Настя, Даша и три карточки
У Насти есть три карточки с цифрами, и она составила из них какое-то трёхзначное число. Потом Даша взяла те же самые три карточки и составила число, которое ровно в четыре раза больше. Как такое могло быть?
У Насти есть три карточки с цифрами, и она составила из них какое-то трёхзначное число. Потом Даша взяла те же самые три карточки и составила число, которое ровно в четыре раза больше. Как такое могло быть?
Вот и подходит к концу первая четверть двадцать первого века.
На доске выписали натуральные числа от 1 до 1 000 000. Затем каждое число заменили суммой его цифр. С каждым полученным числом сделали то же самое. И так до тех пор, пока на доске не останутся лишь однозначные числа. Каких чисел получится больше — единиц или двоек?
Составьте три обыкновенные дроби с однозначными числителями и двузначными знаменателями, используя каждую из цифр 1, 2, 3, 4, 5, 6, 7, 8, 9 ровно один раз, так, чтобы сумма этих дробей была равна 1.
Найдите все такие целые неотрицательные числа n, при которых значение выражения n!+(n+1)!+72 является точной степенью (выше первой) натурального числа.
Докажите, что других таких n нет.
В числе 9876543210 зачёркиваются цифры (от 1 до 9 штук) так, чтобы оставшееся число делилось на 4. Не пиша компьютерной программы и не пользуясь катькулятором, определите, сколько таких различных чисел можно получить?
Целое неотрицательное число N назовём облепиховым, если сумма десятичных цифр числа N^3+N^2 равна N.
Найдите все облепиховые числа и докажите, что других нет.
В десятичной записи некоторой степени тройки (с натуральным показателем) переставили цифры. Новое число вычли из первоначального. Могло ли получиться число, записанное снова теми же цифрами?