конструкций сенсорных устройств, необходимы инновационные подходы к проектированию «мозгов» прибора – их вычислительных систем. Ученые Пермского Политеха разработали эффективный метод создания вычислительной системы сенсорного устройства, который использует звуковую волну для определения места касания. Реализация подхода повысит надежность, скорость реакции и точность прибора даже в сложных условиях эксплуатации.

Статья опубликована в журнале «Вестник ПНИПУ. Электротехника, информационные технологии, системы управления», № 4, 2024.

Основной процесс сенсорных устройств заключается в определении точки касания экрана, так, например, работают наши смартфоны. Но если использовать аналогичные технологии в тяжелых промышленных условиях – на производствах, в химических лабораториях, в сельском хозяйстве, в управление различной техникой, то на них воздействуют различные погодные условия, химикаты, температура, влажность и пыль. Эти факторы приводят к сбоям сенсорного оборудования и его некорректной работе.

Поэтому для их эксплуатации в подобных средах требуется создание инновационных алгоритмов и моделей идентификации точки касания экрана, которые обеспечили бы заданную точность локализации и высокое быстродействие приборов.

Ученые Пермского Политеха работают над созданием такого устройства, которое для определения места касания фиксирует звуковые волны, распространяющиеся по поверхности сенсорного экрана. Вычислительная система – это одна из важнейших частей его качественного функционирования. Политехники предлагают эффективный метод ее разработки, который позволит всему прибору надежно работать в различных агрессивных средах.

Подобные акустические устройства, которые работают на фиксации звука от касания, не обеспечивают нужную точность в определении точки нажатия. Ее либо недостаточно, либо система слишком чувствительна, что приводит к ложным срабатываниям и ошибкам в идентификации координат точки касания.

– Этапы создания нашей вычислительной системы включают в себя анализ условий, в которых будет эксплуатироваться сенсорный экран (помещение, открытый воздух, море, пустыня), а также допустимый размер устройства, необходимую точность и скорость работы. Уже на основе этой информации подбираются подходящие материалы, не поглощающие звуковые волны, и рассчитывается скорость звука в них, – поделился Алексей Козин, аспирант, ассистент кафедры «Автоматика и телемеханика» ПНИПУ, основной разработчик сенсорного устройства и его вычислительной системы.

При моделировании экрана политехники выявили наилучшее расположение устройств, регистрирующих звук. Если поместить их в неактивной части сенсора (по краям), точность локализации места касания достигает 100%.

Метод, предлагаемый учеными, при разработке вычислительной системы позволяет учитывать все необходимые параметры – габариты, материал экрана, точность локализации касания, скорость отклика и чувствительность.

– Мы используем комплексный подход, который включает разработку математической модели функционирования сенсорного устройства, создание способа локализации места касания, компьютерное моделирование, программную реализацию для управляющего микроконтроллера и проведение экспериментов на опытном образце, – рассказывает Владимир Фрейман, профессор кафедры «Автоматика и телемеханика» ПНИПУ, доктор технических наук, научный руководитель проекта.

Разработанный учеными ПНИПУ метод может быть эффективно применен для создания вычислительных систем акустических сенсорных устройств широкого спектра назначения. Его реализация позволяет повысить надежность, быстродействие и точность локализации сенсора в сложных условиях эксплуатации. Разработка может быть востребована на промышленных предприятиях, в частности, в ее апробации заинтересовано ПАО «ПНППК».

Показать полностью
ПНИПУ Сенсорный экран Сенсор Звуковые волны Акустика Агрессивная среда Промышленность Длиннопост
0
0
PNIPU
PNIPU
8 месяцев назад

Ученые Пермского Политеха улучшили модель беспламенного горения в двигателях⁠⁠

Для многих из нас турбулентность – неприятное явление, которое сопровождается тряской самолета. Она возникает, когда потоки воздуха хаотично завихряются вместо того, чтобы двигаться прямо. Но если заглянуть внутрь авиадвигателя, то окажется, что такой же процесс может быть полезным и даже необходимым для самолета. Турбулентные завихрения, возникающие внутри камеры сгорания, активно перемешивают кислород с топливом, что увеличивает скорость реакции горения и делает полет стабильным и безопасным. Математическое моделирование всех этих процессов позволяет предсказать поведение материалов при высоких температурах и давлениях, а также повысить эффективность использования топлива. Ученые Пермского Политеха выяснили, какой показатель турбулентности нужно использовать для корректного моделирования горения. От точных расчетов зависит качественная оценка работы двигателя и выявление его неисправностей.

