Сообщество - Лига Химиков
Добавить пост

Лига Химиков

1 606 постов 12 509 подписчиков

Популярные теги в сообществе:

За Алхимию или Самый вкусный рецепт приготовления золота

Собственно говоря все, кроме может быть тех, кто лечится гомеопатическими препаратами, знают, что алхимия эта лженаука, которая существовала когда люди еще плохо шарили что к чему в науке и пытались получить то, чего, собственно, получить нельзя.


Лично мне, как и возможно много кому, запомнилось 2 вещи - они хотели создать Философский камень и превращать ртуть в золото.

Тему философского камня пока что оставим в покое, а вот превращение ртути в золото я бы и хотел обсудить.


Я честно говоря, пока не копнул поглубже, думал что это какой-то абсолютно бредовая и не реализуемая идея, примерно как превращение человека в кролика или наоборот. Что-то вроде было-бы круто почему бы и нет.

То же самое, что превратить медь в титан или олово в серебро.


Конечно, теоретически все мы знаем, что при помощи альфа и бэта распадов можно превратить любой элемент в любой другой. Но во-первых это надо его еще заставить распадаться (то есть сделать радиоактивным, или уже найти)где-то в природе), во-вторых заставить распадаться именно тем распадом, которым надо, и в-третьих, после того как окончательный элемент получится, нужно, чтобы он сам не распадался, а был стабильным.


Все эти мысли подсказывали мне, что такой череды удачных совпадений быть не может. И так я и думал, до тех пор пока не заглянул в таблицу Менделеева и еще кое-куда.

За Алхимию или Самый вкусный рецепт приготовления золота Cat_cat, История, Длиннопост, Химия, Золото, Ртуть, Эксперимент

Рисунок 1. Фрагмент таблицы Менделеева и моя реакция на такое совпадение


Опа Опа! Оказывается золото и ртуть находятся рядом и для получения золота достаточно одного бэта-распада. Ну совпадение бывает, но вообще не плохо, у алхимиков не было таблицы Менделеева. Но после этого я решил что точно нужно глянуть какие бывают изотопы у ртути и как они любят распадаться.

За Алхимию или Самый вкусный рецепт приготовления золота Cat_cat, История, Длиннопост, Химия, Золото, Ртуть, Эксперимент

Рисунок 2. Список изотопов ртути.


И тут я тоже слегка удивился, оказывается существует изотоп ртути Hg-197, который имеет период полураспада всего 64 часа (если бы он был скажем миллион лет - нам бы не подошло-слишком долго ждать) и он при помощи электронного захвата (типа распада, при котором ядро захватывает с нижней орбитали электрон и один из протонов превращается в нейтрон) превращается в Au-197 - единственный стабильный изотоп золота.

За Алхимию или Самый вкусный рецепт приготовления золота Cat_cat, История, Длиннопост, Химия, Золото, Ртуть, Эксперимент

Рисунок 3. Список изотопов золота


Божечки-кошечки, вот это уже, по-моему, супер удача, потому как получившееся золото не будет радиоактивным, и получится достаточно быстро!


Ну ладно, а где взять то этот Hg-197, если он имеет такой маленький период полураспада, то в природе его, конечно не существует, потому что он взял да и распался весь. Однако сделать вещество радиоактивным можно, для этого нужен всего лишь источник нейтронов.


И о удача! Она сопутствует нам практически на каждом шагу - изотоп Hg-196 является стабильным, а значит существует в природе. И если ему скормить всего 1 нейтрон, при помощи нейтронного источника, то он превратится в так нам желанный Hg-197.


Есть конечно небольшое огорчение, если посмотреть на массу ртути в таблице Менделеева, там написано 200,59 (а масса в таблице берется как среднее значение массы изотопа с учетом его распространения в у нас на Земле). То есть это означает, что в произвольно взятом стакане ртути нам будут попадаться в основном изотопы с другой массой. И в самом деле Hg-196 содержится в нашем стакане всего 0,155%.