Ученые Пермского Политеха улучшили модель беспламенного горения в двигателях ПНИПУ, Горение, Двигатель, Турбулентность

Фото: vecstock, freepik

Исследование опубликовано в журнале «Вестник ПНИПУ. Аэрокосмическая техника», №78, 2024.

В системах, от которых требуется высокая мощность – в технологических горелках, топках и газотурбинных двигателях – используется беспламенное горение. Применимо к самолетам, например, оно позволят обеспечить плавный полет без рывков. Это процесс, при котором топливо сжигается, но столп огня не появляется. Благодаря этому реакция сгорания протекает стабильно, в отличие от обычного горения, в котором пламя может обрываться и гаснуть. Такая реакция происходит при высоких температурах около 800 °С. Вдобавок ее ускоряет возникающая турбулентность, которая появляется на некотором расстоянии от входных отверстий двигателя, через которые в камеру сгорания поступает воздух или его смесь с топливом.

Для безопасного использования и контроля беспламенного горения необходимо точно понимать особенности протекания химических реакций. Их можно предсказать с помощью математического моделирования, которое дает возможность оптимизировать процессы сгорания и снизить затраты ресурсов на проведение экспериментов.

На результаты расчетов сильно влияет показатель турбулентности. Она может меняться в зависимости от скорости потока воздуха и удаления от входного отверстия. Поэтому важно понимать точное значение этого параметра, чтобы не допустить ошибок.

Ученые Пермского Политеха выяснили, какие показатели интенсивности турбулентности нужно использовать в расчетах, чтобы получать качественную оценку работы двигателя. Политехники моделировали горение на разном расстоянии для трех отверстий: вход топлива, вход воздуха и вход туннельного воздуха. Затем сравнивали полученные показатели с данными реальных экспериментов.

– Выяснилось, что лучше всего проводить моделирование с применением разных показателей – 5, 10 и 15% интенсивности – для каждого входного потока. Так, значение в 5% подходит только для входа горючего на расстоянии до 20 мм, а в остальных случаях этот же показатель приводит к сильным отклонениям от экспериментальных данных. По мере удаления от входа и уменьшения скорости потока турбулентность увеличивается, – комментирует Роман Бульбович, профессор кафедры «Ракетно-космическая техника и энергетические системы» ПНИПУ, доктор технических наук.

– Кроме того, на корректность расчетов влияет также гидравлический диаметр – этот параметр измеряет, насколько эффективно канал двигателя пропускает топливо. Чем он меньше, тем больше сопротивление потоку, т. е. тем хуже топливо поступает в двигатель, – поясняет Юрий Фролов, аспирант кафедры «Ракетно-космическая техника и энергетические системы» ПНИПУ.

Для получения более точных результатов моделирования ученые Пермского Политеха рекомендуют проводить расчеты гидравлического диаметра и интенсивности турбулентности отдельно для каждого входного потока воздуха и горючего. Это поможет избежать ошибок в расчетах, которые могли бы повлечь за собой неверную оценку работы двигателя и, как следствие, неисправности в его работе.

Показать полностью 1
ПНИПУ Горение Двигатель Турбулентность
0
1
PNIPU
PNIPU
8 месяцев назад

Ученые Пермского Политеха рассказали, как изменение атмосферного давления влияет на выделение опасных газов в рудниках⁠⁠

Ученые Пермского Политеха рассказали, как изменение атмосферного давления влияет на выделение опасных газов в рудниках ПНИПУ, Горные работы, Рудник, Газ, Отравление, Метеорология, Атмосферное давление

Эксплуатация калийных рудников часто связана с рисками для здоровья и безопасности работников, в частности, из-за отравления вредными газами, которые выделяются из породы в процессе добычи. Сейчас существуют различные методы борьбы с этим явлением, но, несмотря на это, проблема все еще актуальна. Чтобы обеспечить необходимые меры безопасности и снизить риск заболевания горнорабочих, важно заранее определять места и время газовыделений в рудниках. Для этого нужно знать, как происходит движение газа и что на это влияет. Ученые Пермского Политеха исследовали взаимосвязь между изменением атмосферного давления и газовой обстановкой в выработках и разработали методику, которая позволит прогнозировать ситуацию в руднике на основе метеорологических данных.

Статья с результатами опубликована в сборнике «Актуальные проблемы охраны труда и безопасности производства, добычи и использования калийно-магниевых солей», 2024 год. Исследование выполнено в рамках программы стратегического академического лидерства «Приоритет 2030».

Газодинамические явления – это одна из серьезных проблем разработки калийных рудников. В процессе добычи солей из пород выделяются ядовитые серосодержащие газы, опасные для здоровья рабочих.

На рудниках проводят интенсивную вентиляцию выработок и рабочих зон, контролируют состояние атмосферы, а также используют средства индивидуальной защиты. Но, несмотря на все меры предосторожности, ситуация остается опасной, поэтому необходимо продолжать разработку новых технологий для борьбы с газовыделениями.

Метеорологические факторы могут существенно влиять на процессы перемещения и концентрации газа в породах. Ученые Пермского Политеха изучили эту связь и разработали методику прогнозирования на основе данных об атмосферном давлении в рудниках.

– Интенсивность выделения газа зависит от газопроницаемости массива выработок, газоносности пород и давления газа в разрабатываемом пласте. При повышенном атмосферном давлении газопроницаемость пластов занижается, и газ выделяется через микротрещины и поры. При значительном падении давления в выработке начинается интенсивное высвобождение газа как из стенок, так и из измельченной породной массы. Чем больше в этих условиях объем добычи, тем сильнее он выделяется, – объясняет Александр Земсков, профессор кафедры «Разработка месторождений полезных ископаемых» ПНИПУ, доктор технических наук.

При таком прогнозировании важно учитывать, что на изменение атмосферного давления в рудниках также влияет и работа вентиляционной системы.

Политехники отмечают, что существуют пороговые значения давления, превышение которых резко меняет интенсивность газовыделений. Они отличаются в зависимости от времени года. Измерение погодных условий в районе рудников крупного Верхнекамского месторождения показало, что в 62% случаев газодинамическая обстановка обостряется в весенние и осенние периоды при резкой смене метеорологических показателей.

– На основе информации об изменении атмосферного давления и анализе данных на калийных рудниках мы выполнили прогноз на год для Верхнекамского месторождения и выявили предположительно опасные и угрожаемые дни по метеофакторам. В такие дни работники заведомо должны быть осведомлены о повышенной опасности для предотвращения неблагоприятных ситуаций, – рассказывает Алсу Имайкина, студентка кафедры «Разработка месторождений полезных ископаемых» ПНИПУ.

Ученые Пермского Политеха доказали, что прогнозирование газовыделений в калийных рудниках с использованием метеорологического фактора представляет собой надежный инструмент обеспечения безопасности горнорабочих.

Показать полностью
ПНИПУ Горные работы Рудник Газ Отравление Метеорология Атмосферное давление
1
5
PNIPU
PNIPU
8 месяцев назад

Ученые Пермского Политеха предложили модель для оптимизации гибки стальных листов⁠⁠

Гибка металла обычно используется в строительстве для создания каркасов зданий и мостов, трубопроводов, кровельных материалов крыш и отделке фасадов. В автомобильной промышленности так производят, например, выхлопные трубы и компоненты подвески, а в аэрокосмической отрасли – крылья и части фюзеляжей. Холодная гибка листов – это относительно экономичный процесс, при котором материалу под давлением придают определенную форму без применения высоких температур. Однако если некорректно задать условия процесса, то можно получить деталь с плохими прочностными характеристиками. Ученые Пермского Политеха предложили модель для оптимизации холодной гибки металлических листов. Она позволит прогнозировать изменения в структуре материала и поможет подобрать наилучшие режимы изготовления изделий.