Не густо, конечно, но сколько есть.


Таким образом рецепт готов – можно записать его в нашу алхимическую кулинарную книжку.


«Как приготовить золото»


1) Возьмите много ртути, примерно в 650 раз больше, чем вы хотите золота.

2) Выделите из общей массы 196 изотоп Ртути.

3) Теперь достаньте нейтронный источник и облучайте им нашу ртуть, будьте осторожны - он активирует любое вещество до которого дотянется, и запросто может вас убить.

4)Довольно, не стоит пугаться того, что изотоп может захватить более одного нейтрона он превратиться просто в другой изотоп ртути причем стабильный(!!). Это означает, что спустя месяц в золото превратится 99,95% 197-й ртути. Плюс там, конечно будут другие стабильные изотопы ртути, и остатки радиоактивной 197-й ртути (0,05%), но все равно неприятно.

5) Поэтому отделяем химическим путем золото от ртути.

6)Вуаля! Вы великолепны – приятного аппетита. Золото готово – миссия алхимика выполнена. Вы сказочный...богач, но это не точно. Главное не вздумайте считать рентабельность такого способа.

За Алхимию или Самый вкусный рецепт приготовления золота Cat_cat, История, Длиннопост, Химия, Золото, Ртуть, Эксперимент

Рисунок 4. Вы, после приготовления золота указанным способом


Источник: Cat_Cat. Автор: Максим Савин.

Личный хештег автора в ВК - #Савин@catx2

_______________________

НАШЕ ОГЛАВЛЕНИЕ

Показать полностью 4

Аффинаж - быстропост

Отвечал на коммент, накатал целую простыню, а потом решил - а выложу-ка я это постом! Просто потому, что могу. Для ЛЛ - вопрос был про аффинаж, тобишь извлечение драгоценных металлов из старых приборов.

Сразу обозначу дискламер - это не совсем законно. Вплоть до уголовки.

Так вот, аффинаж - это реальная тема, не сказки и не вымысел, но надо иметь руки и, желательно, опыт. Ну и объемы - чем больше поток, тем ниже себестоимость аффинажа. Пик аффинажа прошел в 90е и 00е, сейчас он находится в вялотекущем состоянии. Однако есть до сих пор ряд людей, которые этим занимаются, и конкурировать с ними ИМХО особого смысла нет - на их стороне опыт, подозреваю, что какие-то свои технологические ноу-хау, завязки среди продавцов и покупателей. Большую часть действительно жирных по драгмету приборов, с которых можно было озолотиться быстро и без усилий, уже успешно распилили, разве что вылезает что-нибудь с военных складов или старых лабораторий. И аффинаж сейчас представляет из себя скорее денежную, но тем не менее хлопотную работу, а не клондайк и эльдорадо в одном лице. Скажем так, квалифицированный программист, манагер среднего звена или чиновник смотрит на доходы аффинажника со снисходительной усмешкой...


Откуда аффинируют? Из старой техники и деталей. Техника нужна по большей части советская - заграничные, и даже произведенные в странах Варшавского блока приборы обычно не содержат драгмета в каких-то ощутимых количествах. Конкретнее - есть немало сайтов, например жмяк, где довольно подробно протабулировано содержание драгов в компонентной базе. Опять же, обычно на этих же сайтах висят объявления по скупке этих самых компонентов поштучно и на вес. Цены каждый ставит в меру своей борзости, но можно сказать, что есть более-менее рыночные цифры, обусловленные рентабельностью извлечения и нормой прибыли.


Что аффинируют?

Аффинаж - быстропост Химия, Аффинаж, Длиннопост, Золото, Мат

Для сравнения - курсы драгметаллов по ЦБ РФ.


-Серебро целенаправлено аффинировать обычно бессмысленно. Главным образом потому, что оно очень дешевое. Чтобы одним серебром окупить хотя бы себестоимость процесса, надо аффинировать его сотнями грамм за заход. Но если уж идет аффинаж - почему бы не выделить его из смеси? Правда, при больших оборотах появляется смысл аффинировать и его.