Ученые Пермского Политеха предложили модель для оптимизации гибки стальных листов ПНИПУ, Деформация, Сталь

Эквивалентные поля напряжений металлического листа в процессе холодной гибки

Статьи опубликованы в журналах «Metals» № 13, 2023 год и «Russian Physics Journal» № 10, т. 67, 2024. Исследования проведены при финансовой поддержке Минобрнауки РФ в рамках реализации нацпроекта «Наука и университеты» (в рамках выполнения госзадания, проекты № FSNM-2021-0012 и № FSNM-2024-0002).

Холодную гибку проводят, как правило, при комнатной температуре без предварительного нагрева. Это относительно быстрый и экономичный способ превратить лист металла в функциональное изделие нужной формы и размера. При этом оно будет иметь беспористую мелкозернистую микроструктуру, которая обеспечивает повышенную прочность. Это важно для ответственных изделий, таких как трубопроводы и авиадетали.

Для оптимизации методов холодной гибки и для разработки новых технологий эффективным инструментом является многоуровневое математическое моделирование. С его помощью описывается изменение внутренней структуры металла на нескольких масштабных уровнях. Это позволяет прогнозировать получаемые свойства материала.

– При интенсивном неупругом деформировании действует множество механизмов, роль которых меняется в зависимости от различных факторов – температуры, скорости и типа воздействий, исходного состава материала. При комнатной температуре одним из ключевых механизмов становится измельчение зеренной структуры металла, в ходе которого образуются новые зерна меньшего размера за счет относительных разворотов частей исходного зерна. Это улучшает прочность готовых изделий, – объясняет Алексей Швейкин, ведущий научный сотрудник лаборатории многоуровневого моделирования конструкционных и функциональных материалов ПНИПУ, доктор физико-математических наук.

Ученые Пермского Политеха разработали многоуровневую модель, которая описывает процесс измельчения зерен при деформации, помогает детально проанализировать закономерности изменения микроструктуры металла и улучшить эксплуатационные характеристики будущих изделий.

– Мы провели моделирование холодной гибки листа из стали и произвели расчеты процесса при различных условиях. В результате определены оптимальное расположение роликов станка и скорость подачи металлического листа – это те параметры, которые обеспечивают наименьший размер зерен и более высокий предел текучести материала, – комментирует Кирилл Романов, аспирант и ассистент кафедры «Математическое моделирование систем и процессов», младший научный сотрудник лаборатории многоуровневого моделирования конструкционных и функциональных материалов ПНИПУ.

Модель ученых Пермского Политеха важна для оптимизации технологий производства и обработки металлических заготовок. Вычислительный эксперимент демонстрирует возможности управления параметрами процесса для получения наилучших характеристик материала. Исследование позволит дать рекомендации технологам по подбору режимов обработки для получения более прочных изделий.

Показать полностью 1
ПНИПУ Деформация Сталь
4
3
PNIPU
PNIPU
9 месяцев назад

Ученые Пермского Политеха в 2 раза повысили точность обработки металлических деталей⁠⁠

Почти для любого вида промышленности необходима обработка металлических изделий для придания им нужной формы. От этого зависит прочность и долговечность готовой конструкции. Особая сложность заключается в деталях со сложной геометрической формой, тонкими стенками или маленькими размерами, как, например, элементы авиационных двигателей и лопастей, медицинские имплантаты и хирургические инструменты. Чтобы не повредить такие изделия, требуется точная и аккуратная работа. В этом случае применяют технологию проволочной электроэрозионной обработки: лишний материал удаляется с поверхности серией электрических ударов тока, которые подаются с тонкой проволоки. Ученые Пермского Политеха исследовали точность этого метода и нашли способ повысить ее эффективность вдвое.

Ученые Пермского Политеха в 2 раза повысили точность обработки металлических деталей ПНИПУ, Двигатель, Детали, Наплавка, Длиннопост

Фото: onlyyounqj, freepik

Исследование опубликовано в журнале «Russian Engineering Research», № 7, т. 44, 2024. Исследование получило финансирование Российского научного фонда (грант 23-79-01224).

Отремонтировать поврежденные металлические детали помогает порошковая лазерная наплавка – это процесс, при котором на поверхность детали наносится порошок металла, который затем расплавляется лазером. Так создается покрытие с высокой прочностью и износостойкостью.