-Золото - one love. Производители, особенно советские, особенно военные, очень любили им обмазываться покрывать все контакты, до которых могли дотянуться. В жирных приборах могло быть по 5-10-20 грамм золота. Причина проста - золото инертно, что исключает окисление контактов, которое является одной из самых частых причин сбоев и неисправностей. Ну и проводимость у него хорошая, почти как у меди. А стоит оно в 100 раз (в сто раз) дороже серебра.


-Платина. Платину любили использовать во всяких реостатах и прочих потенциометрах, а также в термопарах. Ну и электрохимики платину очень любят, ввиду низкого перенапряжения электрохимических реакций на ней. Причем если золото обычно намазано тонким слоем на ножки микросхем и контактов - платина, в чистом виде или в сплаве с высокой массовой долей, встречается вполне себе в виде осязаемых монолитных объектов.


-Металлы платиновой группы, МПГ. Это палладий, рутений, родий, осмий, иридий. Саму платину обычно сюда не включают, ибо рассматривают отдельно. Осмий и иридий аффинажник вряд ли встретит, а вот троицу палладий-родий-рутений - запросто. Помимо применений в электронике, они используются и в других сферах. Например, МПГ содержатся во вполне ощутимых количествах в автомобильных катализаторах. Или в химпроме. Палладий и родий стоят сравнимых с золотом денег, а вот рутений уже на порядок дешевле.


-Экзотика. Ценность представляют в основном два металла - рений и тантал. Рений стоит прилично - больше 500 рублей за грамм, и в принципе периодически встречается в различных промышленных и научных приборах. Тантал стоит примерно как серебро, но прикол в том, что содержится в некоторых сериях конденсаторов в крайне легкоизвлекаемом виде и довольно большом количестве.


Как аффинируют?

1. Доступны ли реактивы(я так понимаю кислоты, в основном) и посуда, и уровень расходов на это( не дорого, средне, дорого, пиздец как дорого)?

Посуда вполне доступна. Обычное химическое стекло, колбы, стаканы. Реактивы - не все продаются в открытом доступе. Скажем, та же соляная кислота для царской водки - прекурсор, и купить её "вбелую" не получится. Однако ходят слухи, что достать её вполне можно. Да и не все схемы аффинажа требуют царской водки, есть и альтернативные. Уровень расходов - скажем так, достаточно низкий, чтобы при наличии отработанной технологии сохранять рентабельность занятия. Реактивы на самом деле грошовые, основная часть стоимости процесса - труд.

2. На вскидку, сколько этапов( ну там, растворение, осаживание)?

Зависит от сложности смеси. В простейшем случае, если выделяется только один драгмет - растворение, осаждение, плавка. Если смесь - там используются разные схемы ступенчатого растворения или осаждения. Для получения чистого продукта желательно ещё электролитическое рафинирование.

3. Опасность процесса: испарения, кипения, взрывы:)))?

При аффинаже в любом случае используются концентрированые сильные кислоты. Причем их греют и выпаривают. То есть опасность есть, и весьма конкретная. Помимо опасности попадания на тело самих растворов, есть ещё оксиды азота, которыми парит азотная кислота, и, опционально, всякие вкусняхи вроде гидразингидрата. Ну и до взрыва в принципе тоже можно довести, особенно если использовать для растворения составы, содержащие перекись или персульфаты. Короче, не зная броду - не суйся в воду.

4. Есть ли, по вашему мнению смысл заниматься?

Я бы не стал. У меня есть работа, которая мне нравится. Она приносит мне достаточно денег, чтобы не завидовать аффинажникам, и она во много раз интереснее. Да и рисков для здоровья, жизни и свободы не в пример меньше. В целом, эта работа - это скорее работа в формате ИП, где ты сам себе и бизнесмен, и наемный работник.