Но после наплавки с детали необходимо убрать неровности на поверхности и получить нужную форму. Для этого используют проволочную электроэрозионную обработку. Ее преимущество по сравнению с другими методами в том, что она не создает механического давления на заготовку и позволяет работать со сложными, тонкими и хрупкими деталями – шестерни, резцы, элементы двигателей, хирургические инструменты и имплантаты. Это также требует обработки высокой степени точности.

Ученые Пермского Политеха проверили эффективность проволочной электроэрозионной обработки и смоделировали обработку деталей газотурбинного двигателя. Образцы изготавливались из титанового сплава и стали, на них методом наплавки дополнительно нанесены порошки титана и меди.

Ученые Пермского Политеха в 2 раза повысили точность обработки металлических деталей ПНИПУ, Двигатель, Детали, Наплавка, Длиннопост

Результаты экспериментальной электроэрозионной обработки проволокой: (a) без учета рекомендаций; (b) с двумя проходами проволоки; (c) с коррекцией угла резания проволоки

– Выяснилось, что на месте стыка металлов образуется погрешность – неровная «ступенька». Ее размер зависел от того, насколько сильно различаются физические свойства взаимодействующих металлов. Например, между сплавом и порошком из титана «ступенька» составляла 0,02 м, а у соединения стали и меди, более разнородного по свойствам, – 0,06 м. Такой дефект может испортить готовое изделие, – объясняет Тимур Абляз, директор Высшей школы авиационного двигателестроения ПНИПУ, кандидат технических наук.

Ученые Пермского Политеха разработали рекомендации, которые повышают точность проволочной электроэрозионной обработки. Сначала нужно тщательно выбрать подходящий угол наклона проволоки. Обработку лучше проводить в два захода, причем второй должен быть менее жестким. Точность работы можно прогнозировать с помощью предварительного математического моделирования.

Для проверки своих выводов политехники провели повторное моделирование, а затем поставили эксперимент. Обработали сплав стали и меди в трех вариантах: без учета рекомендаций, с двумя проходами и с коррекцией угла проволоки. И модель, и практика показали, что предложенные методы снижают погрешность обработки в два раза.

Рекомендации ученых Пермского Политеха позволят значительно увеличить точность проволочной электроэрозионной обработки металлических изделий. Это поможет избежать дефектов и неровностей поверхности, а также повысит качество деталей со сложной геометрией – двигателей, пресс-форм, шестерней и имплантов.

Показать полностью 2
ПНИПУ Двигатель Детали Наплавка Длиннопост
0
1
PNIPU
PNIPU
9 месяцев назад

Ученые Пермского Политеха разработали систему для качественной оценки лечения зубов с использованием робота-тренажера⁠⁠

Ученые Пермского Политеха разработали систему для качественной оценки лечения зубов с использованием робота-тренажера ПНИПУ, Робот, Стоматология, Лечение, Искусственный интеллект, Длиннопост

Распознавание системой. Вид с боковой камеры.

Ранее ученые Пермского Политеха разработали антропоморфный робот-симулятор – тренажер для студентов-стоматологов с технологиями ИИ. Нейросети во-первых, позволяют вести диалог с роботом, а во-вторых, нужны для распознавания объектов на изображении, чтобы оценивать результаты лечения зубов студентами. При этом система должна надежно локализовать и детально оценить сам изменяющийся объект – зуб в ротовой полости тренажера, его свойства и то, как они меняются в ходе операции. Для этого ученые ПНИПУ разработали двухступенную схему распознавания и усовершенствовали методы обработки, что до 92% повысило точность в нестабильных условиях съемки. Теперь нейросеть оценивает не только количественные показатели (размеры, глубину отверстия для пломбы, толщину снятого слоя эмали), но и качественные, например, правильно ли выполнена фрезеровка, нет ли скосов, равномерны ли дно и стенки зуба.

Статья опубликована в журнале «Вестник ПНИПУ. Электротехника, информационные технологии, системы управления» № 51, 2024 год. Исследование проводилось при финансовой поддержке Пермского НОЦ «Рациональное недропользование».