Т.е. могу ли свалить кучу (пару жмень)в посуду, все это растворить, и далее по алгоритму, или все очень по-другому?

Примерно так оно и происходит. Конечно, для ускорения/упрощения дальнейшего процесса и экономии реактивов (а главное, чтобы не увеличивать без нужды объемы растворов) желательно предварительно подготовить сырье, измельчить его и убрать с него всё ненужное и легко убираемое. Насколько оно "по алгоритму"? Обычно да, процесс простой и квалификации особой не требует, ибо системы для растворения специально предназначены для того, чтобы минерализовать всё к чертям и перевести весь драгмет в конкретную химическую форму, из которой он может быть по стандартной схеме выделен. Хорошо иметь возможность как-то анализировать содержание драгмета в растворах, чтобы не просрать их случайно. В интернете полно инструкций и даже видео по аффинажу, которые наглядно показывают, что сам процесс доступен любому человеку с минимумом оборудования и познаний. А вот для того, чтобы сделать этот процесс рентабельным и превратить в источник дохода - уже нужны познания более глубокие.


Нихера себе я заморочился, аж целую простыню накатал посредь ночи. @Fazych, надеюсь, я ответил на твой вопрос?

Показать полностью 1

Горение паров спирта

Колбы Шрёдингера

Колбы Шрёдингера

Удачный эксперимент

Стабильные радикалы

Обычно в сознании людей слова "радикальный" и "стабильный" воспринимаются как нечто совершенно противоположное. Но в химии возможно все, и стабильные радикалы - не такая уж и диковинка.

Свободный радикал - это частица с неспаренным электроном. Этот электрон может принадлежать как одному атому, так и может быть делокализован (размазан) по всей молекуле. Чем больше у электрона возможностей для делокализации, например, если рядом есть сопряжённые системы двойных связей, ароматические системы, тем стабильнее будет радикал. Ещё устойчивости придают и стерические, т.е. пространственные факторы: если до электрона сложно добраться, то какой бы он ни был реакционной частицей, ему все равно придется прозябать в окружении защищающих его групп. Так один из первых известных стабильных радикалов -  трифенилметильный (или тритильный радикал,  trityl) - содержит три бензольных кольца, которые одновременно служат площадкой для делокализации, и достаточно объемные, чтобы оградить радикал от нападок других частиц

Стабильные радикалы Органическая химия, Химия, Химическая реакция, Гифка, Длиннопост

Ещё одним, и наверное самым распространенным примером будет радикал ТЕМРО (тэмпо), аббревиатуру которого не хочется расшифровать, дабы не ломать психику...

Ладно, хотели - получайте: (2,2,6,6-тетраметилпиперидин-1-ил)оксил.

Этот радикал - стабильное твердое вещество красного-оранжевого цвета. Стабильности ему придает делокализация электрона по N-O связи, плюс еще 4 метильные группы. К слову, монооксид азота NO - тоже радикал. И это ваш кислород - туда же, бирадикал.

Стабильные радикалы Органическая химия, Химия, Химическая реакция, Гифка, Длиннопост

TEMPO - самый известный в семействе N-оксильных радикалов. Кроме него стоит упоминания фталимид-N-оксильный радикал, или PINO. Он более реакционноспособен и может жить в растворе в течение нескольких минут. Есть и другие радикалы этого класса, которые настолько стабильны, что их можно поделить на колонке.

Так выглядит образование фталимид-N-оксильных радикалов под действием окислителей:

Стабильные радикалы Органическая химия, Химия, Химическая реакция, Гифка, Длиннопост

Для того, чтобы радикалы можно было использовать в химических реакциях, необходимо найти золотую середину между устойчивостью и реакционной способностью. С одной стороны, радикал должен обладать достаточной энергией, чтобы разрывать и окислять нужные связи. Но чем больше энергия, тем меньше стабильность и разборчивость: велика вероятность, что он накинется на первую попавшуюся связь или прореагирует сам с собой.

По мере реакции радикал расходуется и окраска исчезает:

Стабильные радикалы Органическая химия, Химия, Химическая реакция, Гифка, Длиннопост

Если к радикалу добавить какой-нибудь легкоокисляемый субстрат (т.е. вещество, которое будет реагировать), то пино радостно отрывает у него водород, в свою очередь образуется еще один радикал, судьба которого может быть различна. Он может окислиться, прорекомбинировать (соединиться) с другим радикалом, оторвать еще где-то водород, провзаимодействовать с пино...

Стабильные радикалы Органическая химия, Химия, Химическая реакция, Гифка, Длиннопост

Собсна, зачем нужны эти радикалы?

Круг их применения широк - от промышленных процессов контролируемой полимеризации до тонкой химии. Устойчивые радикалы могут добавлять в качестве стабилизаторов  в легкоокисляемые вещества, чтобы обрывать цепочку радикальных реакций.

Часто их используют в качестве медиаторов окисления или катализаторов, в фотохимических процессах.

ТЕМРО - известная "радикальная ловушка", то есть он может перехватывать другие радикалы, образующиеся в реакции, тем самым тормозя ее. Такой прием можно использовать, чтобы выяснить, радикальный ли механизм процесса (но не со 100% гарантией). Ещё одна радикальная ловушка - ВНТ. Его можно также встретить в разной косметике, где он играет роль антиоксиданта.

Стабильные радикалы удобно анализировать по ЭПР (электронный парамагнитный резонанс), что дает возможность использовать их в качестве спиновых меток для детектирования различных биомолекул.

И да, стабильные радикалы в каком-то смысле спасают нам жизнь. Поскольку в каждом живом существе постоянно идут  процессы синтеза/окисления, параллельно могут образовываться свободные и очень активные радикалы, которые повреждают все на своем пути. И тут на помощь приходят вещества, которые принимают удар (а вернее, электрон) на себя. Бета-каротин и каротиноиды, витамин Е и всякие штуки, называющиеся антиоксидантами - они могут образовывать радикалы с низкой энергией которые безопасны для нас, ходячей органики.

Стабильные радикалы Органическая химия, Химия, Химическая реакция, Гифка, Длиннопост

А вы думали, это для красоты растения цветные. Неа, просто куча сопряжённых двойных связей создаёт именно такой уровень энергии, при котором поглощается видимый свет. Но это уже другая история.

Показать полностью 5

Технеций - маргинальный металл

Технеций - маргинальный металл Химия, Экспрессивные факты, Лига химиков, Юмор, Металл, Элементы, Длиннопост
Технеций - маргинальный металл Химия, Экспрессивные факты, Лига химиков, Юмор, Металл, Элементы, Длиннопост
Технеций - маргинальный металл Химия, Экспрессивные факты, Лига химиков, Юмор, Металл, Элементы, Длиннопост
Технеций - маргинальный металл Химия, Экспрессивные факты, Лига химиков, Юмор, Металл, Элементы, Длиннопост

Всё это и прочее на странице ВК:

https://vk.com/mircenall


Посты первого года:

Титан. Алюминий. Ртуть. Осмий. Вольфрам. Медь. Цезий. Фтор. Хром. Свинец. Висмут. Углерод. Водород. Серебро. Палладий. Платина. Франций. Золото. Бериллий. Мышьяк. Кремний.

Посты второго года:

Радон. Литий. Рутений. Тантал. Молибден. Рений. Иридий.

Показать полностью 4

Кристаллы фенола

Фенол. Расплавление кристаллов теплотой дыхания. Микроскоп МИН-8, поляризация, скрещенные поляризаторы, объектив 9х. Кристаллы фенола образованы на предметном стекле путем кристаллизации из раствора фенола в ксилоле. Видно, как тают кристаллы при дыхании на них.

Отличная работа, все прочитано!