Проект «антропоморфного стоматологического симулятора» – это тренажер для студентов-стоматологов, на котором учащиеся могут безопасно отрабатывать свои навыки в проведении основных процедур – лечение кариеса, обработка зуба под коронку, удаление и лечение канала. Встроенная нейросеть с помощью видеокамер позволяет оценить результаты работы, обрабатывая полученные изображения.

Современные нейросети способны определять множество объектов разных классов без применения каких-либо дополнительных схем. Обычно для поиска и классификации объектов на фотографиях используют простую одноступенную нейросеть. Она, например, может с высокой точностью находить зубы в челюсти тренажера, несмотря на постоянное изменение освещенности и самой формы объекта в ходе лечения. Но если необходимо проанализировать не сам объект, а только его часть, допустим, небольшую пломбу, задача усложняется, повышается количество ложных срабатываний. Нейросеть может ошибочно принимать блики и неровности внутри полости рта за искомые отверстия в зубе или совсем пропускать их.

Ученые Пермского Политеха разработали двухступенную схему распознавания, которая анализирует фото в поисках составных объектов (отдельных зубов), вырезает, нормализует их по размерам и анализирует каждый фрагмент по отдельности для определения искомых мелких объектов (пломб, отверстий).

— На первой ступени производится поиск области интереса, т.е. первая нейросеть определяет только объекты «зуб» и «зуб с дыркой». Они вырезаются и передаются на вторую ступень, где распознаются уже отверстия в зубах и их свойства, — объясняет Андрей Кокоулин, доцент кафедры автоматики и телемеханики ПНИПУ, кандидат технических наук.

Предварительная обработка фото особенно актуальна для определения свойств малых объектов, так как их изменения сложнее обнаружить. Она позволяет устранить шум, повысить контрастность и яркость, а также улучшить четкость, что делает изображение более информативным. Из-за того, что зубы имеют цвет близкий к белому, на них плохо видны контуры вырезанных отверстий. Также мешает отсвечивание подсветки, необходимой для работы камер. Политехники дополнительно встроили в систему программу для улучшения контраста, которая сохраняет локальные детали и структуры изображения, что важно для точного определения границ мелких объектов на изображении.

Форма зуба представляет собой кривую, и в ходе процедуры важно вычислять размеры его границ, глубину отверстий и количество снятой эмали.  Для этого ученые разработали метод измерения объекта сложной формы, позволяющий проводить расчеты в трех измерениях.

— Применение нашей двухступенной системы до 92% увеличило точность и до 5% уменьшило количество ложноположительных срабатываний. Для каждого варианта лечения нейросеть может определить свои количественные параметры. Для «кариеса» и «канала» — размеры полости под пломбу, для «коронки» — толщину и равномерность снятого слоя с боков и сверху зуба. А также качественные показатели — правильно ли выполнено лечение, не сломался ли зуб при удалении и насколько ровные стенки, — поделился Андрей Кокоулин.

Политехники отмечают, что в перспективе возможно создание мобильного приложения, с помощью которого можно сфотографировать вылеченный зуб (еще без пломбы или коронки) и оценить качество лечения. Также предложенный метод анализа можно использовать везде, где нужна съемка различных составных конструкций и механизмов со множеством деталей.

Разработанная учеными ПНИПУ система на основе нейросети существенно улучшает обучение студентов на стоматологическом тренажере, а также вносит большой вклад в развитие современной технологичной медицины в России.

Показать полностью
[моё] ПНИПУ Робот Стоматология Лечение Искусственный интеллект Длиннопост
2
Посты не найдены
О нас
О Пикабу Контакты Реклама Сообщить об ошибке Сообщить о нарушении законодательства Отзывы и предложения Новости Пикабу Мобильное приложение RSS
Информация
Помощь Кодекс Пикабу Команда Пикабу Конфиденциальность Правила соцсети О рекомендациях О компании
Наши проекты
Блоги Работа Промокоды Игры Курсы
Партнёры
Промокоды Биг Гик Промокоды Lamoda Промокоды Мвидео Промокоды Яндекс Директ Промокоды Отелло Промокоды Aroma Butik Промокоды Яндекс Путешествия Постила Футбол сегодня
На информационном ресурсе Pikabu.ru применяются рекомендательные технологии